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ABSTRACT

This paper investigates the remaining useful lifetime (RUL)
estimation of bearings under dynamic, i.e., time-varying, op-
erating conditions (OC). Unlike conventional studies that as-
sume constant OC in bearing accelerated life tests, we intro-
duce a dataset with time-varying OC during run-to-failure
experiments, simulating real-world scenarios. We explore
data-driven approaches to identify the transition point from a
healthy to an unhealthy state and estimate the RUL. Addition-
ally, we examine strategies for integrating OC information to
enhance RUL estimations. These methodologies are evalu-
ated through numerical experiments using various machine
learning algorithms.

1. INTRODUCTION

Rolling element bearings are extensively used in industrial
applications, such as wind turbines, electric motors, and gen-
erators. These bearings account for the largest percentage of
failures in rotating machinery (Alewine & Chen, 2010) and
about 40%-50% of all motor faults (Sharma et al., 2015).
Failure of bearings may result in expensive downtime, in-
creased maintenance costs due to failures propagating to other
parts, and catastrophic effects if they support critical equip-
ment. Predictive maintenance can be employed to increase
the efficiency and reliability of bearings and technical sys-
tems in general, as it prevents unexpected failures and max-
imizes their availability. Predictive maintenance builds on
prognostics, which involves the accurate estimation of the re-
maining useful lifetime (RUL) of technical systems or com-
ponents, such as bearings.

For developing RUL estimation methods for bearings, exist-
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ing datasets often focus on accelerated life tests conducted
under constant operating conditions (OC) (Lee et al., 2007).
In some cases where varying OC were taken into account, the
OC only change between different run-to-failure experiments
but remain constant within each experiment (Nectoux et al.,
2012; Wang et al., 2018). However, this approach falls short
of accurately simulating real-world scenarios where bearings
may experience time-varying conditions throughout their op-
erational life. Some research has been conducted on time-
varying conditions. For example, Du et al. (2022) propose
extracting features from the angular domain and RUL pre-
diction based on the unscented particle filter. However, their
proposed methodology was evaluated on ball bearing run-to-
failure experiments, considering only varying rotating speed
in the range [1450, 1550] rpm. Furthermore, the time point
of degradation onset was manually determined. N. Li et al.
(2019) propose a so-called “two-factor” state-space model
based on a Wiener process, where the underlying degradation
process is modeled in the state transition function, and the
influence of the varying condition on the measured signal is
captured in the measurement function of the proposed model.
However, the proposed methodology builds on the assump-
tion that the OC are known a priori and follow a known pat-
tern. Furthermore, their methodology was evaluated on ball
bearings subjected to cyclic varying speed conditions, taking
up two speed values, namely 2200 rpm and 2600 rpm.

To address the presented limitation of existing studies and en-
hance the relevance to practical applications, we introduce a
new dataset of bearing run-to-failure experiments, in which
OC can dynamically vary over time, such as in a non-periodic
and stochastic manner. Thus presenting new challenges for
RUL estimation, as the vibration data not only reflects bear-
ing degradation but is also influenced by changes in OC. Ta-
ble 1 provides an overview of the existing datasets and their
comparison to ours.
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Table 1. Comparison between the publicly available datasets and our dataset.

IMS (Lee et al., 2007) Pronostia (Nectoux et al., 2012) XJTU-SY (Wang et al., 2018) LDM (Aimiyekagbon, 2024)
Bearing type Roller bearing Ball bearing Ball bearing Ball bearing
Rotating speed [rpm] 2000 1500, 1650, 1800 2100, 2250, 2400 [1500, 3600]
Static load [kN] 26.7 4, 4.2, 5 10, 11, 12 [1.5, 4]
Dynamic load amplitude [kN] ✗ ✗ ✗ [0.5, 1.7]
Dynamic load type ✗ ✗ ✗ Sinusoidal and Gaussian noise

Data-driven techniques for estimating the RUL involve es-
tablishing a mapping between available information, mainly
vibration data, and the RUL. Typically, the initial step is to ex-
tract features from vibration data, given its high-dimensional
nature and lack of a discernible trend for RUL estimation.
Features are typically extracted in the time-, frequency-, and
time-frequency-domain. While finding the best feature rep-
resentation lies beyond the scope of this paper, we primarily
adopt the Fast Fourier Transform (FFT) to obtain a frequency-
domain representation of the vibration signal. Furthermore,
to address the challenge of high dimensionality, we employ a
methodology akin to that proposed in (Ren et al., 2018; von
Hahn & Mechefske, 2022). This involves segmenting the re-
sulting FFT signal into distinct frequency buckets and subse-
quently identifying the maximum value within each bucket.

It has been observed that the behavior of bearings does not
exhibit a consistent trend from the beginning to the failure
time. Instead, a typical scenario involves an initial phase of
normal behavior followed by an abrupt shift at some point
during the lifespan, indicating the initiation of degradation.
These points, marking the transition from a healthy to an un-
healthy state, are referred to as transition times. While exist-
ing approaches use various engineering techniques to detect
these transition times (X. Li et al., 2019), this study employs
a 2-means clustering technique on extracted features to de-
fine the transition time as the moment when the cluster of a
bearing changes with respect to its initial cluster. After iden-
tifying the transition time, the subsequent data points can be
used to train a RUL estimator model.

The dataset consisting of all features after the transition times,
along with their corresponding RUL labels, can be fed into
any supervised machine learning or deep learning model for
fitting an RUL estimator. The challenge of estimating the
RUL under dynamic OC is addressed through various ap-
proaches in the literature. Huang et al. (2019) incorporate
the OC as an additional input in their deep network model.
Fu et al. (2021) and Javanmardi & Hüllermeier (2023) sug-
gest normalizing data according to OC. F. Li et al. (2020)
integrate several algorithms into one model and select an op-
timal algorithm set for different OC to minimize their im-
pact. Numerous studies address this problem by employing
transfer learning or domain adaptation to handle the distri-
bution shift between the training (source) and testing (target)
domains (Mao et al., 2019; Fan et al., 2020; da Costa et al.,
2020; Ding, Jia, Miao, & Huang, 2021; Ding, Jia, & Cao,

2021; Zhang et al., 2021). Ding et al. (2022) consider multi-
source adaptation to manage the presence of subdomains in
the source caused by multiple OC. To this end, we consider
three distinct approaches in this study:

• Firstly, we train a regressor using only the previously at-
tained features without taking the OC into account. This
approach serves as a baseline for the subsequent two meth-
ods.

• Secondly, we employ the OC to normalize the features,
aiming to mitigate its impact on the overall feature set.

• Thirdly, we concatenate the OC with the previously at-
tained features, thereby incorporating them as additional
features.

In the following sections, we first formalize the problem state-
ment along with the details of all steps, from feature extrac-
tion to transition time determination and RUL estimation. Later,
we elaborate on the data generation process and present com-
prehensive numerical results for the proposed approaches.

2. PROBLEM STATEMENT

Consider a dataset containing N instances of bearing run-to-
failure data. Each bearing i in the dataset with a lifetime of
Ti is represented as a time series Zi :=

{
z
(i)
1 , z

(i)
2 , . . . , z

(i)
Ti

}
.

Here, z(i)t :=
(
v
(i)
t , o

(i)
t

)
, where o(i)t ∈ Rdo contains in-

formation about the operating and environmental conditions
during the tth measurement cycle, and v(i)t ∈ Rdv represents
the vibration signal collected during that measurement. For
all t ∈ [Ti] := {1, . . . , Ti}, the RUL y(i)t of instance i at time
t can be computed as follows:

y
(i)
t = Ti − t . (1)

2.1. Feature Extraction from the Vibration Data

The vibration signal in the time domain v(i)t is often high-
dimensional, making it unsuitable for direct integration into
a machine learning framework. In this study, we employ dis-
crete Fourier transform to convert the signal into its frequency
spectrum. This transformation results in V (i)

t , a signal with
the same dimensionality as the original time signal. Next, we
partition the signal into m equally sized buckets B1, . . . , Bm

(with B1 corresponding to the lowest frequency bucket and
Bm to the highest) and simply extract the maximum ampli-
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tude within each bucket to construct the m-dimensional fre-
quency domain features X(i)

t , i.e.,

X
(i)
t =

(
max
j1∈B1

V
(i)
t (j1), . . . , max

jm∈Bm

V
(i)
t (jm)

)
, (2)

where V (i)
t (k) represents the kth component of the signal V (i)

t .
Having access to this new feature, in the literature also known
as the Spectrum-Principal-Energy-Vector (Ren et al., 2018),
resolves the challenge posed by the high dimensionality of
the initial vibration signal.

2.2. Transition Time Determination

K-means clustering is an unsupervised machine learning al-
gorithm that clusters similar data points based on their prox-
imity in the feature space. The algorithm initializes K cluster
centroids and assigns each data point to the nearest centroid,
recalculating the centroid of each cluster based on the mean
of the assigned data points until convergence. The goal is
to minimize the sum of squared distances between each data
point and its assigned centroid. Here, we merely want to di-
vide data points into a healthy or unhealthy cluster, thus K=2.
We assume that each bearing starts in a healthy state, and
hence, the cluster of the first point is considered healthy. A
change in the cluster in the subsequent times is considered
the beginning of the degradation. Once trained on the train-
ing data, the algorithm can be used in an online fashion for
each test data instance to detect its changepoint promptly and
initiate RUL prediction.

Following the extraction of low-dimensional features X(i)
t

from the vibration data, we can utilize a 2-means clustering
algorithm to assign a cluster label δ(i)t ∈ {0, 1} to each mea-
surement time t for every bearing i. Subsequently, we define
t
(i)
TT , the transition time, as the moment when the cluster of

the ith bearing differs from its initial cluster. Formally, this is
expressed as

t
(i)
TT = min

{
t : t ∈ [1 + Tc, Ti] and δ(i)t ̸= δ

(i)
1

}
, (3)

where Tc serves as a hyperparameter, representing the toler-
ance level. It signifies that a change in the cluster occurring
earlier than Tc is not considered in the transition time calcu-
lation. The transition times for two bearing experiments are
exemplarily depicted in Figure 1. Once the transition times
are determined, we can define healthy and unhealthy datasets
as follows:

Dhealthy =

{
(X

(i)
t , o

(i)
t , y

(i)
t ) : i ∈ [N ], t < t

(i)
TT

}
, (4)

Dunhealthy =

{
(X

(i)
t , o

(i)
t , y

(i)
t ) : i ∈ [N ], t ≥ t(i)TT

}
. (5)
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Figure 1. The first extracted feature (blue) plotted for two
bearings alongside their determined transition times (red).
Here Tc is set to 150.

2.3. RUL Estimation

After extracting features from the vibration data and deter-
mining transition times, the next step is to estimate the RUL
of the bearing. The primary focus of this paper is to leverage
machine learning algorithms for that purpose. From a ma-
chine learning perspective, the problem is framed as a super-
vised regression setting—finding a mapping from the feature
space to the RUL space. However, we have yet to explore
how to benefit from OC information. In this context, we con-
sider three distinct scenarios as outlined below and depicted
in the flowchart in Figure 2.

• Scenario 1 (disregarding OC): In this scenario, OC in-
formation is neglected, and training proceeds without con-
sidering such contextual data.

• Scenario 2 (OC for feature scaling): This approach in-
volves utilizing OC information for data/feature normal-
ization. The methodology employs PCA to reduce the
dimensionality of OC data from do to 1. Subsequently, a
uniform discretization method is applied to bin the result-
ing one-dimensional feature into B bins. Next, inspired
by a prior study (Javanmardi & Hüllermeier, 2023), the
data in each bin is normalized to the [0, 1] interval using
B distinct MinMax scalers, aiming to mitigate the impact
of diverse OC indirectly.

• Scenario 3 (OC as additional features): In this method,
OC information is treated as an additional set of features,
thereby augmenting the feature space. The objective is to
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Figure 2. Flow chart of the proposed method.

enable the machine learning model to identify and con-
sider interactions between OC and vibration features dur-
ing the RUL estimation process.

Note that any machine learning or deep learning model can
be used as the underlying RUL estimator for the three pro-
posed scenarios. In this paper, we focus on traditional ma-
chine learning models, such as gradient boosting (GB) and
random forest (RF).

3. CASE STUDY

The experimental dataset, which consists of accelerated life
tests of ball bearings subjected to time-varying conditions, is
gathered at the Chair of Dynamics and Mechatronics (LDM)
at Paderborn University. The specifications of the test bearing
allow an experiment with valuable condition monitoring data
to take several hours. Specifically, the 61806-2RS rolling el-
ement bearing with a basic static load rating C0 = 3.15 kN
and a dynamic load rating C = 4.00 kN have a basic rating
life L10 of approximately five hours while considering a con-
stant equivalent load of 4.50 kN, a rotating speed of 2500 rpm
and other factors not been considered, such as lubrication.

The bearing test rig with its components is captured in Fig-
ure 3(a). The test bearing within its housing (3) is mounted
on a shaft. The shaft is coupled with the driving motor (1)
via a jaw coupling (2) and supported by two spherical roller
bearings (8) within their housing. A static pre-load is exerted
on the bearing via a lever structure (5), which is attached to
the bearing housing. To this end, the compression spring,

mounted on the lever structure, is compressed by the linear
actuator (10). A dynamic load is superimposed on the static
pre-load by means of an electrodynamic shaker (7), which is
connected to the test bearing housing via a stinger (9).

The input signals, namely the exerted forces and shaft rotating
speed, are measured synchronously with vibration and tem-
perature as condition monitoring data. Three one-directional
accelerometers (4) measure the vibration of the bearing indi-
rectly. Two accelerometers (A and C) measure the vibration
horizontally from the housing, and one (B) measures verti-
cally from the lever structure, as illustrated in Figure 3(b).
The ambient temperature and bearing temperature are mea-
sured with Pt100 resistance thermometers. The bearing tem-
perature is measured indirectly from its housing at the po-
sitions (T1 and T2) depicted in Figure 3(b). Measurements
were acquired at a sampling duration of 1.6 s and a measure-
ment interval of approximately 12 s. The temperature sig-
nals are measured with a sampling rate of 10 Hz. To facili-
tate high-frequency analysis, vibration data were sampled at
128 kHz for experiments till B09 and due to data storage is-
sues at 64 kHz for experiments from B10. This lower sam-
pling frequency is theoretically sufficient for analysis in the
frequency range of interest up to 32 kHz.

During an experiment, the test bearing is subjected to dy-
namic load superimposed on a static pre-load. To accom-
modate different dynamic load types, the dynamic load is si-
nusoidal with a constant frequency of 2 Hz for some experi-
ments. The amplitude of the sinusoidal load is stationary per
measurement and takes on a random value from a station-

4

Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN – 978-1-936263-40-0

Page 724



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

10987

54321 6
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Figure 3: (a) Ball bearing test-rig with the following components: (1) motor, (2) jaw coupling, (3) bearing housing, (4) ac-
celerometers, (5) lever structure, (6) electrodynamic shaker (DFG, 2017), (7) support bearing housing, (8) stinger connected to
a quartz force sensor, and (9) linear actuator.
(b) Accelerometer and temperature placement on the test bearing housing without the shaft
(c) A dismantled test bearing with a surface defect on the inner ring raceway and spalls on a rolling element.

ary uniform distribution within a predefined interval between
measurements. For other experiments, the dynamic load is
Gaussian white noise with a maximum excitation frequency
of 200 Hz and truncated to remain within a predefined interval
between measurements. A measurement of the dynamic load
types is exemplarily shown in Figure 4. The shaft rotating
speed is also set to be constant per measurement and takes on
a random value from a stationary uniform distribution within
a predefined interval between measurements. The predefined
range of values per experiment can be found in Table 2.

To avoid failure of other components, except the test bearing,
an experiment ends when the test bearing fails. Bearing fail-
ure is determined by two predetermined failure threshold cri-
teria. If one threshold is exceeded, the experiment is stopped.
On the assumption that the test bearing is in a normal state,
without previous loading history, and the ranges of speed and
force are restrained, the first criterion builds on the equivalent

energy content of the vibration data and is formulated as:

Fvibration = O · 1
m

m∑

t=1

RMS
(
v
(i)
t (1), . . . , v

(i)
t (n)

)
, (6)

where Fvibration denotes the vibration threshold value, O =
8 is a predetermined constant value, m is the number of vi-
bration signals to consider, and v(i)t (k) represents the kth in-
dex of a vibration signal v(i)t of length n. For the provided
experiments, this threshold value lies approximately between
6 g and 10 g. Since improper lubrication of the bearing race-
way leads to increased friction and subsequently to increased
temperature, the second criterion builds on the bearing tem-
perature. According to the data sheet and to avoid melting
the bearing seal made up of nitrile butadiene rubber (NBR),
the threshold value, based on the bearing housing temperature
Ftemperature, is set as 110 °C.

(a) (b)

Figure 4. Dynamic load: (a) Sinusoidal load and (b) Gaussian white noise.
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Table 2. Set range of OC for experiments.

Experiment Rotating speed [rpm] Static load [N] Dynamic load [N] Dynamic load type

B01 - B03 [2400, 3000] [3300, 3800] [500, 1400] Sinusoidal

B04 - B05 [1500, 3000] [2500, 3800] [500, 1500] Sinusoidal

B06 [1500, 3600] [3300, 3800] [750, 1700] Sinusoidal

B07 [1500, 3000] [3250, 4000] [250, 750] Gaussian noise

B08 [1500, 3000] [3250, 4000] [500, 1000] Gaussian noise

B09 [1500, 3000] [2500, 3800] [750, 1000] Gaussian noise

B10 [1500, 2700] [2000, 3250] [750, 1500] Gaussian noise

B11 - B13 [1500, 2700] 3000 1000 Gaussian noise

B14 - B15 2700 2500 [750, 1500] Gaussian noise

B16 2700 2500 [1000, 1500] Gaussian noise

B17 2700 [1500, 2500] 1500 Gaussian noise

In this paper, 17 run-to-failure experiments are utilized, with
the temperature threshold value Ftemperature being exceeded
for four experiments (B03, B07, B08, and B15) and the vibra-
tion threshold value Fvibration for others. The failure types
are not predetermined, but several single or combined failure
types, such as an outer ring raceway defect or rolling element
fault combined with an inner ring raceway defect, could occur
during an experiment. Figure 3(c) is an image of a disman-
tled test bearing with spalls on a rolling element and an inner
ring raceway defect after an experiment (B06). Due to the
proximity to the bearing and for brevity, only the horizon-
tal accelerometer (labeled A) is exemplarily considered in the
following analysis. Also, three-dimensional OC information
is considered, including peak dynamic load [N], mean abso-
lute static load [N], and mean absolute rotating speed [rpm].

3.1. Numerical Experiments

We set the bucket size for feature extraction at 20. To conduct
fair experiments, we repeat the proposed methods 17 times,
reserving one bearing for testing each time while using the
data of the remaining bearings for training. Without loss of
generality, take the jth bearing as the test bearing. The train-
ing and test data are defined as follows:

Dtrain =

{
(X

(i)
t , o

(i)
t , y

(i)
t ) : i ∈ [N ] \ {j}, t ∈ [Ti]

}
, (7)

Dtest =

{
(X

(j)
t , o

(j)
t , y

(j)
t ) : t ∈ [Tj ]

}
. (8)

We then define Xtrain as the collection of features from all
bearings in the training data. This data is normalized and fed
into the 2-means clustering algorithm. We found out that uti-
lizing only the first ten features is sufficient for clustering,
yielding stable transition times. For the sake of fair com-
parison, the same transition times are used in all three RUL
estimation scenarios. The resulting transition points lead to
the creation of a new training dataset, which consists of only
the data after the transition times, aka unhealthy points:

Dtrain
unhealthy =

{(
X

(i)
t , o

(i)
t , ỹ

(i)
t

)
: i ∈ [N ] \ {j}, t ≥ t(i)TT

}
,

(9)

where
ỹ
(i)
t =

Ti − t
Ti − t(i)TT

× 100% (10)

is the RUL percentage after the transition time.
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Different RUL estimation scenarios require different input
data, as illustrated in Figure 2. The details are provided as
follows.

• Scenario 1: For this approach, we simply use the training
data in the form

{(
X

(i)
t , ỹ

(i)
t

)
: i ∈ [N ] \ {j}, t ≥ t(i)TT

}
. (11)

• Scenario 2: Here, we utilize the training OC for PCA
and divide its one-dimensional output space into 20 bins.
This way, each o(i)t ∈ R3 is replaced with its discretized
counterpart õ(i)t ∈ [20]. Next, for each region r ∈ [20],
a distinct normalizer MinMaxr is applied to the features
with the same operating region, i.e.,

Xr
train :=

{
X

(i)
t : i ∈ [N ] \ {j}, t ≥ t(i)TT , õ

(i)
t = r

}
.

(12)
Let X̃(i)

t := MinMax
õ
(i)
t
(X

(i)
t ) be the normalized coun-

terpart of X(i)
t . The training data for this method can be

written as
{
(X̃

(i)
t , ỹ

(i)
t ) : i ∈ [N ] \ {j}, t ≥ t(i)TT

}
. (13)

• Scenario 3: We simply concatenate feature vectors and
OC to create 23-dimensional features. The training data
would be in the form
{(

[X
(i)
t ; o

(i)
t ], ỹ

(i)
t

)
: i ∈ [N ] \ {j}, t ≥ t(i)TT

}
. (14)

We made the data, as well as all the implementations, pub-
licly available on Zenodo1 and GitHub2 to encourage further
development of RUL estimation models in dynamic operating
conditions.

3.2. Results and Discussion

We employed GB and RF as models for estimating RUL. For
each test bearing, separate models were trained for every es-
timation scenario. Figure 5 compares the performance of the
three RUL estimation scenarios for two different bearings.
To mitigate random effects, model training was repeated ten
times for each test bearing and each scenario, using ten dif-
ferent random seeds for both GB and RF, and the resulting
average mean absolute error (MAE) is reported in Table 3.
Notably, the standard deviation of the MAE values was negli-
gible and, therefore, not included in the table. The best MAE
value for each bearing scenario is highlighted in bold.

The findings showcased in Table 3 shed light on the poten-
tial benefits of integrating OC information in the context of
RUL estimation. Both learning models exhibited a decrease
in MAE for more than 50% of the bearings when OC details
were taken into account (scenarios 2 and 3 combined), with
1https://doi.org/10.5281/zenodo.10805042
2https://github.com/alireza-javanmardi/bearing-RUL
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Figure 5. RUL estimation performance comparison for three
scenarios.

RF benefiting more compared to GB. It should be noted that
preprocessing steps, such as feature extraction and transition
time identification, can also affect the final outcomes. Despite
this, the primary focus here is to compare the performance of
different scenarios under fixed preprocessing steps.
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Table 3. MAE of the predictions in different scenarios.

GB RF
Bearing Total lifetime Transition time Scenario 1 Scenario 2 Scenario 3 Scenario 1 Scenario 2 Scenario 3

B01 377 208 18.14 22.77 19.96 18.00 21.51 17.17
B02 1116 998 29.43 25.25 27.41 28.74 26.10 27.24
B03 614 562 24.05 21.52 25.83 25.24 21.90 24.17
B04 1114 452 15.23 19.25 15.02 14.90 19.56 14.07
B05 572 560 44.40 41.11 36.34 42.20 37.28 34.75
B06 12965 12853 11.73 16.00 13.55 13.50 15.64 11.85
B07 6393 6205 44.36 42.54 42.82 43.63 44.78 43.09
B08 1827 1219 15.42 17.98 15.70 18.18 19.08 17.51
B09 1813 253 20.85 23.19 17.19 21.41 22.95 19.67
B10 3224 2679 19.48 18.62 23.13 23.87 18.79 26.11
B11 1953 931 23.94 23.85 22.79 25.22 24.28 24.66
B12 767 154 15.80 17.26 17.43 16.90 16.27 16.93
B13 19417 18022 26.91 25.69 27.36 24.77 26.78 29.13
B14 12317 12050 30.71 26.75 30.10 30.14 29.10 30.36
B15 22567 21051 16.74 19.88 14.17 14.20 21.32 13.66
B16 5891 5400 20.17 21.42 24.74 20.28 18.41 21.74
B17 2733 2323 22.19 21.88 24.47 22.37 24.15 21.58

4. SUMMARY AND OUTLOOK

To address the limitation of existing studies and enhance the
relevance to practical applications, a new ball bearing run-
to-failure dataset, considering time-varying operating condi-
tions (OC), is introduced. Specifically, during an experiment,
the test bearing is subjected to a sinusoidal load or Gaus-
sian white noise superimposed on a static pre-load. Further-
more, the rotating speed takes on a random value from a sta-
tionary uniform distribution within a predefined interval be-
tween measurements. Owing to the degradation path of the
ball bearings, a 2-means clustering algorithm is employed to
partition the features extracted from raw vibration data into
two states, namely healthy and unhealthy states. To estimate
the remaining useful lifetime (RUL) for the unhealthy state,
even under such time-varying OC, three different scenarios
are considered, namely, Scenario 1, where the measured OC
are disregarded, Scenario 2, where the OC are employed for
feature scaling, and Scenario 3, where the OC serve as aux-
iliary features. Different machine learning techniques, such
as gradient boosting and random forest, are employed as the
RUL estimator for each scenario. The results of the presented
case study suggest that the usefulness of incorporating OC
information depends on the individual case: in some scenar-
ios, it is clearly advantageous, and in others, it does not yield
significant benefits.

As a future work, one may delve deeper into other ways of

incorporating OC information into RUL estimation. For in-
stance, a hybrid model consisting of a physics-based model
and a machine learning model can be an interesting exten-
sion. The physics-based model could capture the relation-
ship between the varying OC and the system state, while the
machine learning model could capture the relationship be-
tween the measured system parameters and the RUL. More-
over, more advanced learning algorithms, such as deep learn-
ing techniques, along with tools from domain adaptation and
transfer learning, can be employed on this dataset to deter-
mine whether they can enhance the results.
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