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1,2,3 Chair of Dynamics and Control, University of Duisburg-Essen, 47057 Duisburg, Germany
rosmawati.mat-jihin@uni-due.de

hung.do@uni-due.de
soeffker@uni-due.de

ABSTRACT

Assessment of fatigue damage, classification of system state,
prediction of lifetime as well as the extension of maintenance
intervals are the challenges in structural health monitoring of
wind turbines. Almost all wind turbine parts are subjected to
different load combinations due to the variation of wind pro-
files. The dynamic complexity of wind profiles causes lim-
ited ability to define failure thresholds and estimating current
health status of the system. Due to numerous factors affecting
system operation it is hardly possibly to define solutions cal-
culating degradation and remaining lifetime. Various possible
degradation scenarios could be arisen due to a variety of cir-
cumstances. Instead of using analytical models, in this contri-
bution numerical (data driven) models with the capability to
handle such scenarios and provide more effective degradation
prediction are used. The innovation of this work is to imple-
ment a modified state machine concept for modeling variable
load-induced damage degradation. A newly introduced state
machine-based prognostic model is used to enable flexibil-
ity in deterioration modeling while concerning the relation
between load and system lifetime. In addition to the previ-
ous development, here a suitable collection of different loads
and wear-dependent basic degradation processes are defined
to identify the load-lifetime relation. Using core wear units,
the load time series is composed of this units allowing to learn
about the effective load-lifetime relation, which is used for
training of the state machine model. To observe model ap-
plicability, wind turbine blade moments time series data are
used. Then, damage degradation for various power-dynamic
relations generated using a reference software to train this
model and work as reference datasets. Results demonstrate
the strong potential of the proposed approach for wind tur-
bine degradation modeling for lifetime prediction.
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1. INTRODUCTION

The global growth of wind energy sector with installed ca-
pacity up to 539 GW in 2017 reported by World Wind Energy
Association, signifies a massive installation of wind turbines
(World Wind Energy Association, 2018). Large wind turbine
structures are complex systems operating non-stop. The com-
bination of complexity in material and design with the op-
eration causes challenges in maintenance processes and ele-
ment failures which can be hardly anticipated (Leite, Araújo,
& Rosas, 2018). This combined factors, trigger discussions
among wind farm manufacturers and operators as well as re-
searchers in dealing with tasks associated to advanced main-
tenance solution known as Prognostic and Health Manage-
ment (PHM).

The basic goal in PHM is to incorporate safety and reliabil-
ity of components for fully utilization and evading unnec-
essary maintenance works (Saxena, Goebel, Simon, & Ek-
lund, 2008). Main methods implemented in robust PHM are
known as diagnostics and prognostics aiming to identify the
system health status, confronting the faults occurred, and pre-
dicting degradation for estimation of remaining useful life
(RUL) (Atamuradov, Medjaher, Dersin, Lamoureux, & Zer-
houni, 2017). To ensure continuity of wind turbine (WT)
operation and preventing unexpected failure besides circum-
venting costly maintenance, accuracy in RUL prediction is
desired.

Predicting lifetime for WT components requires prognostic
models capable to deal with uncertainties in data and sys-
tem complexity. This models commonly treated as add-on
to equip more complex management system in assisting de-
cision maker resolving critical production issues (e.g. pro-
curement, maintenance-related, logistic etc.) (Welte & Wang,
2014). It seems to be useful to establish a fault prognosis
model able to handle such variations, based on the accessibil-
ity of system properties and data availability. According to
(El-Thalji & Jantunen, 2015) the field of prognostic model-
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ing can be classified by: data-based (Si, Wang, Hu, & Zhou,
2011), physics-based (Cubillo, Perinpanayagam, & Esperon-
Miguez, 2016), and hybrid prognostic (Liao & Köttig, 2014)
-based approaches. In most systems, physical properties are
hardly attainable, thus data-based models are preferred to rep-
resent and interpret damage progression (Yea & Xie, 2015;
Jouin, Gouriveau, Hissel, Péra, & Zerhouni, 2016). However,
a correlation between model parameters and input and output
data need to be determined. The determination can be real-
ized based on axioms and assumptions or can be realized by a
data-driven concept first training a model and then apply the
learned model. This approach will utilize historical data to
predict the damage and/or wear evolution. The correlation be-
tween accumulated damage, RUL and end of life (EOL) can
be seen in Figure 1. Proper identification of damage progres-
sion contributes to high precision in EOL forecasts. Whereas,
hybrid prognostic approaches combine advantages and com-
pensate limitations from both approaches to increase accu-
racy in lifetime prediction (An, Kim, & Choi, 2015). Stud-
ies related to this approach merge physic laws and data-based
prognostic approaches as a promising concept for degradation
state assessment and predicting RUL (Djeziri, Benmoussa, &
Sanchez, 2017).

In real situations, damage degradation for WT is stochas-
tic and undeterministic (Nijssen, 2007). This is due to the
characteristics of wind dynamics and also to the uncertainties
caused by climate conditions (Chandrasekhar, Stevanovic, Cor-
betta, Dervilis, & Worden, 2017). In this contribution the
problem of modeling damage degradation concerning vari-
ous wind profiles is addressed. Therefore, a newly developed
prognostic model is used, here for the first time in combi-
nation with a suitably state machine topology, to solve the
problem of variable loads here induced by variations due to
different wind profiles applied. The identified model will be
adapted with WT blade moment data to measure the lifetime
prediction performance. In the beginning, classification of
wind behavior and related assessment of damage data will
be explained in Section 2, followed by state machine-based
prognostic modeling discussed in Section 3. Then, results ex-
plained in Section 4. Summary, conclusion, and outlook are
given in Section 5.

2. VARIABLE LOAD PROFILES

2.1. Wind type classification

The main idea of the new online-applicable approach is to
classify the wind dynamics with respect to speed and power
allowing to consider different variations in the real measured
wind behavior. Variations in wind dynamics and power, pro-
duces different damage patterns for each wind profile. Ap-
plying a data-driven approach reference data are required for
training. Due to missing references here the certified tool
MLIFE (NWTC Information Portal, 2015) is used to gen-

Dac

Figure 1. Lifetime prediction based on damage progression
starting from point X. Dac: current accumulated damage, tp:
current prediction time

Table 1. Variation of wind profiles based on mean wind speed
(WS) and turbulent intensity (TI) for different random seed
(RS1, RS2, RS3)

Type WS (mps) TI (%) RS1 RS2 RS3
A 18 12 A1 A2 A3
B 18 16 B1 B2 B3
C 14 12 C1 C2 C3
D 14 16 D1 D2 D3

erate damage-equivalent load (DEL) data as real reference
data to be used to obtain EOL, D=1 respectively. Applying
the MLIFE approach it is observed that different damage pat-
terns are obtained related to different wind behaviors. The
MLIFE program is based on rainflow counting algorithm and
load-cycle approach (S-N curve) to compute fatigue damage
from time-series data. Details of the procedure are given in
(Hayman, 2012).

In this work, without loss of generality four different types
of wind are considered in generating DEL according to vari-
ations of speed (WS) and turbulent intensity (TI), as shown
in Table 1. By combining two levels of wind speed: high
(18 mps) and low (14 mps) with distinct portion of turbulent
intensity (16 % and 12 %), four wind types are defined. For
each wind type, three different stochastic wind profiles (WP1,
WP2, WP3) are generated by TurbSim (TurbSim User’s Guide,
2012) using different ”random seeds” which initialize the pseu-
dorandom number generator. Thus, total of 12 datasets of
various wind profiles generated.

2.2. Calculating reference damage data

Four different wind profiles are applied to generate groups of
time-series data. Further simulation is carried out by MLIFE
to produce damage datasets using rotor blade moments for all
wind types. Different damage characteristics can be detected
as shown in Figure 2 against cycle time. Obviously, high
speed and high turbulent intensity leads to significant damage
effects on WT component. Accumulating the damage incre-
ments generated by MLIFE, the evolution of damage/wear re-
lated to the underlying different wind profiles can be accessed
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Figure 2. Damage equivalent load (DEL) for variable wind
profiles using MLIFE

(Figure 3). This relation between wind profiles and related ac-
cumulated damage evolution will be in the next step used for
data-driven modeling of the load-damage relation (for loads
arbitrarily composed of the underlying load profile patterns).
To model the damage for lifetime prediction, a state machine-
based model is utilized for reference damage data generation
used for RUL prediction. The implementation is comprised
of state machine modeling and definition of suitable parame-
ters refining the load-depending model.

3. STATE MACHINE-BASED LIFETIME MODEL

3.1. State machine-based model development

A state machine is used for modeling different states and re-
lated transitions of the deterioration process. Each of the
state is connected to appropriate lifetime equations related
to specific wind profiles. All parameters of the state ma-
chine (transition conditions) and of state-related equations
(lifetime-related equation parameters) are to be defined nu-
merically. This definition is realized within an optimization
loop using NSGA-II (Deb, Pratap, Agarwal, & Meyarivan,
2002) as training process. The approach is firstly presented
in (Beganovic & Söffker, 2017). The key property of the
method is that the multi-model (here: for lifetime calcula-
tion) is understand as a data-driven approach to be defined by

Figure 3. Accumulated damage for variable wind profiles us-
ing MLIFE

data allowing a new quality of flexibility to adapt with prob-
lems (topology (Figure 4)) and real systems (data). Here the
flexibility is used to cover the variations in power and wind
dynamics with respect to WT lifetime.

The states of the assumed topology (Figure 4) are denoted
as I, S1, S2, S3, S4 and E. They individually represent dif-
ferent wind types as introduced in Section 2.1. Here, wind
speed and turbulent intensity for every time event, designated
as WSi and TIi, are considered as measured and monitored
value. The WSi and TIi are used as an input to this model.
Lifetime value related to specific wind state are calculated as
output. The initial state I defines the starting of WT operation
and does not represent any lifetime equation. From this state,
as degradation is detected (DEL > 0), next possible state
depends on transition condition (f0−→5) criteria as listed in
Table 2. In the case of DEL = 1 the systems fails by def-
inition, which is denoted as state E. The terms TI1 and TI2
describe low and high intensity thresholds, while WS1 and
WS2 are low and high wind speed thresholds. This values
are prescribed based on available data and previous knowl-
edge on wind characteristics. Due to the fact that the wind
turbine is not operating for WSi larger than WS2, four differ-
ent operation states are to be described. Mathematical equa-
tions comprised in each state consists of coefficients assumed
as design variables to be defined using optimization. This

3



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2018

Table 2. State definition based on transition conditions

State Transition condition
Turbulent intensity Wind speed

S1 f1 TI1 ≤ TIi < TI2 WS1 < WSi ≤ WS2

S2 f2 TI1 ≤ TIi < TI2 WSi ≤ WS1

S3 f3 TIi ≥ TI2 WS1 < WSi ≤ WS2

S4 f4 TIi ≥ TI2 WSi ≤ WS1

I

S1 S3

E

S2 S4

f3f1

TI1 TI2

WS1

WS2
D>0

D>0

D>0

D=1

D=1

f1

f4

f2

f3

D>0

D=1

D=1

Figure 4. State machine topology for lifetime modeling based
on wind characteristics

process will be explained next.

3.2. Parameter definition

Realizing the data-based prognostic model, suitable parame-
ters are essential to accommodate the unknown system prop-
erties and uncertainties. The incomplete information from
historical data related to system degradation and failure progress
should also be addressed by the parameters. The identified
model consists of multi states representing different deterio-
rating levels. All parameters need to be defined. The model
associated with training data used to determine appropriate
coefficients by including parameters optimization in the prog-
nostic process flow, demonstrated in Figure 5. This approach
defines the values simultaneously by imposing the state ma-
chine model into optimization loop.

Using measured data (damage data) according to wind char-
acteristics (wind profiles) the best parameters for all states
has to be defined. Here optimization is used, so that the opti-
mized parameters explains together with the assumed topol-
ogy the measured behavior. This process is considered as an
offline procedure. By integrating the determined parameters
in an online process, the damage progress can be predicted
and reliable RUL is calculated. The preciseness of RUL also
depends on training data provided for optimization algorithm.

3.3. Optimization using NSGA-II

The optimization scheme provides an optimal solution for pa-
rameter values to refine the machine state model. It will en-
hance the model performance estimation and initiate the state
using prior knowledge of system health. The complete model
in this case is defined by state describing equations and re-
lated coefficients. The transitions defining parameters are
also defined by training via optimization. In the beginning,
state was justified using wind profile data followed by eval-
uation of damage-lifetime relation configured by NSGA-II.
This process apply the actual methods of NSGA-II algorithm.
The prescribed objective for the optimization is to minimize
the variance between estimated and real (here: MLIFE-based
simulated) training datasets. Within specified iteration, the
optimal parameters acquired by NSGA-II are stored and for-
warded for the test process. This procedure enable valida-
tions on applicability of the identified parameters to the other
datasets that having different wind characteristics.

In this work, the WT is considered to be exposed to four types
of wind profiles as stated in Table 1. The known wind pro-
files were used to train and test model, to define optimized
parameters for each load-lifetime state equation. Five group
datasets were chosen for training and test based on Monte
Carlo experiments as listed in Table 3. This method basically
applied randomness in data sampling and makes it adaptive
to variations of numerical computation (Sun, Zuo, Wang, &
Pecht, 2012). Two dataset groups are used for training with
different arrangement of data. First training group (denoted
as single-typed data) comprised of dataset A1, B1, C1, and
D1. It features similar wind characteristics (stationary state
for each dataset) and constant increment of damage for each
lifecycle. While, second group (denoted as combined-typed
data) combining data from four wind profiles and structured
them into new datasets namely G1, G2, G3, and G4. The
restructured data based on combinations are shown in Ta-
ble 4. Instead of using constant wind profiles for all event,
this new datasets (combined-typed dataset) expressing vari-
ability (state changing) in wind behavior, as presented in Fig-
ure 6. Training model with various wind profile combinations
are able to improve parameters more thoroughly. In addition,
the deviation errors (as prescribed in NSGA-II) must be min-
imized and very small so that all the optimized parameters
(from this training procedure) can be accepted for the test or
on-line process. Further discussion is highlighted in the next
section.

4. RESULTS AND DISCUSSIONS

Evaluation of predictions are important to justify the quality
and applicability of the proposed approach. This work per-
formed two steps of evaluation: first, procedure used in train-
ing process was evaluated and second, performance of life-
time prediction being assessed. The discussion which train-
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Figure 5. Prognostic process

Table 3. Variation of training procedure

Training procedure Training dataset Test dataset

Single-typed data A1, B1, C1, D1 A2, B2, C2, D2
A3, B3, C3, D3

Combined-type data G1, G2, G3, G4 G5, G6, G7, G8

Table 4. Combination of restructuring damage data

Group sign G1 G2 G3 G4 G5 G6 G7 G8
Data 1 A1 B3 A2 C1 D2 A3 B1 C2
Data 2 B1 A3 B2 D1 A2 C1 A1 D2
Data 3 C1 C3 C2 B2 B3 D2 D1 A2
Data 4 D1 B2 D2 A2 C3 C3 B3 C1
Data 5 A2 D2 B1 C2 A1 A1 C3 D3
Data 6 C2 C2 C1 D3 D1 B2 A2 B1

ing approach (training 1: using single-typed data or training
2: using combined-typed data) able to provide desired find-
ings is crucial to obtain accurate RUL prediction. To identify
best training procedure, prediction from testing datasets, as
listed in Table 3, were compared based on three metrics: Root
Square Error (RSE), Mean Square Error (MSE), and Abso-
lute Error (ABE). Comparison between training approach 1
and training approach 2 executed to identify which approach
capable to produce most optimal parameters to refine load-
lifetime equations (state equations). By using eight datasets
(A2, B2, C2, D2, A3, B3, C3, D3) from single-typed wind be-
haviour and four combined-typed datasets (G5, G6, G7, G8)

accuracy of the model prediction are assessed. All datasets
used for calculating the performance metrics consist of 600
segments wind profile, where each segment describes approx-
imately 1 second of simulation. Figure 7 shows the compar-
ison of two training approaches based on three performance
metrics. Here, summation deviation errors between simulated
damage and predicted damage (calculated using respective
state equation) for each test datasets are used to measure the
accuracy. These results are based on 600 segments data point,
where each segment represents 1 second simulation data. Us-
ing training 1-approach, datasets A3 and B3 produced high
errors compared to other test dataset. Some other datasets like
B2 and G6 also show large errors in their load-lifetime predic-
tion. By testing the same datasets using training 2-approach,
impressive errors reduction can be obtained for all datasets.
The errors tend to zero. This is expected as the pattern of
wind variations using combined-type data extensively cover
all the four states during training. This includes that the ap-
plied data set(s) are more representative, so the resulting op-
timized data model represents better (more optimal) param-
eters to be used for test. It can be concluded that optimized
parameters gained using training 2-approach best fit the state
equations since the damage calculated produced better find-
ing compared to training 1-approach. In general it should be
noted that the data applied cover only a very small segment
in time and therefore the absolute errors are small.

It can be seen from Figure 8 that the selection of state based
on wind behavior of G5 dataset is capable to predict almost
perfect estimation of lifetime with deviation error less than
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Figure 6. Trellis diagram representing wind profile behavior
based on combined data listed in Table 4

0.01 percent. The performance was also measured based on
accuracy of EOL prediction, which also related to RUL. Since
the future wind profile is unknown, this work assumes that it
will be similar like historical behavior. Thus, degradation is
predicted to perform stationary linear increment using dam-
age data calculated by the proposed approach. The final mea-
sured data considered as the beginning of prediction time.
From that point, the predicted damage is accumulated until
the value reach 1. Time point when the accumulated dam-
age reach 1 denoted as EOL, and can be used to estimate the
RUL. Predicted EOL are compared with EOL from MLIFE
and the percentage of accuracy shown in Figure 9. High
precision prediction gained by all dataset with average esti-
mation around 99.83%. This provides evidence that the pro-
posed state machine model is capable to account wind profile
variations in prognostic lifetime process using the available
data.

Despite the very good results obtained two aspects should be
noted which actually restricts the applicability of the new ap-
proach: First training and test is based on nearly realistic wind
profile data, but representing using a limited and (in this con-
tribution: equal) set of wind variations (good enough to show
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Figure 7. Comparison of RSE, MSE and ABE for various
testing dataset based on different training approach

the method but possibly not good enough to cover the real-
ity). The variation is realized in a stochastic sense. In reality
it may be the case that the real wind profile combinations are
exactly not stochastic and show a strong and unknown bias.
In this case training and test data representations are not sim-
ilar, so the approach may not work so perfect. Secondly the
reference data for RUL are generated by using MLIFE, which
is based on linear damage accumulation rules. This makes it
also easier to adapt the reference behavior due to training.
Real RUL data are not based on such assumptions.

This may explain the obtained good results, nevertheless the
newly introduced scheme should also be able to cover more
realistic cases. Further studies based on more realistic RUL
reference data will show the real quality of the approach de-
veloped.
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Figure 8. State selection and lifetime-damage prediction using G5 wind profile data
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Figure 9. Accuracy of EOL prediction for various datasets

5. SUMMARY, CONCLUSION, AND OUTLOOK

The variations of wind profiles contributed to the complex of
degradation modeling and reduction of accuracy in lifetime
prediction. To tackle this issue, a newly developed prognos-
tic model is applied for RUL estimation. The key challenge
in this context is to handle various wind characteristics. In
this work, the wind profile is assumed to change randomly
between state 1, 2, 3 and 4. Implementing state machine ap-
proach as a base of prognostic modeling allows flexibility in
model selection which can be used to estimate future degrada-
tion. By integrating this approach into the optimization loop
of NSGA-II, parameters refining the load-lifetime equations
for each state are successfully defined during training phase.
This optimized parameters are tested using reference dam-
age datasets for various combination of wind characteristics.
It is observed from metric accuracy (Figure 7), that the er-
rors of deviation for simulated and calculated damage tend to
zero for all datasets. The degradation progress signified that
the estimated RUL and EOL converges to the measured (in
this case simulated) ones with average prediction accuracy
99.83%. This is also indicated by almost very good gener-
ation of predicted degradation path and extremely low prog-

nostic errors (less than 0.01 percent for G5 dataset). In this
application a first step to tackle the problem of unknown but
characterizable load profile is shown from a principle as con-
cept. For the evaluation within a real application the approach
has to be applied and optimized for conditions up to D=1, also
integration load conditions which does not perfectly fulfil the
classes used for training. However, investigation using other
type of stochastic data or nonlinear degradation may require
further research.
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