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ABSTRACT 

Reliability of oil distribution transformers is paramount, 

ensuring a stable flow of electricity and shielding from 

potential fire hazards. The internal insulation system of these 

transformers utilizes a combination of oil and paper. As the 

oil circulates through the active part of the system, it collects 

gaseous and physical traces of existing or past defects or 

degradations, providing a holistic view of the transformer's 

health, and allowing for early detection of problems and 

predictive maintenance. While various and mainly data-

driven methods have been developed to calculate a 

transformer health index from oil samples, they lack accuracy 

due to limited data. This paper proposes a novel hybrid 

approach that leverages both Artificial Intelligence and 

Subject Matter Expertise to enhance the health estimation of 

oil distribution transformers. Our methodology utilizes a 

substantial dataset exceeding 65,600 analyzed oil samples, 

coupled with the valuable knowledge of domain experts. This 

combined approach achieves an accuracy exceeding 95%, 

suitable for real-world industrial applications. Furthermore, 

we introduce a risk management feature that strengthens the 

ability to identify transformers at high risk of failure. 

Notably, the health index estimation is implemented as a 

semi-automatic process, retaining the "expert in the loop" 

principle for managing critical and ambiguous cases. 

1. INTRODUCTION AND PROBLEM STATEMENT 

Distribution transformers convert high-voltage electricity 

from transmission lines into usable power for homes, 

businesses, and industries. Their reliability is paramount, 

ensuring a stable and continuous flow of electricity, shielding 

us from power outages, and potential fire hazards. Regular 

inspections, advanced fault detection systems, condition 

monitoring, and proper maintenance are crucial for those 

transformers. The internal insulation system of a transformer 

is provided by both oil and paper. As the oil circulates 

through the active part of the system, it collects gaseous and 

physical traces of existing or past defects or degradations. 

Therefore, it provides a holistic view of the transformer's 

health, allowing for early detection of problems and enabling 

predictive maintenance. In such a process, oil samples are 

extracted and analyzed in the laboratory regarding their 

physical and chemical properties (dielectric strength, acidity, 

humidity, color, and dissolved gas concentration). Sample 

extraction and analysis are done on a regular basis that can 

range from a several months to year periodicity. The results 

are interpreted by experienced subject matter experts who 

attribute a Health Index (HI) to the transformer and guide 

maintenance actions that could be required. The huge number 

of oil distribution transformers currently in operation and the 

limited number of experienced subject matter experts 

available to estimate the HI of these devices, motivates to 

support them. Several methods were developed to 

automatically compute the HI. A review of HI automatic 

assessment techniques for distribution and power 

transformers was proposed by Quynh T. Tran, Kevin Davies, 

Leon Roose, Puthawat Wiriyakitikun, Jaktupong Janjampop, 

Eleonora Riva Sanseverino and Gaetano Zizzo (2020). Some 

of the techniques rely on on-line data, which is not the scope 

of this study. Most of the techniques that rely on off-line data 

are fully data driven. The HI estimations done by experts not 

only rely on standardized combinatory calculations, but also 

reflect the human expertise in interpreting results. 

Consequently, it is difficult to translate them into 

mathematical formulas and several studies implemented 

fuzzy logic approaches, as proposed by Ahmed E. B. Abu-

Elanien M.M.A. Salama, and M. Ibrahim (2012). Whatever 

the data-driven algorithm used, these methods are poorly 
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explainable, which reduces their capacity to be adopted in 

real operations. Only some of them rely on hybrid approach 

combining expert knowledge, either for feature selection, as 

proposed by Khalil Ibrahim, R.M. Sharkawy, H.K. Temraz 

and M.M.A. Salama (2016), or for uncertainty management, 

using Bayesian modeling, as proposed by P. Sarajcev, D. 

Jakus, J. Vasilj, M. Nikolic (2018). Finally, while these 

approaches offer intriguing avenues, they rely on very limited 

data set, with fewer than 100 samples (Ahmed E. B. et al. 

(2012), P. Sarajcev et al (2018), Atefeh Dehghani Ashkezari 

et al. (2012), Jahanzaib Javid et al. (2021), Ahmed E. B. Abu-

Elanien et al. (2011)). These restricted datasets are unlikely 

to encompass the exhaustive spectrum of parameter 

combinations, rendering them poorly fit for real-world 

implementation, especially considering the safety concerns. 

Now, the motivation of this work is precisely to build a 

prognostics and health management solution that is suitable 

for industrial usage, meaning performant enough, resilient 

enough, and preserving safety in any case. The core of this 

work is an original hybrid approach relying on both Artificial 

Intelligence (AI) and Subject Matter Expertise (SME), 

making the most of AI and human expertise. Practically, this 

approach is supported by more than 60 000 oil samples that 

were analyzed and from which experts provided Health Index 

estimations. Indeed, the idea is to train a Machine Learning 

(ML) algorithm to estimate HI from oil samples analyses 

results (Figure 1). The performance criterion that is pursued 

is the global accuracy of the health estimation, with a special 

focus on the ability of detecting transformers at risk, for 

obvious security reasons. The solution is also expected to be 

explainable and to be suitable with an “keeping expert in the 

loop” approach. Indeed, the target solution is not a fully 

automated solution, but rather a mostly automated solution 

that will keep experts in the loop for managing the most 

ambiguous and critical cases. 

The paper describes the health estimation global solution, 

starting with the data science steps, from data collection, data 

cleaning, outliers’ detection, imputation for managing 

missing data, up to the model selection and validation. It also 

emphasizes the way subject matter expertise was combined 

with AI techniques. It describes the risk management method 

that was introduced to minimize the risk of failing to detect 

at risk transformers. Finally, it practically describes the 

global health evaluation process in an industrial context with 

a “keeping expert in the loop” approach that was mentioned 

above. 

2. HYBRID HEALTH ESTIMATION METHOD 

2.1. Introduction 

The method that is used is said hybrid approach as it is based 

on both machine learning and subject matter expertise. The 

machine learning pillar is a standard approach from a data 

science point of view, supported by subject matter expertise 

at all stages (feature engineering, outliers’ detection, missing 

value management, result validation). The expertise is also 

explicitly integrated in a rules-based approach that 

complements the machine learning approach to refine health 

estimation. The current section covers the following technical 

data science steps: data collection, data cleaning, outliers’ 

detection and validation, missing values management, 

models benchmarking, including oversampling and/or 

subsampling methods, and rule-based classification. 

 

Figure 1: Current and target practice. 

2.2. Data collection 

This study focuses on distribution transformers which power 

is less than 3150 kVA and using mineral oil. Data from oil 

analyses over the past 10 years were used, representing 

approximately 65,600 analyses for 40,000 distinct 

transformers (as some of them have been analyzed several 

times all along their lifecycle). The predictive variables 

identified in the data are the levels of dissolved gases, color, 

acidity and humidity, as the dielectric strength. The target of 

our study is the Health Index (HI), which was estimated by 

experienced subject matter experts, based on the oil analysis 

result. Predictive variables and target are given in Figure 2.  

 

Figure 2: Predictive variables and target. 
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The distribution of the Health Index is intrinsically highly 

unbalanced: for most of the analyses the Health Index is 

evaluated by experts at 1 (around 90%), followed by a smaller 

number of analyses with a Health Index of 2 (around 9%), 

and finally an even smaller number of analyses with a Health 

Index of 3 (around 1%). A Health Index equal to 1 means that 

the transformer is perfectly healthy, a Health Index of 2 is an 

intermediate status showing some anomalies, non-serious at 

this stage but requiring some surveillance, and a Health Index 

of 3 means critical anomalies that require immediate 

maintenance actions. 

2.3. Outliers’ detection 

The data cover more than 10 years of oil analyses carried out 

by technical experts. As the analysis process is manual, it 

may be possible to have some errors in the data. In this study 

potential errors were tracked using an anomaly detection 

approach. Then, each anomaly was reviewed, confirmed or 

not to be an error, by technical experts. The anomaly 

detection used in this study relies on a statistical test: the 

Hotelling's T-squared test. Hotelling’s test is a multivariate 

statistical test used to determine if there are significant 

differences between the means of two groups in a 

multivariate space.  In anomaly detection, it allows us to 

compare the mean vector and covariance matrix of a single 

data point (or a small group of data points) to those of a 

reference group. If the data point falls outside a certain 

threshold based on the T-squared statistic, it's flagged as an 

anomaly. When using Hotelling's T-squared test, it's 

important to ensure that the data follow a multivariate normal 

distribution, as it is an assumption it relies on. In the present 

case, dissolved gas concentrations follow an exponential 

distribution, so a logarithmic transformation was needed 

before running the test. Using a 99% confidence level for 

setting the T-squared threshold, 125 analyses (out of a total 

of 65,600 analyses, meaning 0.2%) were identified with 

potential errors. As atypical does not mean error, it was 

necessary to have those analyses reviewed by technical 

experts to confirm whether or not the presence of errors. In 

the end only 17 analyses were confirmed with errors and 

removed from the dataset. For the other analyses initially 

flagged the level of some dissolved gases was exceptionally 

high but perfectly credible. 

2.4. Models benchmarking 

To choose the machine learning algorithm that will be the 

basis of our hybrid approach, we perform a model screening, 

by doing a classification test with nine different algorithms, 

on all analyses for which no data are missing. The imputation 

method for managing missing data is studied later, after 

finetuning the hyperparameters of each algorithm. According 

to the results shown in Table 1 and obtained with a 12,000 

analyses validation dataset, it appears that the most 

performant algorithm is the Random Forest Classifier. 

Accuracy is not the only performance criterion that we want 

to meet. Indeed, interpreting the model and validating, to 

some level, its consistency with the subject matter expert’s 

way of working is another relevant criterion. A Random 

Forest algorithm doesn’t allow to clearly identify the reasons 

behind a given prediction, as the final output is a combination 

of many decision trees, making it difficult to pinpoint the 

logic for each prediction. However, Random Forest 

algorithms usually embed feature importance techniques that 

show how much a specific feature contributes to the overall 

mode. Such a technique was used, and it could be verified 

that the top 3 most influencing features, Hydrogen (H2), 

dielectric strength and acetylene (C2H2), are consistent with 

the subject matter expertise, which historically allows to 

estimate the HI. Indeed, Hydrogen (H2) is the gas produced 

by most technical faults, so an analysis of oil sample done by 

experts always starts with this gas. The dielectric strength 

(also called rigidity) provide experts with a good indication 

of the water present in the transformer oil and therefore of the 

risk during operation: a too low dielectric strength induces a 

risk of flashover. Even in the field, this parameter is checked 

after certain maintenance operations, before restarting the 

equipment. Finally, acetylene (C2H2) is synonymous for 

experts with an electric arc, and therefore a major electrical 

fault. This consistency between algorithm feature importance 

and subject matter expertise gives trust in health estimation 

algorithm.  

Table 1: Classifiers’ performances obtained on the 

validation dataset. 

Classifier Accuracy AUC Recall Precision 

Random Forest 0.96 0.93 0.96 0.95 

Extreme Gradient 

Boosting 

0.96 0.92 0.96 0.95 

Light Gradient 

Boosting 

0.96 0.93 0.96 0.95 

Gradient Boosting 0.96 0.93 0.96 0.95 

Extra Tree 0.95 0.92 0.95 0.95 

Ada Boost 0.95 0.85 0.95 0.95 

Logistic Regression 0.94 0.82 0.94 0.93 

Decision Tree 0.94 0.79 0.94 0.94 

K Neighbors 0.93 0.67 0.93 0.90 

2.5. Imputation of missing values 

In the dataset used for the study (representing 65,600 

analyses), the data corresponding to the dissolved gas 

concentrations are complete for all analyses (no missing 

value for any of the dissolved gases). Concerning the other 
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data, a value is missing for less than 10% of the analyses. 

Different approaches to impute missing values were tested. 

The goal of this step is to make the most of all analyses, even 

those for which a value is missing. First, the simplest 

imputation method was chosen as a reference: imputation by 

the mean. This method consists in replacing the missing 

values for a given feature by the average value of the feature 

itself. Then, the data imputation was tested using two other 

methods that follow a similar approach: iterative imputation. 

Rather than simply replacing missing values with point 

estimates, iterative imputation makes multiple passes over 

the data, using the observed values to estimate and fill in the 

missing values, and then repeating this process several times 

to improve the estimates. This allows for data variability and 

relationships between variables, providing more robust 

estimates. Iterative imputation methods may include 

statistical models or machine learning techniques to estimate 

missing values. wo variants were tested. The first one is a 

standard version of iterative imputation, that includes a linear 

regression to estimate missing values. This first variant is 

promising as there are significant correlations between some 

of the variables, as can be seen in Figure 3. Indeed, for each 

analysis, each input parameter can be quite well estimated 

thanks to the others. The second variant, also called Miss 

Forest, uses Random Forest models to predict and fill in 

missing data. It builds separate models for variables with 

missing data, using the available data to make accurate 

predictions. This method is effective for handling both 

continuous and categorical variables. 

 

Figure 3: Correlation between parameters. Each row and 

each column are input variables (features). 

 

Here we compare the output results of the Random Forest 

classifier using the three different imputers, on the analyses 

for which at least one value is missing. They all lead to the 

same accuracy, and according to the results shown in Table 

2, it appears that the iterative imputation using a linear 

regression shows the best results in terms of precision for 

HI=1 class, recall for HI=3 class and proportion the falsely 

predicted HI 1 instead of 3. Therefore, the classic iterative 

imputer was chosen as imputation method. 

Table 2: Imputation using iterative imputer, simple (mean) 

imputation, and Miss Forest. 

 

2.6. Subject matter expert – Rule based Classification 

2.6.1. Compliance with normative values 

After having apply technical rules that must be respected to 

remain in compliance with the normative values, the expert 

predicted a Health Index. Concretely, these rules allow to 

frame the result. It is thus impossible in our context to 

highlight for a given analysis whose values would have 

exceeded the thresholds set by the normative standards. 

2.6.2. Rules based on evolution through time 

In most cases, a single analysis allows to set the HI of a 

transformer, but in some ambiguous cases, experts do use the 

past analyses of the same transformer (up to two additional 

past analyses) to refine their diagnostic. By combining last 

analysis results with the evolution in the dissolved gas 

concentrations between successive analyses, experts set the 

final HI. Such an approach was mimicked in the study to even 

improve the classification accuracy obtained from the last 

analyses, as shown in previous section. It led to a one-point 

increase in global accuracy. 

2.7. Global scheme of the health estimation process  

The global health estimation process, presented in Figure 4, 

is semi-automatic as the expert remains present in the 

process, to analyze and recommend maintenance actions for 

transformers whose Health Index is evaluated at 3, the most 

critical level. It is also hybrid because it relies on a machine 

learning core and on rules provided by the experts in the field. 

It consists of three blocks: 

• The machine learning prediction, based on the last 

analysis. 

• The legal rules that ensure the compliance of any 

parameter of this last analysis. 

• The expert rules that consider the evolution in dissolved 

gas concentration evolution through time, based on 

previous analyses.  

The details of the process that includes those three main 

blocks are provided in Figure 4. In this figure, note that 

details about the cost matrix are provided in section 3. 
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Finally, once HI has been estimated, if it appears to be equal 

or superior to 2, an expert is asked to review the analyses and 

to provide recommendations in terms of maintenance and/or 

additional analyses to perform. It can also trigger a 

reclassification to class 1 (healthy transformer) if the expert 

concludes that a HI of 2 or 3 is not justified (Figure 5). 

 

Figure 4: HI estimation synoptic. Inputs are on the left; 

computation are in the middle, and output is on the right. 

 

 
Figure 5: Health Index usage with “expert in the loop” 

3. RISK MANAGEMENT FEATURE IN HEALTH ESTIMATION 

3.1. Methodology 

As described in the introduction, not detecting an at-risk 

transformer would lead to a risky situation that could have 

catastrophic consequences. On the other hand, wrongly 

categorizing a transformer as at-risk whereas it is healthy has 

minor consequences, as any at-risk transformer will be 

manually expertised. Indeed, the expert who would analyze 

such a transformer would set it back in the correct healthy 

category, with minor consequences, except the time spent for 

such analysis and action. This means that there is a different 

cost associated to false positive (healthy transformers 

wrongly detected as at-risk ones) and false negative (at risk 

transformers wrongly detected as healthy ones), with false 

negative being more penalizing than false positive. Also, 

such asymmetry depends on the context of usage. Indeed, 

having an at-risk transformer into the wild is always a 

situation to be avoided, but in some cases, it could be even 

more damaging than in other cases, considering the criticality 

of the systems that are supplied by the transformer (hospitals 

for instance) and considering the environment of the 

transformer and the risks in case of fire. In this context the 

goal is now to optimize the classification algorithm not 

regarding global accuracy, but to a cost function that 

considers various levels of false positive and false negative 

costs. Practically, we proceeded with the following steps: 

• A cost matrix is defined, attributing some arbitrary 

weight to each of the errors, reflecting the higher cost of 

errors for false positive vs. false negative. 

• From the classifier, the likelihood that the HI is 1, 2, or 

3 is extracted thanks to the Random Forest that easily 

outputs a calibrated likelihood for each class. 

• Considering the likelihood for each class and the cost of 

each possible choice for prediction, the HI is chosen so 

that it maximizes the total cost. 

Figure 6 shows an example with three different settings (low, 

medium and high costs), with higher and higher cost for false 

negative. The goal of higher cost is to better detect at-risk 

transformers. Technically speaking, the goal is to increase the 

recall of at-risk transformers (HI=2 and, even more, HI=3). 

In this example, the likelihood of prediction of each HI is 

provided. Using a neutral cost matrix, the more likely HI 

would be selected. In this case HI is predicted as a 1. Using a 

medium cost matrix, because of the costs, HI is predicted as 

a 2 as it maximizes the global cost. Similarly, using a stronger 

cost matrix, named high, HI=3 is selected. The approach was 

generalized to 15 settings with increasing weights and tested 

on a 12,000 analyses validation dataset. This led to the results 

presented in Figure 7 and Figure 8, showing the expected 

effect on precision and recall: recall for HI=3 class increases 

as the setting gets more conservative (higher costs) and 

parallelly its precision decreases. Regarding HI=1 class, its 

precision increases and its recall decreases as the setting gets 

more conservative. As an intermediate class, HI=2 sees its 

precision decrease as the setting gets more conservative. Its 

recall first increases (as more analyses are correctly classified 

in HI=2 class, instead of HI=1 class) and then decreases: this 

because when the setting gets highly conservative the 

classification tends to incorrectly class HI=2 in the HI=3 

class, as it can be seen in the confusion matrix (Figure 9). 
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Figure 6: Illustration of cost matrix impact on prediction. 

 

 

Figure 7: Recall obtained for HI equal to 1, 2 and with using 

increasingly settings, from 0 to 14. 

 

Figure 8: Precision obtained for HI equal to 1, 2 and 3 with 

using increasingly conservative settings, from 0 to 14. 

In order to choose the best setting from the experts’ point of 

view, we randomly selected 200 samples and provided the 

classification results for all the 15 settings, highlighting the 

correct results and the wrong ones (correct result means 

predicted HI equal to the HI estimated by the subject matter 

expert). This way, subject matter experts could easily see the 

conservatism level of each setting and choose the three 

settings that were the most pertinent to them, for covering the 

global range of criticality of the transformers’ context. Those 

three settings, named weakly conservative, conservative and 

highly conservative cost matrices, are shown in Figure 7 and 

Figure 8. 

 
Figure 9: Confusion matrix normalized by rows and by 

columns for highly conservative cost matrix (respectively 

(a) and (b)). Results obtained on a 6k analyses dataset. 

3.2. Results validation 

The global algorithm (described in Figure 4) was tested on a 

new dataset of 6,000 analyses (called test dataset), using the 

three settings chosen by the subject matter experts. The 

results are shown in Table 3. They are consistent with the 

results obtained on the validation dataset. Particularly, 

precision for HI=1 class and recall for HI=3 class are very 

close. For instance, using the conservative cost matrix, 

precision for HI=1 class is 99% on the test dataset and 99% 

on the validation dataset, recall for HI=3 class is 95% on the 

validation dataset and 94% on the test dataset. Those 

performances and the risk management settings allow for 

industrial usage.  

Table 3: Results obtained on the test dataset for weakly 

conservative, conservative, and highly conservative settings, 

focusing on precision for HI=1and recall for HI=3. 
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4. CONCLUSION AND DISCUSSION 

A semi-automatic, hybrid machine learning and expert-based 

approach for transformer maintenance has been developed. 

This approach is based on a very large number of analyses 

(65,600) carried out over more than 10 years and the technical 

experts who carried them out. It is called semi-automatic 

because the expert remains present in the process, especially 

to analyze and recommend maintenance actions for 

transformers whose Health Index is evaluated at 3, the most 

critical level. It is called hybrid because it relies on a machine 

learning core and on rules provided by the domain experts. 

The machine learning part goes beyond the application of 

combinatorial rules: it has captured the experience and 

practices of experts exposed to many analyses and their 

practical experience on many transformers, throughout their 

lifecycle, who are familiar with the signatures of faults and 

their probability of leading to more serious problems later. 

Like any machine learning algorithm, the performance of this 

solution relies on a big amount of data for training. Knowing 

that this solution is a hybrid solution that also relies on 

expertise, any industry with advanced expertise necessarily 

also possesses a large volume of data. Therefore, it is suitable 

to any industrial player in the field. As in most classification 

problems, it is not possible to simultaneously improve 

precision and recall, or in other words, minimize false alarms 

and minimize non-detections. This is why we have 

introduced a setting that allows us to prioritize one or the 

other, depending on the context of use.  

Our overall health estimation system relies on: 

• This machine learning-based estimation core. 

• Legal and safety rules that need to be verified. 

Calculations commonly used by experts based on the 

evolution of dissolved gas concentrations trough time to 

discriminate the most ambiguous cases. 

• The expert who will confirm the critical cases (2 or 3) 

and provide an appropriate maintenance or further 

analyses recommendations. 

This transformers health estimation enabling predictive 

maintenance is now deployed on the cloud as an API that is 

exposed to users whose use can also be done directly through 

a web application. Today, this process relies on discrete oil 

analyses; tomorrow, with more and more embedded 

monitoring in transformers, it is possible to perform real-time 

analyses. The hybrid approach can be preserved, but this time 

the machine learning core can rely on the time series and be 

even more sensitive to any degradation and more accurate in 

failure prediction.  

Finally, it should be noted that this methodology is 

transferable to many other application domains beyond 

transformers. 
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