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ABSTRACT 

This paper extends the research presented at the Prognostics 

and Health Management (PHM) Asia-Pacific 2023 

Conference Data Challenge, focusing on a more pragmatic 

approach to spacecraft propulsion system health assessment. 

While the previous competition saw a variety of solutions, 

they predominantly relied on the assumption of highly stable 

initial hydraulic conditions – an idealization seldom met in 

real-world scenarios. In practical settings, factors such as 

operational noise, recent operational states, and ambient 

environmental conditions significantly disrupt this stability, 

rendering such solutions less feasible. Addressing this gap, 

our current study introduces a novel diagnostic model 

capable of valve faults without depending on the initial stable 

state of hydraulics. This approach marks a significant shift 

from our previous methodology, which primarily utilized 

similarity measures and physics-inspired features to classify 

health states and identify solenoid valve faults in spacecraft 

propulsion systems. The proposed model in this paper is 

validated against a diverse set of conditions, emphasizing its 

robustness and applicability in fluctuating real-world 

scenarios. Our findings demonstrate that the new model not 

only effectively diagnoses system health under varied and 

less controlled conditions but also enhances the practicality 

of spacecraft health management, offering a more adaptable 

solution in the face of operational uncertainties. 

1. INTRODUCTION 

Propulsion systems in spacecraft are essential for navigating 

through the cosmos, and their dependable and effective 

operation is critical. Therefore, the health management of 

these systems is of utmost significance. The role of 

Prognostics and Health Management (PHM) is central in 

ensuring this dependability, as it allows for the early 

identification and assessment of potential problems or 

irregularities within the propulsion mechanisms.  

To promote Spacecraft PHM, the Japan Aerospace 

Exploration Agency (JAXA) created and released a dataset to 

the public (Tominaga et al., 2023), and at the same time, a 

data challenge was held at the PHM Asia Pacific 24 

conference to facilitate the use of this data (PHMAP 2023 

Secretariat, 2023). The Data Challenge required complex 

diagnostics such as analytical detection, classification, and 

regression, and many institutions took on the challenge. 

Despite the complexity of the problem, the top three teams of 

the data challenge ultimately succeeded in creating highly 

accurate models, and these results have been compiled and 

published in papers (Kato, et al., 2023) (Lee et al., 2023) 

(Minami & Lee, 2023). This effort was an important step in 

the promotion of spacecraft PHM. However, there are two 

major problems in adapting these models to the real world. 

The first problem is the presence of non-noise regions that are 

unique to this data set. All of the top three teams found and 

used a time region in the given pressure sensor data that is 

completely free of noise. In this time region, all data sets with 

identical health conditions have the same pressure values, and 

the differences among Spacecraft individuals and data are 

zero. Specifically, the given pressure time series data is 

completely free of noise/variation in the initial 0.1 seconds (0 

to 0.1 sec) of the 1.2 seconds. This is evidenced by the results 

of the data analysis (Kato, et al., 2023). This is presumably 

because this data set was generated by simulation. Since this 

specificity is considered to be different from the behavior of 

pressure in the real world, there is a concern that even if a 

high-performance model is created using only the completely 

noise-free portion of this data set, it will be completely 

useless in the real world if any noise is added, or if there is 

any variation in the data. To dispel this concern, it is 

necessary to evaluate the model using data with 

noise/variance. 

The second problem is the use of valve open-state data. The 

data given are data from three iterations of valve opening and 
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closing, and the three proposed models use only the data from 

that first valve open state. However, in the valve open state, 

the propulsion system is not closed as a system and its 

pressure behavior is subject to external influences. Therefore, 

the pressure in the valve open state is a very complex and 

unpredictable behavior. Therefore, in pursuit of a robust 

model, state estimation is required using the pressure in the 

valve closed state, i.e., when the system is closed. 

Because of these two major problems, the models proposed 

in the data challenge may not stand up to use in the real world.  

To summarize the above points: 

Firstly, regarding the variance-free region of the dataset: 

• The spacecraft valve dataset contains an unrealistic 

time region that is free of variance. 

• The models proposed in the data challenge use this 

variance-free time region, which may result in poor 

performance when applied to real-world data. 

• To ensure the proposed models perform well in the 

real world, it is necessary to validate them using 

time regions with variance. 

Next, regarding the data during valve opening and closing: 

• When the valve is open, the system is open, making 

the sensor data complex and unpredictable. This 

cannot be verified until tested with real-world data. 

• For building a robust model, it is preferable to use 

data from the closed system when the valve is closed. 

• All models proposed in the data challenge are 

designed and trained using data from the valve-open 

state. 

• To construct a robust model, it is necessary to design 

new models based on data from the valve-closed 

state. 

To address this issue, this paper examines and evaluates the 

models for the PHM of spacecraft valve under the restriction 

that data from the variance-free portion is not used and 

assumes following two cases: Case 1 uses data from the valve 

open state, while Case 2 uses data from the valve closed state. 

Model construction was examined under these scenarios to 

promote the construction of a more robust PHM model. 

2. PROBLEM STATEMENT 

The PHM Asia-Pacific 2023 Conference Data Challenge 

focused on Prognostics and Health Management for 

spacecraft propulsion systems, with the system's schematic 

illustrated in Figure 1. The training dataset provides 177 sets 

of synthetic data produced by simulations. Each set includes 

measurements from seven pressure sensors labeled P1 to P7, 

as depicted in Figure 1. These measurements were taken at a 

sampling rate of 1 kHz, throughout 1200 ms, and encompass 

three cycles of valve open-close operations, as shown in 

Figure 2.  

The training dataset covers three distinct spacecraft, labeled 

#1 through #3, and it encompasses three different health 

conditions: normal operation, bubble anomalies, and solenoid 

valve faults. Solenoid valve faults could potentially occur in 

one of the four valves labeled SV1 through SV4, as shown in 

Figure 1. In the event of a fault, the solenoid valves may open 

anywhere from 0% to 100% of their full range. Under normal 

conditions, they open 100%. Note that the training data only 

include cases in which the valve open ratios are 0%, 25%, 

50%, 75%, and 100%. The competition aims to utilize the 177 

training data points to evaluate the health conditions of the 46 

test data points. Half of the test data originates from 

spacecraft #4, which is not represented in the training set. 

In this study, we focus only on the most complex task of 

estimating valve apertures. Two problem settings, Case 1 and 

Case 2, are used to validate the model for the two major 

problems described in the Introduction. Each is described in 

detail in the following sections. 

Figure 1. Schematic of experimental propulsion system 

Figure 2. Typical pressure profile 

Figure 3. Pressure differences among normal data 
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Figure 4. Data Regime 

2.1. Case 1: Valve opening ratio prediction using data at 

valve opening with noise/variance 

In Case 1, only the data of the valve open state of the second 

and third cycle of the valve open/close cycles is used. 

Specifically, as shown in the green area of Figure 4, out of 

the total 1.2 seconds of pressure data, only 0.4 to 0.5 seconds 

and 0.8 to 0.9 seconds, for a total of 0.2 seconds of data are 

used. 

Case 1 evaluates model performance with the following 

metrics as well as data challenge 

The evaluation metric is as follows: 

𝑇𝑜𝑡𝑎𝑙 𝑆𝑐𝑜𝑟𝑒 =
∑ 𝑆𝑐𝑜𝑟𝑒𝑖

𝑁𝑡𝑒𝑠𝑡
𝑖

∑ 𝑆𝑐𝑜𝑟𝑒(𝑚𝑎𝑥)𝑖
𝑁𝑡𝑒𝑠𝑡
𝑖

 (1) 

Here, 𝑁𝑡𝑒𝑠𝑡  is the number of test data. 𝑆𝑐𝑜𝑟𝑒𝑖 is as follow: 

𝑆𝑐𝑜𝑟𝑒𝑖: For the solenoid valve correctly identified as fault, 

prediction of the opening ratio: max (20-|truth – prediction|, 

0) 

For spacecraft #4, 𝑆𝑐𝑜𝑟𝑒𝑖  are doubled, considering the 

difficulty. 𝑆𝑐𝑜𝑟𝑒(𝑚𝑎𝑥)  is the score if there were no 

prediction errors. Therefore, the total score can range from 

0% to 100%. 

2.2. Case 2: Valve opening ratio prediction using data at 

valve closed 

In Case 2, only the data of the valve closed state for the 1st, 

2nd, and 3rd cycles of the whole sensor data are used. 

Specifically, as shown in the orange area of Figure 4, out of 

a total of 1.2 seconds of pressure data, 0.1 to 0.4, 0.5 to 0.8, 

and 0.9 to 1.2 seconds of pressure data are used. 

Since Case 2 is more difficult than Case 1 and it is difficult 

to estimate the valve opening ratio with continuous values, 

set the classes according to the valve opening ratio as shown 

in Figure 5, and set the problem as a classification problem to 

predict the valve opening ratio class instead of a regression 

problem to predict the numerical value of the valve opening 

ratio. 

The classification models are evaluated using the following 

metric where TP is the total number of test data that are 

correctly classified. 

Figure 5. Labeling of valve opening ratio 

𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃

𝑁𝑡𝑒𝑠𝑡

 (2) 

3. BACKGROUND: MODEL SELECTION 

PHM often face the challenge of dealing with noise and 

variability in data, which can obscure the fundamental 

patterns necessary for accurate diagnosis and prediction. A 

common approach to address this issue is the use of filtering 

techniques, such as moving averages and other signal 

processing methods. 

Simple filtering techniques, such as moving averages and 

other basic smoothing methods, are widely used in PHM to 

reduce noise and improve signal quality. For instance, 

Mubarak et al. (2023) demonstrated that applying a moving 

average filter to time series signals outperformed traditional 

condition monitoring methods in tasks such as Rolling 

Element Bearing Fault Diagnosis and Hydraulic 

Accumulator State Classification. Similarly, Boškoski and 

Urevc (2011) showed that passing vibration signals through 

a band-pass filter effectively removed noise, enhancing the 

accuracy of bearing fault detection by analyzing the envelope 

spectrum of the filtered signals. 

However, these simple methods have significant limitations. 

The primary concern is their inability to distinguish between 

noise and useful information. As a result, essential diagnostic 

information may be inadvertently removed along with the 

noise. This is particularly problematic in scenarios like 

predicting valve opening degrees, where minute pressure 

fluctuations carry significant diagnostic value. Standard 

noise removal techniques are likely inappropriate here, as 

they can degrade model performance by losing critical 

diagnostic information. 

To address the limitations of simple filtering, advanced 

techniques such as deep learning are utilized (Najafabadi et 

al., 2015). Deep learning models, including Convolutional 

Neural Networks (CNNs), Recurrent Neural Networks 

(RNNs), and Generative Adversarial Networks (GANs), 

excel in distinguishing noise from useful signals. For 

example, Baptista and Henriques (2022) used a one-
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dimensional denoising GAN (1D-DGAN) to filter noise from 

turbofan engine operational data, significantly improving 

fault detection accuracy. Liu et al. (2018) proposed a novel 

bearing fault diagnosis method using an autoencoder in the 

form of an RNN. This method employed a Gated Recurrent 

Unit (GRU)-based denoising autoencoder to predict multiple 

vibration values of rolling bearings for the next period from 

the previous period. The proposed method demonstrated 

satisfactory performance with high robustness and 

classification accuracy. 

While these advanced methods are effective in removing 

noise without losing useful information, they typically 

require large amounts of training data. Such extensive 

datasets are essential for the model to learn complex patterns 

and distinguish subtle differences between noise and useful 

signals. 

In contrast, the dataset used in this study is very limited. This 

limitation makes the application of deep learning approaches 

impractical, as the model is likely to overfit the small dataset 

and fail to generalize to unseen data. 

Given these constraints, rule-based models or simple models 

with fewer parameters are more suitable for this study. 

Therefore, this study focuses on designing and validating 

methods for the two cases set in the previous section, based 

on models proposed in the data challenge that meet these 

criteria. Specifically, we use the polynomial regression 

model based on pressure drop proposed by Minami and Lee 

(2023) and the similarity-based regression model proposed 

by Kato et al. (2023). 

In Case 1, we directly utilize the existing models proposed in 

the data challenge to evaluate their performance in the 

presence of noise and variability. The primary focus is to 

assess whether and to what extent the performance of the 

previously proposed models degrades with increased 

variability. 

In Case 2, since the models proposed in the data challenge 

are based on the assumption of valve open states, they cannot 

be used directly. This study examines the adaptation of these 

models' features to valve closed states. By doing so, it 

becomes possible to leverage the existing model structures 

while adapting them to new conditions. 

4. METHODOLOGY AND RESULTS 

In this section, the design and validation of models for two 

distinct cases are conducted. For both cases, a linear 

regression model is adopted as the benchmark method. This 

benchmarking methodology involves extracting nine types of 

basic statistics (Mean, Standard Deviation, Minimum, 25th 

Percentile, Median, 75th Percentile, Maximum, Skewness, 

Kurtosis) from each of the seven sensors. After extraction, 

dimensionality reduction is performed using PCA.  

4.1. Case 1 

In Case 1, the green area in Figure 4. Here, we examine how 

well the solution proposed in the data challenge maintains 

performance in a noisy and varied environment. 

4.1.1. Methodology 

As shown in Figure 1, there were two main valve opening 

prediction models implemented in the data challenge: one is 

the method that estimates the valve opening ratio by 

performing a polynomial fit based on the pressure drop/slope 

immediately after valve opening (Lee et al., 2023) (Minami 

& Lee, 2023). The other is the method that uses the similarity 

of the overall pressure during the first 0.1 seconds after the 

valve opens to estimate the pressure. (Kato, et al., 2023). 

To adapt these proposed methods for Case 1, here, the 

predicted valve open ratio is calculated for each of the 

predictions for the 2nd cycle data (0.4 to 0.5 sec) and the 3rd 

cycle data (0.8 to 0.9 sec), and take the average of these is the 

final predicted value 

4.1.2. Results 

The prediction results from each model are shown in Table 1, 

and the calculation results of the estimation accuracy are 

shown in Figure 6. 

Polynomial Fit's model is still able to maintain a high 

accuracy rate of 96%, albeit with lower accuracy, relative to 

previous results in the noiseless region. This suggests that the 

pressure drop is an important indicator that is not easily 

affected by noise. On the other hand, the model using 

Similarity shows a significant drop in accuracy, from 89% to 

48%. This indicates that Similarity is susceptible to noise and 

has poor generalization performance when the valve is open. 

These results indicate that the Polynomial Fit method, which 

focuses on the initial pressure drop, is effective in estimating 

the valve opening ratio, even with noise and variation, as long 

as data on the valve opening state is available. On the other 

hand, since the data is a simulation and the number of N is 

small, it is necessary to verify the validity of this finding by 

measuring data in a setting closer to reality. 
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Table 1. Models and predicted valve opening ratio 

 

  

Figure 6. Regression accuracy 

4.2. Case 2 

In Case 2, only the data in the orange region of Figure 4 is 

used as a more practical but more difficult setting compared 

to Case 1. 

4.2.1. Methodology 

Unlike Case 1, the solution proposed in the data challenge 

cannot be used, thus a new model must be devised. 

Theoretically, the difference in pressure behavior with valve 

opening is determined only by the pressure state immediately 

before closing the valve, and it all returns to a constant 

pressure with time after closing. In other words, the 

difference in valve opening ratio has the greatest effect on the 

pressure immediately after the valve is closed, and as time 

passes, the difference in valve opening ratio has less effect on 

the pressure difference. Therefore, we devised the following 

two models that focus on the pressure behavior immediately 

after the valve is closed. 

4.2.2. Method 1: Valve closing pressure surge 

The first proposed model focuses on the pressure increase 

immediately after valve closing, similar to the focus on 

pressure drop in Case 1. As an example, shown in Figure 7, 

the pressure rise after valve closing is divided by the valve 

opening %, which may be used to classify the pressure rise. 

The label of the training data with the closest pressure based 

on the pressure after the specified time after the valve is 

closed is estimated as the label of the test data. Three models 

are created based on the pressure at 106 ms, 107 ms, and 108 

ms after the valve was closed. 

Figure 7. Example of pressure surge after valve closed 

(SV1) 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐿𝑎𝑏𝑒𝑙
= 𝐿𝑎𝑏𝑒𝑙 (argmin

𝑖
‖𝑃(𝑡𝑟𝑎𝑖𝑛𝑖) − 𝑃(𝑡𝑒𝑠𝑡)‖) (3) 

where training is the with training data, P is the pressure at 

the valve fault location, Label is the label of the training data, 

and Predicted Label is the label of the test data. 

4.2.3. Method 2: Similarity 

In this proposed model, as shown in Figure 8, the Euclidean 

distance is measured as the similarity of waveforms during a 

certain number of seconds after the start of valve closing 

operation, and the training data label with the highest 

similarity is used as the prediction label. Three models were 

created based on waveforms of different lengths (100 ms, 10 

ms, and 5 ms). 

 

Figure 8. Similarity measurement process 
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𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐿𝑎𝑏𝑒𝑙
= 𝐿𝑎𝑏𝑒𝑙 (argmin(

𝑖
𝐸𝐷(𝑡𝑟𝑎𝑖𝑛𝑖 , 𝑡𝑒𝑠𝑡))) (4) 

𝐸𝐷(𝑡𝑟𝑎𝑖𝑛𝑖 , 𝑡𝑒𝑠𝑡)  calculates the Euclidian distance of i-th 

training data and test data as a similarity. 

4.3. Results 

Table 2, Figure 9, and Figure 10 show the classification 

results and the results of valve opening estimation for the two 

models. 

Table 2. Classification Results 

 

 

Figure 9. Classification Accuracy 

 

Figure 10. Confusion Matrix 

The results show that Method 2 has better overall accuracy 

than Method 1 and the benchmarking method. The results of 

Method 1 show that in Case 1, high accuracy can be obtained 

only with pressure drop, while in Case 2, accuracy is not as 

good as it was, only with pressure rise. Possible reasons for 

this include variations in the timing of valve switching and 

the fact that the pressure rise is more complex than the 

pressure drop because it is caused by pressure propagation 

throughout the system. 

Among the Method 2, the best accuracy was found when 10 

ms waveforms were used. This suggests that there may be 

information useful for valve opening prediction in a specific 

interval. Although it is difficult to conduct a detailed analysis 

here due to the small amount of data, if more data were 

available, it would be possible to conduct an EDA and 

analyze the useful data areas.  

From the above analysis, it is found that it is possible to use 

similarity to classify valve opening ratio classes and estimate 

intervals using only data for the closed valve state. 

5. CONCLUSIONS 

To construct a practical and robust spacecraft PHM model, 

we built and validated a valve opening prediction model with 

the constraint of eliminating noise/variation-free regions 

from the data set. 

In Case 1, we verified the capability of the model proposed 

in the data challenge based on the valve opening data. The 

results showed that the regression model focusing on pressure 

drop had a regression accuracy of 96% even in the presence 

of noise and variability. On the other hand, the model using 

similarity was found to be only 48% accurate. This shows that 

the pressure drop model can produce robust results even with 

noise. 

In Case 2, the model is built using only data from a closed 

system and closed valves. The model focusing on the 

pressure increase achieved only 70% accuracy in 

classification, while the model focusing on similarity 

achieved 100% accuracy. Further development of the model 

is needed to realize point estimation by regression rather than 

interval estimation of valve opening ratio by classification. 

6. FURTHER RESEARCH 

In this study, considering that system behavior generally 

becomes unstable when the system is open, a method that 

does not use the valve-open data from the dataset was 

proposed in Case 2. However, since the extent of instability 

depends on the application and the usage environment, it is 

necessary to collect data through experiments and verify the 

validity in future work.  
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