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moncef.soualhi@univ-fcomte.fr
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ABSTRACT

Efficient gear and bearing diagnosis has become a critical re-
quirement across diverse industrial applications precisely due
to their complex design and exposure to difficult operating
conditions, which predispose them to frequent failure. Early
fault identification remains problematic, as defects are com-
monly obscured by extensive background noise. Moreover,
the exponential increases in gearbox data further complicate
the defect classification process, confusing even the most so-
phisticated algorithms and significantly making the proce-
dure time consuming. Singular Value Decomposition (SVD)
has proved to be highly efficient in signal denoising, stabil-
ity preservation, and feature extraction reliably under vary-
ing conditions, filtering out non-linear signals to reconstruct
relevant features only. However, its considerable computa-
tion time necessitates exploring alternatives like Randomized
SVD (RSVD) to mitigate processing time while maintaining
classification accuracy. In this work, an intelligent algorithm
for gear and bearing fault diagnosis is developed, incorpo-
rating Maximal Overlap Discrete Wavelet Packet Transform
(MODWPT) and Time-Domain Features for feature extrac-
tion. RSVD is employed for signal denoising and feature re-
construction, while K-Nearest Neighbor (KNN) for feature
classification. The combined techniques ensure enhanced di-
agnostic accuracy, addressing critical challenges in industrial
maintenance and performance optimization.
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Rotating machines.

1. INTRODUCTION

In rotating machines, particularly gearboxes, gears and bear-
ings are susceptible to vulnerabilities due to their complex
design and severe operating conditions which often compro-
mise system reliability, leading to frequent failures requir-
ing unscheduled maintenance and, ultimately, machine break-
downs. Notably in wind turbines, over 50% of gearbox faults
come from bearings (de Azevedo et al., 2016), while approx-
imately 80% of transmission machine problems are due to
faulty gears (Soualhi et al., 2019). Consequently, the urgent
need for machine fault diagnosis arises to ensure the safety
and reliability of mechanical transmission systems. More-
over, today’s competitive, dynamic and technology-driven in-
dustrial environment requires industry to adapt to new tech-
nologies, and to continually reduce costs (Benaggoune et al.,
2020).

Intelligent fault diagnosis techniques primarily rely on ma-
chine monitoring parameters, with vibration analysis being
a prevalent method for detecting early defects by identify-
ing any deviations in these parameters. Vibration signals are
especially favored due to their non-intrusive nature in ma-
chinery operation, making them a widely adopted tool for
fault detection and analysis (Afia, Gougam, Rahmoune, et
al., 2023). This approach enables continuous monitoring
of machine health, allowing for timely interventions to pre-
vent potential failures and to optimize maintenance sched-
ules. Extracting fault-related characteristics from vibration
signals poses a significant challenge, particularly in the ini-
tial fault development stages (Afia, Gougam, Rahmoune, et
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al., 2023). Moreover, gears and bearings can incorporate a
variety of defects, compounding the fault detection classifi-
cation complexity. Recognizing these defects requires high-
lighting relevant information gleaned from measured vibra-
tion signals in a mathematically meaningful manner. Features
serve as crucial signal characteristics aimed at encapsulating
the overall data within a reduced dimensionality, facilitating
their utilization in the classification process. Despite the com-
plexities involved, effective feature extraction remains inte-
gral to accurately diagnosing faults and ensuring machinery
reliability. Many decomposition methods have been devel-
oped for feature extraction. For instance, Gilles has proposed
the empirical wavelet transform (EWT) (Afia, Gougam, Rah-
moune, et al., 2023), in which input data is decomposed into
multiple modes using a set of adaptive wavelet filters. The
resulting EWT modes are narrow-band functions with fewer
mixed modes, beneficial for many applications (Gilles, 2013).
Nevertheless, EWT is highly dependent on the mode number
selection, with improper selection potentially causing unde-
sirable decomposition results (Adel et al., 2022). Further-
more, the wavelet filtering bandwidth adaptability in EWT
is inherently limited, following a linear proportional band-
width pattern (Adel et al., 2022). Discrete wavelet transform
(DWT) is an alternative technique extensively used in fault
diagnosis and condition monitoring (Syed & Muralidharan,
2022). DWT decomposes signal data through band pass fil-
ters in the time and frequency domains, producing a set of
signals with specific frequency bands (Syed & Muralidharan,
2022). Yet, the dyadic step in the subsampling process rep-
resents a significant limitation in DWT efficiency (Adel et
al., 2022). The Maximal overlap discrete wavelet transform
(MODWT) has been developed as an optimized version of
DWT to address the issue (Adel et al., 2022). Like DWT,
MODWT invariably presents problems associated with poor
frequency resolution [6]. As a solution, maximal overlap dis-
crete wavelet packet transform (MODWPT) has appeared as
a more suitable choice. MODWPT decomposes complex sig-
nals into individual components while maintaining circular
shift equivariance, which is crucially important for gear and
bearing condition monitoring (Adel et al., 2022). Moreover,
MODWPT provides numerous improvements compared to
MODWT, including uniform frequency bandwidths, the abil-
ity to overcome time-varying transformations, and to recon-
struct the original signal without any information loss (Adel
et al., 2022). MODWPT can extract relevant features from
vibration data without compromising accuracy, thereby en-
hancing fault diagnosis processes.

Time-energy indicators such as kurtosis, entropy, root-mean
square (RMS), etc., represent useful indicators in advanced
signal processing algorithms for classifying different fault
types (Soualhi et al., 2019; Gougam, Afia, Aitchikh, et al.,
2024; Soualhi et al., 2020; Tahi et al., 2020). However, detect-
ing bearing and gear signatures in early stages is extremely

difficult as defects features are inherently weak. In such case,
acquired vibration signals are often overwhelmed by a sub-
stantial amount of low-frequency noise, which makes signifi-
cant impact on the analysis results’ accuracy. For instance, in
the event of local failure within the bearing, vibration signals
exhibit a distinctly non-stationary behaviour, complicating
the diagnostic process even more (Afia, Gougam, Touzout, et
al., 2023). Consequently, achieving efficient fault identifica-
tion continues to be an important issue in rotating equipment
fault diagnosis. Addressing this issue is critical for enhancing
the efficiency and accuracy of fault classification algorithms,
necessitating strategies for noise reduction and optimization
in feature selection processes. Singular value decomposition
(SVD) is among the most commonly used methods, as high-
lighted in (Gougam et al., 2018; Touzout et al., 2020) due to
its remarkable signal noise reduction and feature extraction
capabilities, particularly in complex noise conditions. SVD
is able to effectively reflect the matrix features since the sin-
gular values represent the intrinsic matrix features (Gougam
et al., 2018; Touzout et al., 2020). Furthermore, SVD can
maintain stability and improve the robustness of feature ex-
traction under varying conditions. Since it is invariant, sta-
ble, and efficient for denoising, SVD has been used in prac-
tical applications, such as gear and bearing fault identifica-
tion, to filter the nonlinear signal and ensure that only useful
features are reconstructed. Despite its numerous advantages,
the primary limitation of SVD lies in its high computational
complexity. Addressing this challenge, Halko et al. proposed
randomized SVD (RSVD) as an enhanced version of SVD
(Halko et al., 2011). RSVD operates by generating an approx-
imate basis for a range of input matrices through a process of
”random sampling,” wherein samples of the input matrix are
multiplied by a random matrix (Song et al., 2017). This ap-
proach effectively captures the fundamental characteristics of
the input matrix, including its singular values and most rele-
vant vectors, reminiscent of data compression techniques. By
enabling standard factorizations such as QR decomposition
and SVD to be computed on a substantially smaller matrix
than the original, RSVD significantly diminishes the compu-
tational cost (Song et al., 2017).

After feature extraction and noise reduction, K-Nearest
Neighbor (KNN) has been widely adopted for gear and bear-
ing fault detection and classification (Afia et al., 2024). The
primary objective of this research is to investigate the effec-
tiveness of a machine learning classifier in accurately classi-
fying features extracted from vibration signals using MOD-
WPT alongside temporal statistical indicators and RSVD.
This paper presents a gear and bearing fault diagnosis method
using vibration analysis, aiming to discern and categorize
five distinct gear and bearing conditions. During the feature
extraction phase, experimental vibration signals are decom-
posed by MODWPT, yielding several wavelet coefficients
(WCs). Subsequently, 38 statistical features are applied to
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each decomposed mode to construct a feature matrix corre-
sponding to each gear and bearing condition. RSVD is then
employed to reduce noise and to reconstruct feature matrix,
ensuring the retention of pertinent features. Finally, KNN
is utilized for feature classification, enabling the detection,
classification, and identification of the five gear and bearing
health states with precision and accuracy. This methodology
represents a comprehensive approach towards enhancing gear
and bearing fault diagnosis through advanced signal process-
ing techniques and machine learning algorithm.

2. PROPOSED METHODOLOGY

In this section, the different steps of the proposed methodol-
ogy are discussed. First, a total of 16 raw experimental vibra-
tion signals representing either a gear or a bearing state are
decomposed using maximal overlap discrete wavelet packet
transform (MODWPT) by 6 levels into 26 wavelet coeffi-
cients (WC) with different frequency levels. For one state, 16
matrices of (64 × 1048560) are produced, wherein 1048560
is the signal points number. Then, 38 combined time features
are applied to each WC to construct the feature matrix corre-
sponding to each condition. For one condition and one time
feature, each matrix of (64×1048560) would be converted to
a vector of 64 rows. Therefore, for one condition (16 mea-
surements), a feature matrix (16 × 64) is provided to repre-
sent each gear or bearing condition. Combining 38 time fea-
tures gives a feature matrix (608 × 64). After that, RSVD is
used to reduce noise by calculating the right eigenvector, the
singular value, and the left eigenvector in which Each fea-
ture matrix is reconstructed retaining the useful information
only. The reconstructed feature matrices are used as inputs
for KNN to detect, identify and classify the different states.
To avoid over-fitting during the training and testing phases,
10-fold cross-validation is used, in which the dataset is ran-
domly divided into 10 complementary subsets. Each subset
is retained in turn, and the training model is trained on the
remaining nine-tenths. Figure 1 provides an overview of the
proposed technique.

3. MAXIMAL OVERLAP DISCRET WAVELET PACKET
TRANSFORM

MODWPT uses raw data X = [X0, X1, ......, XN−1]
T as in-

put for filtering and data decomposition. As with Mallat’s al-
gorithm (Gougam, Afia, Soualhi, et al., 2024; Too, Abdullah,
Mohd Saad, & Tee, 2019), MODWPT is based on quadra-
ture mirror filters. g̃l and h̃lq respectively represent a low-
pass and a high-pass filters, each of length L (assumed to be
even).Thus, the developed filters are given in Equation 1.
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Figure 1. Diagram of the proposed method.
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(1)

MODWPT differs from Mallat’s approach by using interpola-
tion instead of a 2-base decimation operation. Specifically, at
each MODWPT level, 2(j−1) − 1 zeros are inserted between
two consecutive adjacent coefficients of g̃l and h̃l. Thereby
ensuring that the wavelet coefficients produced (WT) for each
wavelet sub-band maintain the same length as the input signal
(Afia et al., 2024; Gougam, Afia, Soualhi, et al., 2024). For a
discrete-time sequence x(t), t = 0, 1, ........, N − 1, where N
is the sequence length, the wavelet coefficientsWj,n,t of the
nth sub-band at level j are calculated according to the follow-
ing equations in which n = 0, 1..., 2j−1,W0,0,t = x(t) (Afia
et al., 2024; Gougam, Afia, Soualhi, et al., 2024):

f̃n,l =

{
g̃l, if n mod 4 = 0 or 3
h̃l, if n mod 4 = 1 or 2

(2)

4. TEMPORAL FEATURES

The aim of this step of the methodology is to detect pattern
changes in a given signal, in which statistical parameters are
useful for extracting features related to the different machine
states, since a failure will produce a change in the overall
signal energy. For this purpose, 38 temporal features are used
for feature extraction. The used time features are discussed
in (Too, Abdullah, Mohd Saad, & Tee, 2019; Too, Abdullah,
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& Saad, 2019).

5. RANDOMIZED SINGULAR VALUE DECOMPOSITION

Standard approaches use the extracted features from the pre-
vious step and directly train machine learning models for
classification. However, achieving efficient fault classifica-
tion accuracy seems to be a major issue in rotating equip-
ment fault diagnosis, requiring noise reduction and optimiza-
tion feature selection algorithms. In this situation, RSVD is
used to reflect matrix features since singular values represent
intrinsic matrix features, thus maintaining stability and im-
proving the feature extraction reliability under varying condi-
tions in practical applications, such as gear and bearing fault
identification, by filtering the nonlinear signal and ensuring
that only useful features are reconstructed with low computa-
tional complexity. For a matrix with m×n as dimension and k
as rank, SVD gives this formula ofZ = XSY ∗, in which X is
an orthonormal matrix (m × k), Y is an orthonormal matrix
(n × k), while S is a non-negative diagonal matrix (k × k)
which is defined in (Chakraborty et al., 2017):

Wj,n,t =

L−1∑

l=0

f̃

n,l

Wj−1,[n/2](t−2j−1l) mod N (3)

S =




σ1
σ2
...
σk


 (4)

σj is the non-negative diagonal matrix S are the singular val-
ues of Z arranged as follows: σ1 ≥ σ2 ≥ σ3 ≥ σ4 ≥ σk ≥ 0.
TheXandY columns are the left and right singular vectors,
respectively, while the singular values are related to the ma-
trix approximation. At each level j, the numberσj + 1 is
equal to the spectral norm deviation between Z and an opti-
mal rank-j approximation, in which (Too, Abdullah, & Saad,
2019):

σj + 1 = min {kZ −Bk : B has rank j} (5)

And the SVD of a matrix Z ∈ Rm×n is described as below
(Chakraborty et al., 2017):

Z = X
∑

Y T (6)

With X and Y being orthonormal, while
∑

is a rectangular di-
agonal matrix with diagonal entries being the singular values
signified by σi. The column vectors of XandY representing
the left and right singular vectors respectively, are indicated
byxiandyi. In terms of xiandyi, the truncated SVD (TSVD)
approximation ofZ as a matrixZk is defined by (Chakraborty

et al., 2017):

Zk =

k∑

i=1

σixiyi
T (7)

And the randomized SVD (RSVD) is given as follow [23]:

Ẑ = X̂
∑̂

Ŷ T (8)

In which and are each orthonormal while is diagonal that has
as diagonal entries. The column vectors of and are referred
as , and correspondingly. Elucidate the residual matrix of a
TSVD approximation and the residual matrix of RSVD ap-
proximation are given below (Chakraborty et al., 2017):

Rk = Z − Zk, and R̂k = Z − Ẑk (9)

While the random projection of a matrix is elucidated as in
(Too, Abdullah, Mohd Saad, & Tee, 2019):

Y = ΩTZ or Y = ZΩ (10)

In which Ω is a random matrix with independent and iden-
tically distributed entries. RSVD is an algorithm that exam-
ines approximate matrix factorization by employing random
projections to divide the entire process into two steps. First,
a random sampling is performed to obtain a reduced matrix
with a range close to Z ′s range. Thereafter, the reduced ma-
trix is factorized using the first step on the matrix Z to find
the orthonormal column matrix Q for ξ > 0 as defined in
(Chakraborty et al., 2017):

∥∥Z −QQTZ
∥∥2
F
≤ ξ (11)

In the second step, the SVD of the reduced matrix QTZ ∈
Rl×m is calculated, where l ≪ n. Based on X̂Σ̂Ŷ T to de-
note the SVD ofQTZ, Z is given in the following expression
(Chakraborty et al., 2017):

Z ≈ (QX̃)
∑̂

Ŷ T = X̂
∑̂

Ŷ T (12)

Where X̂ = QX̃ and Ŷ are orthogonal matrices.

6. K-NEAREST NEIGHBORS

The reconstructed feature matrices are used as inputs for
KNN to detect, identify and classify the different states. KNN
is a simple and effective supervised classification approach,
particularly in the field of pattern recognition, since it oper-
ates without the need for specific learning steps (Too, Ab-
dullah, & Saad, 2019). When classifying a new input sam-
ple, KNN identifies the nearest neighbors of the training
dataset and assigns the most common class to the new sam-
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Figure 2. Gearbox setup schematic.

ple on the basis of a similarity measure. This process is con-
ducted via unsupervised algorithmic methods, in which re-
sults are ranked on the basis of the majority of KNN cate-
gories (Anggoro & Kurnia, 2020). The algorithm works as
follows:

1. Determining the parameter k, representing the number of
nearest neighbors.

2. Calculating the distance between the evaluated and the
training data.

3. Sorting the distances from high to low values.

4. Selecting the nearest distances up to the order of k.

5. Assigning the appropriate class based on the majority
vote among the nearest neighbors.

7. APPLICATION AND RESULTS

The described methodology is applied to experimental data,
which includes various fault states as well as a healthy state.
The experimental setup is designed for multi- faults classifi-
cation. With the proposed methodology, our objective is to
evaluate the effectiveness of the extracted features in separat-
ing the different health states .

7.1. Case Study

components: motor, brake, planetary gearbox and parallel
gearbox (see Figure 2) (Afia, Gougam, Rahmoune, et al.,
2023). Defects (Table 1) were investigated in two distinct op-
erating modes, with rotational speeds and loads (20Hz − 0V
and 30Hz − 2V ).

Eight 608A11 vibration sensors were placed on the test bench
surface, with a 0.5 Hz-10 kHz frequency range, a ±50g mea-
surement range and 100 mV/g accuracy. Vibrations in the
planetary gearbox directions were measured using three sen-
sors, another three sensors to measure vibrations in the three

 

 

 

 

 

 

 

 

Data acquisition and feature extraction 

 

Denoising and feature classification 

 

16 vibration 

signals 

Signal 

decompositio

n using 

MODWPT by 6 

level into 64 

WCs 

Computing 38 temporal 

features for every 

decomposed signal   

 

f1,1 f1,2 .. f1,64 

f2,1 f2,2 .. f2,64 

.. .. .. .. 

f16,1 f225,2 .. f16,64 

 

 
10 fold cross validation

1

n

i

i

ACC ACC



 

 

 

Repeated 10 times 

Test 

data 

Training 

data 

K-nearest neighbors (KNN) 

 

Reducing noise 

and reconstructing 

the feature matrix 

ˆˆ ˆ ˆTZ X Y   

f’1,1 f’1,2 .. f’1,39 

f’2,1 f’2,2 .. f’2,39 

.. .. .. .. 

f’16,1 f’225,2 .. f’16,64 

 

Figure 3. Gear and bearing defects.

Table 1. Types of bearing and gear components

.

Component Types Description

Gear
Chipped Crack in the feet
Miss Missing
Surface Wear
Root Crack

Bearing
Ball Crack
Comb Crack in inner and outer ring
Inner Crack
Outer Crack

directions of the parallel gearbox, and the remaining sensors
monitored the drive motor. Load measurement was provided
by an FT293 torque transducer with a measuring range of
±5V and an accuracy of 4 Nm/V, placed between the motor
and the planetary gearbox. Signal acquisition was achieved
using a Spectra PAD compact data acquisition instrument
able to process up to 20 channels, with a 1024 Hz sampling
rate and a 512 second sampling window (Afia, Gougam, Rah-
moune, et al., 2023).

7.2. Result and discussion

Raw vibration signals measured by the eight accelerometers
corresponding to all five bearing and gear states for two op-
erating modes (see TABLE I) are decomposed into 64 WCs
using MODWPT. 38 time-based features are applied to each
WC to create the feature matrices describing each gear or
bearing’s health state. Afterwards, RSVD computes right
eigenvector, singular value and left eigenvector, and then each
gear or bearing’s feature matrix is reconstructed. The recon-
structed matrices are taken as KNN inputs.

Model stability is an extremely important factor in determin-
ing potential model reliability in terms of overfitting, data
variability or model sensitivity. By considering accuracy over
repeated training iterations, a more complete model reliabil-
ity assessment is provided. To evaluate the machine learning
model’s accuracy, TABLE II provides overall accuracy over
ten training iterations using the proposed approach with and
without RSVD. Figure 4 compares the model accuracy over
ten training iterations, while Figs.5 and 6 provide a better il-
lustration of the classifier’s overall performance in terms of
confusion matrices.

Compared with MODWPT and MODWPT-SVD, MODWPT-
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Table 2. Classification accuracy of faults.

Method
Classification accuracy (%)

Gear
MODWPT 96.45 96.51 96.68 96.38 96.55 96.58 96.22 96.71 96.48 96.28
MODWPT-SVD 96.81 96.74 96.78 96.97 96.84 96.88 96.97 96.71 97.01 96.68
MODWPT-RSVD 97.60 97.66 97.93 97.63 97.53 97.80 97.57 97.99 97.74 97.96

Bearing
MODWPT 95.23 95.46 95.26 95.53 95.43 94.93 95.56 95.82 95.16 94.77
MODWPT-SVD 95.89 96.12 95.72 95.49 95.76 95.43 95.79 95.53 95.20 95.30
MODWPT-SVD 97.27 97.01 96.97 96.74 97.20 96.78 97.11 96.74 96.84 97.07

 

 

 

 

 

 

Figure 4. Model accuracy gear (a) bearing (b).

RSVD has achieved the best accuracy rates, mainly 97.99%
for gears and 97.27% for bearings. This highlights our pro-
posed method as a superior feature extraction technique, mak-
ing it the optimal choice among the evaluated methods. Fig-
ure 4further confirms the proposed model’s stability, provid-
ing highly satisfactory results in terms of fault classification.
Thus, for accurate early defect detection and classification,
MODWPT, with RSVD, provides the optimal approach.

8. CONCLUSION

The paper presents an enhanced fault diagnosis technique for
gearboxes. Feature extraction, classification and experimen-
tal processes have been described in detail. The proposed al-
gorithm, applied to real-time gearbox vibration signals in dif-
ferent health states, successfully identified all gear and bear-

 

 

 

 

 

 

Figure 5. Confusion matrices for all gear states.

 

 

 

 

 

 

Figure 6. Confusion matrices for all bearing states.
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ing states accurately and efficiently.
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