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ABSTRACT 

There are high expectations for the use of Machine Learning 

algorithms in Engine Health Management, but the practical 

application for use with turbofan engines is often hindered by 

small sample sizes and noisy data.  This paper discusses a 

case in which Machine Learning techniques were combined 

with domain expertise to develop a classifier called Non-seal 

Erratic Oil Pressure (NEOP).  This classifier is used as an 

engineering tool to support manual review of engines flagged 

with Honeywell’s OPX (Oil Pressure Transducer) algorithm.  

The purpose of the classifier is to assist a human in analyzing 

engine trend data from the HTF7000 turbofan engine, when 

the OPX algorithm identifies an engine with erratic oil 

pressure.  The NEOP history provides an additional data 

source when deciding if aft sump maintenance is needed to 

replace a worn carbon seal, or if the erratic signal is 

associated with some other cause.  The OPX algorithm has 

enabled the prevention and avoidance of costly unscheduled 

engine failures resulting in millions of dollars in documented 

savings, and the NEOP algorithm helps to ensure that the 

conclusions from the OPX process continue to result in the 

appropriate engines being identified for maintenance 

inspection and corrective action. 

1. INTRODUCTION 

Data science and machine learning techniques hold great 

promise in the realm of proactive engine health monitoring, 

but currently there is a considerable gap between the 

conceptual possibilities and real-world results.  This paper 

discusses an example where machine learning techniques, 

guided by domain expertise, were successfully utilized to 

produce an algorithm with real value. 

Honeywell Aerospace manufactures the HTF7000 turbofan 

engine that powers several super-mid-size (SMS) business 

jets.  Honeywell also develops Engine Health Monitoring 

algorithms to detect anomalies in the trends for those engines, 

indicating the presence of an incipient fault.  These 

algorithms provide business jet operators with the ability to 

perform maintenance before the incipient fault progresses 

into a disruption to flight operations.  A good example of 

these algorithms is the Carbon Seal Bimodality algorithm 

from  OPX (Oil Pressure Transducer).  Previous work 

(Hickenbottom, 2022) showed that this algorithm has proven 

very effective at detecting accelerated wear in the carbon seal 

near the number 4 bearing in the turbine section.  It has 

correctly identified hundreds of engines with excessive 

carbon seal wear and allowed thousands of others to remain 

in service given evidence of healthy seals. 

Once the Carbon Seal Bimodality algorithm and support 

process matured to the point that it can detect very small 

levels of seal wear, it became more prone to pick up other 

causes which present similar symptoms.  After identifying a 

few false positive indications of carbon seal wear, a machine 

learning algorithm was developed to classify variability in oil 

pressure residual signature as either caused by Seal Wear, or 

Other Cause. 

2. HISTORY OF CARBON SEAL BIMODALITY 

The Carbon Seal Bimodality algorithm initially came into 

existence because of a need to detect incipient faults in the 

Oil Pressure Transducer (i.e., OPX).  The first step was to 

correct the measured oil pressure because the measured 

pressure varies greatly with the oil temperature and engine 

operating regime.  These normal variations can mask changes 

in oil pressure which are the symptoms of engine faults.  The 

objective when developing the oil pressure correction logic 

was to use data science methods to analyze field data and 

identify the primary drivers of variation in the measured oil 

pressure.  Once we determined the most ‘correctable’ 
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operating regime and we accounted for variations due to 

environmental conditions, we derived a model from field 

data.  Comparing each oil pressure measurement to this 

model resulted in the Oil Pressure/Temperature Residual 

(OilPT Residual) CI, which is trended over time, with the 

initial intent of detecting incipient faults in the oil pressure 

transducer.  By analyzing a handful of known OPX sensor 

failures we determined that a faulted sensor will often cause 

a shift or drift in OilPT Residual before the sensor fault 

progresses to the level detectable by the engine controller.  

Figure 1 is an example of the signature for a faulted oil 

pressure sensor. 

 

Figure 1. Trend of OilPT Residual with faulted oil 

pressure sensor 

 

As we analyzed fleetwide trends of the OilPT Residual CI, 

we started to notice a unique pattern, where over time the CI 

would start to split into two separate populations, which 

would continue to diverge.  Figure 2 is an example of an 

OilPT Residual trend with a bimodal distribution.  The term 

bimodal refers to the two distinct peaks in the probability 

density function on the right side of the figure. 

 

Figure 2. Bimodal distribution of OilPT Residual 

 

As we searched for an explanation for this signature, we 

started thinking about the fact that the measured oil pressure 

is not an absolute measurement but is in fact a delta-pressure 

relative to the aft sump pressure.  This implies that a 

perceived drop in oil supply pressure could be the result of an 

increase in the aft sump pressure.  Next, we investigated the 

hypothesis that whatever might be causing the higher sump 

pressure would return to normal after hot section 

maintenance.  To test this, we did a fleet run and identified 

several engines that had high bimodality at some point, which 

then went away abruptly.  We then investigated the 

maintenance records for those engines and confirmed that the 

disappearance of bimodality correlated with the timing of hot 

section maintenance.  This represented significant evidence 

to support the hypothesis that an increase in aft sump pressure 

is the cause of bimodality. 

Once it became clear that hot section maintenance was 

causing the bimodality to reset, we started looking more 

closely at a carbon seal in the aft sump.  An opportunity to 

inspect an engine with high bimodality presented itself and 

the condition of the carbon seal unlocked the mystery of 

OilPT Residual bimodality.  Figure 3 shows the first carbon 

seal removed proactively based on bimodality in the OilPT 

Residual trend.  Note that the pressure balance features seen 

on the top half of the picture on the right were originally 

present in the bottom half as well. 

 

Figure 3. Worn carbon seal 

 

With this new understanding of the correlation between 

bimodality and carbon seal wear, we conducted a fleet run 

and identified engines with varying degrees of carbon seal 

wear.  As more engines with bimodality were inspected, the 

relationship between bimodality and carbon seal wear 

became even clearer.  The strong correlation between 

bimodality and seal wear allowed the Service Related 

Difficulty investigation to focus on the engines with the 

highest level of wear, avoiding a fleetwide campaign of all 

fielded engines to replace the carbon seals with a new design.  

We began proactively removing carbon seals, which 

provided additional details to assess seal wear progression.  

Increased seal wear may result in secondary damage to the 

LP stub shaft (see Figure 4), which can increase maintenance 

costs.  Being able to detect wear and replace the seal prior to 

this secondary damage results in significant maintenance cost 

savings.  Since the operator can replace the seal while the 

engine is on the aircraft and wear occurs over hundreds of 

hours of operation, early detection also allows operators to 

address the issue without affecting their flight operations.  

The opportunistic maintenance from these alerts has resulted 

in millions of dollars in cost avoidance and improved aircraft 

uptime and availability.  
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Figure 4. Expensive secondary damage to stub shaft 

3. NEED FOR NEOP ALGORITHM 

At first, only those engines with the most severe seal wear 

were flagged to have their carbon seals replaced.  As the 

improved-design carbon seals became more readily 

available, the bimodality threshold was gradually made more 

sensitive, such that more carbon seals were replaced earlier 

in their wear progression.  This increased sensitivity means 

that variability in the data due to causes other than carbon seal 

wear can drive the bimodality measurement over the 

threshold. 

Figure 5 is an example where an OilPT Residual trend is 

bimodal, but the bimodality is driven by a cause other than 

carbon seal wear.  In this case, an alert was generated based 

on a very conservative assessment of the trend.  Even though 

the review team felt it was unlikely that carbon seal wear was 

causing the bimodality on an engine with so few hours, the 

decision was made to enter the engine to inspect the carbon 

seal.  This inspection revealed a healthy carbon seal, meaning 

that the alert was a False Positive. 

 

Figure 5. Bimodality driven by non-seal (“Other”) cause 

 

Prior to this case, the carbon seal bimodality algorithm had 

not resulted in any False Positive alerts to the aircraft 

operators.  There were other examples of OilPT Residual 

trends with high variability, but they were visually 

determined to not fit the signature of carbon seal wear.  

Figure 6 is an example of a trend which was flagged by the 

algorithm, but manually overridden based on visual review 

by a domain expert. 

 

Figure 6. Expert determined bimodality not driven by 

seal wear 

 

In some cases, it was easy for the review team to conclude 

that the variability in OilPT Residual was not caused by 

carbon seal wear, but in other cases it was not as clear.  Figure 

7 shows an example where visual review of the data did not 

result in an obvious conclusion.  Because of the earlier False 

Positive, and the increasing number of cases where visual 

review of the data did not reveal an obvious conclusion, the 

team began investigating if a Machine Learning algorithm 

could be trained to distinguish carbon seal wear from other 

causes of variability in the OilPT Residual trend.  This 

algorithm became known as NEOP (Non-seal Erratic Oil 

Pressure). 

 

 
Figure 7. Cause of bimodality not obvious 

 

4. ALGORITHM STRUCTURE 

The NEOP algorithm is based on iterative development that 

progressed along with increased knowledge about collected 

oil system data and demand for further explanation of 

observed deviations from the model available at that time.  

The simplified diagram shown in Figure 8 involves the 

following steps: 

• Data Filtering: this step applies known oil measuring system 

design limits to filter out invalid data, fuse data from multiple 

sources and in general assure that time series pressure and 

temperature data are of high quality. 

• Oil Pressure Correction: applies known design factors that 

contribute to variability in measured Oil Pressure.  These 
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corrections are not driven by data, they were engineered 

based on domain knowledge.  

• Oil P/T Curve Residual:  applies simple regression model 

that was trained from data across the fleet.  The model 

captures the relation between oil pressure and temperature.  

This step eliminates the effect of oil viscosity on the flow of 

oil through the system and sensed oil pressure. Oil 

temperature is the data source that influences viscosity and 

can be smoothly correlated to oil pressure.  

• Shift Adjustment Logic: applies detection of sudden shifts 

in Oil Pressure Residual to determine if there was a 

maintenance action to adjust oil pressure.  This logic then 

eliminates the effect of the maintenance action to allow 

proper assessment of bimodality.   

• Bimodality Detection Logic: OilPT Residual range proved 

to be good indicator of carbon seal wear. 

• Calculate NEOP Features:  extracts features for Non-seal 

Erratic Oil Pressure detection.  Features are discussed in 

detail in section 7. 

• Predict NEOP Class scores: Support Vector Machine 

classifier was trained and applied.  One of its benefits over 

other classification techniques available in the legacy 

development environment in use (MATLAB 2015) is its 

ability to produce class scores, or confidence.  These class 

scores are used to plot a continuous trend of the classification 

result, which is more informative than a binary output from 

decision trees, for example.   

 

Figure 8. Structure of NEOP algorithm 

 

5. TRAINING DATA 

Aircraft engines are relatively low volume and high 

reliability assets.  As a result, a very common problem when 

developing a diagnostic algorithm using a machine learning 

approach is shortage of training data for the fault cases.  

There is a huge imbalance between healthy and fault data.  

For the NEOP classifier training there were only a handful of 

engines exhibiting bimodality that, based on ground truth, 

could not be attributed to carbon seal wear.  We’ll denote 

these cases as “O” or Other Cause of bimodality.  To describe 

the data, we used these groups: 

• Healthy data: OilPT Residual with smooth trendline 

• Severe carbon seal wear: OilPT Residual with very large 

bimodality in trendline 

• “S” - Seal wear: OilPT Residual trend before the carbon seal 

replacement exhibiting the pattern of medium wear of the 

seal.  See Figure 9. 

• “O” - Other cause of bimodality (non-seal erratic oil 

pressure): OilPT Residual trend with known healthy seal but 

showing bimodal behavior that would be detected by 

Bimodality Detection logic and (incorrectly) marked as 

medium seal wear.  See Figure 10. 

Note that Figure 2 shows the characteristic progression 

through different data groups: from healthy data through “S” 

(Seal wear) to severe carbon seal wear.  

The goal of this setup was to narrow down the classification 

problem to either class “S” or “O”.  This classification is only 

necessary during a portion of the fault progression.  In early 

phases of wear, the bimodality range is low, and the original 

algorithm will correctly decide not to flag the engine for 

maintenance.  For the advanced phases of wear, the fault 

signature changes, which would require the classification 

technique to learn a different pattern.  Since the review team 

can visually classify advanced wear due to the signature over 

time, we decided to make a simplifying decision to focus the 

NEOP algorithm only on the middle phase of wear 

progression.  As a result, severe carbon seal wear was 

excluded from the “S” group.   

 

Figure 9. Training data example: “S” – Seal wear 
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Figure 1010. Training data example: “O” - Other cause 

Each engine that was included in the dataset provided one or 

more data series belonging to one of the groups.  This led to 

variable lengths of OilPT Residual data series.  To obtain a 

reasonable number of training samples we took several 

windows of 50 datapoints from each series.  These windows 

were partially overlapping. The window size and overlapping 

step was chosen carefully to balance the need of having 

enough training samples and the need to have those samples 

be reasonably independent.         

6. CONFIGURATION MANAGEMENT OF TRAINING 

DATASETS 

As discussed in the Society of Automotive Engineers 

Aerospace Information Report AIR6988, Artificial 

Intelligence in Aeronautical Systems: Statement of Concerns, 

one of the key considerations for developing and maturing a 

Machine Learning algorithm in an application like this is 

configuration management of training datasets.  While 

configuration management and versioning of software 

modules is a well-understood activity in aerospace, 

configuration management and versioning of training and 

validation datasets used for machine learning is not as 

mature.   

To ensure that the ML results were reproducible, and to 

enable iterative improvements as new cases became available 

for training, a repository was set up to store and version-

control datasets.  Standard naming conventions and processes 

were established so that multiple software developers could 

access the datasets and replicate each other’s results. 

7. FEATURES 

Features are calculated for the moving window, which moves 

along the timeline.  The size of the window was set to be 

consistent with the bimodality detection logic: samples from 

50 consecutive take-offs.  This window is large enough to 

account for the fact that the bimodality signature in data was 

seen to temporarily cease for many consecutive datapoints.  

The following features based on OilPT Residual were 

included in the final set: 

• Range: this simple feature assures consistency with the 

previously implemented seal wear bimodality detector.   

• Sigma (standard deviation): supplement to range feature.  

• Gaussianity (fitness to gaussian distribution): this is the key 

measure that helps distinguish between noisy unimodal data 

and bimodal distribution.     

• Skewness: it was observed that when bimodality starts 

occurring, the “S” class appears to have more evenly 

distributed datapoints between high and low OilPT Residual 

populations (skewness close to zero).  While “O” class 

samples appear to have more occasional drops in OilPT 

Residual (negative skewness).  

• Scatteredness: none of the measures listed above considers 

the order of datapoints inside the window.  Although 

scatteredness is not a formally defined statistical measure, it 

is what we call what was implemented as RMS (Root Mean 

Square) of differences between consecutive points.  This 

measure gives high values when OilPT Residual values are 

alternating between low and high values.  This behavior is 

expected in medium seal wear.  Domain knowledge of how 

the seal physically behaves in the engine (a worn seal 

randomly settles in one of two extreme positions where it’s 

sampled during takeoff) enabled us to engineer this custom 

feature.   

These features calculated on “S” and “O” training datasets 

were used to train the final Support Vector Machine classifier 

with Gaussian (or Radial Basis Function - RBF) kernel.  

Hyperparameter Kernel Scale was used to prevent overfitting 

to the training data.  By tuning the kernel scale, we 

intentionally trained a medium-to-coarse model (in 

MATLAB Classification Learner terms) for the price of 

slightly decreased accuracy of the learned classifier.  This 

setting was chosen to compensate for the fact that training 

samples were not perfectly independent, because they were 

taken from a limited set of engines.  This fine-tuning is one 

example of using engineering experience and evaluation of 

individual plot results with analysts, rather than pure 

optimization of a goal metric, which is common in ML tasks 

with an abundant and balanced set of training data.  

8. EXAMPLE CASES 

To illustrate how the NEOP output is interpreted, 4 real cases 

are discussed here.  The first example, shown in Figure 11, is 

a straightforward case where the NEOP output (shown as 

‘classification confidence metric’ in the third data series) is 

consistently above zero, indicating that the level of 

bimodality (shown as ‘Range’ in the second data series) can 

be attributed to real seal wear.  This is useful to the review 

team because it increases confidence that an engine flagged 

for seal wear will not result in a False Positive disruption. 
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Figure 11. Consistently classified as seal wear 

 

The second example, shown in Figure 12, illustrates how 

real-world limitations in data can affect the NEOP output.  In 

this case there were large gaps in the data history.  This 

caused the NEOP output to incorrectly interpret shifts as 

‘other cause’, but the review team was able to use the NEOP 

output not affected by the data gaps to confirm that the carbon 

seal was worn.  This is a good example where even when the 

ML algorithm encounters data outside of its training, an 

expert reviewer can still make sense of the data. 

 

Figure 12. Large gaps in the data history 

 

The third example, shown in Figure 13, is typical of the cases 

which motivated the creation of the NEOP algorithm.  The 

bimodality range exceeds the threshold for seal wear, but the 

engine is known to have a healthy seal.  The NEOP history in 

cases like this allows the review team to override the alert for 

carbon seal wear.  Since there is no known operational impact 

associated with the ‘other cause’ classification, no 

supplemental maintenance is recommended. 

 

 

Figure 13. Healthy seal case with correct classification 

 

The fourth example, shown in Figure 14Figure 13, is a case 

where the NEOP output moves back and forth between seal 

wear and ‘other cause’.  This is because the outliers which 

drive the bimodality range are intermittent, with periods of 

normal seal wear in between.  By looking at the NEOP 

history, the review team can determine the true level of seal 

wear, and override the alert driven by the ‘other cause’ 

outliers. 

 

Figure 14. Intermittent outliers causing alternating 

classification 
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9. COMBINING MACHINE LEARNING WITH DOMAIN 

EXPERTISE 

One of the fundamental lessons we’ve learned is that in 

applications like health monitoring of turbofan engines, 

synergy can be achieved when data scientists work closely 

with domain experts.  Figure 1515 shows how these two 

groups of people make each other better.  Data scientists are 

often able to use Machine Learning to identify relationships 

(correlations) between data.  Domain experts can usually help 

the data scientist understand which correlations are 

meaningful (i.e., identify causation), and which correlations 

are trivial or meaningless.  In doing this, the domain expert 

often learns more about their system, which in turn enables 

them to provide improved guidance for the next round of data 

science or machine learning. 

 

Figure 1515. Synergy between Data Science and Domain 

Expertise 

 

In the case of the NEOP algorithm, several decisions were 

made by a domain expert to simplify the problem statement.  

For example, rather than requiring the algorithm to output a 

single answer, we recognized that showing the time-history 

and allowing a person to make a judgement is sufficient for 

the review team to decide on whether to flag an engine for 

seal wear.  Another example is how the training data was 

limited to the time when OilPT Residual is between 8 and 13 

psid.  The data scientist learned that the algorithm did not 

train well across all OilPT Residual ranges.  The domain 

expert recognized that there is a particular band of ranges 

where the interpretation is most critical, and the data scientist 

was able to refine the algorithm to focus on this area.  The 

outputs from this refinement then helped the domain expert 

understand what is physically happening on the engine in 

these areas. 

There are many examples where this synergy results in the 

data scientist making the domain expert more informed, and 

the domain expert contributing to making the data science 

more effective, which then provides additional information 

and feeds the cycle.  The key is to have interactions early and 

often between the data scientist and the domain expert.  This 

has proven to be much more effective than either a domain-

independent data science approach or a purely expert-driven 

approach.  For NEOP, this has resulted in the review team 

reviewing NEOP results 1-2 times per week, with the NEOP 

outputs being the key factor in the decision of whether to 

enter the engine in roughly 90% of those cases.  Without this 

algorithm, many of those cases could result in unnecessary 

maintenance or failure of a carbon seal in flight. 

10. CONCLUSION 

As can be seen from the examples above, the NEOP output 

requires expert interpretation.  Even though the algorithm 

does not provide a precise classification 100% of the time, it 

does provide valuable information which is of a practical 

benefit to the review teams.  Often it is the simplifying 

assumptions/decisions like this which can move a potential 

machine learning approach from a great concept to a usable 

algorithm.  With time, additional algorithm training could 

improve the ability of the NEOP algorithm to consistently 

classify the cause of wear, with less dependency on a domain 

expert; but even without improvement, the current algorithm 

has proven very valuable when the review team is faced with 

a signature that is difficult to explain. 
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