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ABSTRACT

Predictive maintenance has become a highly favored applica-
tion in Industry 4.0, particularly in complex systems with re-
quirements for reliability, robustness, and performance. Air-
craft engines are among these systems, and several studies
have been conducted to try to estimate their remaining lifes-
pan. The C-MAPSS dataset provided by NASA has greatly
served the scientific community, and several works based on
physical models and data-driven approaches have been pro-
posed. However, several limitations related to data quality
or data availability of failures persist, and integrating domain
knowledge can help address these challenges. In this arti-
cle, we are currently implementing a new approach based
on knowledge coupled with qualitative spatial reasoning to
study the propagation of faults within system components un-
til complete shutdown. Region Connection Calculus (RCC8)
formal model will be used to describe the component rela-
tionships, drawing inspiration from the C-MAPSS dataset.

1. INTRODUCTION

In Industry 4.0, predictive maintenance (PdM) allows for the
detection of anomalies and the anticipation of upcoming break-
downs in equipment, machines, or components (Nunes, San-
tos, & Rocha, 2023). Through the continuous collection of
multi-sensor data and system performance analysis, this main-
tenance strategy relies on machine learning (ML) algorithms
capable of building models with the ability to detect early
signs of impending failures or malfunctions. Early detection
of anomalies allows for prevention, anticipation of corrective
actions, and reduced downtime. In this context, PdM solu-
tions rely on estimating the remaining useful life (RUL) be-
fore failure (Zio, 2022), which represents the remaining oper-
ating time before a component or machine failure. Several ap-
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proaches are cited in the literature: model-based, data-driven,
knowledge-based, or hybrid approaches combining the previ-
ous three (Cardoso & Ferreira, 2021). In the aeronotic con-
text, Aircraft engines are among these systems, and several
studies have been conducted to try to estimate their remaining
lifespan (de Pater, Reijns, & Mitici, 2022). The C-MAPSS
dataset provided by NASA 1 has greatly served the scientific
community. The solutions proposed in the literature mainly
address data-driven approaches (Kumar, 2021; Vollert & Theissler,
2021; Barry, Hafsi, & Mian Qaisar, 2023; Asif et al., 2022),
but very few hybrid approaches (Dangut, Jennions, King, &
Skaf, 2022) are proposed or tested and no approach attempt-
ing to integrate domain knowledge or expert knowledge exists
(Barry & Hafsi, 2023; Mayadevi, Martis, Sathyan, & Cohen,
2022).

In this study, we aim to focus on the C-MAPSS dataset ref-
erenced in the domain literature and attempt to explore a new
approach based on knowledge coupled with qualitative spa-
tial reasoning to study the propagation of faults within sys-
tem components until complete shutdown. RCC8 rules will
be used to describe the component relationships, drawing in-
spiration from the C-MAPSS dataset (Saxena, Goebel, Si-
mon, & Eklund, 2008), which corresponds to a dataset gener-
ated by simulating the operational functioning of aircraft en-
gines, with the aim of evaluating the performance of RUL es-
timation models. The main objective concerns the modeling
of a domain ontology or a semantic graph from the domain
knowledge integrated into the C-MAPSS dataset. Spatial and
topological representation of system components will be ad-
dressed by using RCC8 relations.

2. CONTEXT

Commercial Modular Aero-Propulsion System Simulation (C-
MAPSS) developed by NASA, is a simulation tool for a re-
alistic large commercial turbofan engine flights, used for the

1data.nasa.gov/dataset/C-MAPSS-Aircraft-Engine-Simulator-Data
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Table 1. Overview of C-MAPSS Dataset with segmentation
into 4 subsets and description of each subset’s characteristics.

FD001 FD002 FD003 FD004
Train Trajectories 100 260 100 249

Test Trajectories 100 259 100 248

Conditions 1 6 1 6

Failure modes 1 1 2 2

PHM’2008 challenge to generate un large dataset called C-
MAPSS dataset (Saxena et al., 2008). It consists of a sim-
ulated engine model in the 90, 000lb thrust class. It also in-
cludes an atmospheric model that can simulate operations at
various altitudes (sea level to 40, 000ft), Mach numbers (0
to 0.90), and sea-level temperatures (−60 to 103F ). The C-
MAPSS dataset is commonly utilized in the field of PdM and
engine health prognostic (Vollert & Theissler, 2021). These
data are often employed for developing and assessing engine
health diagnostic algorithms, failure prediction models, and
PdM strategies. The dataset is segmented into different simu-
lation units as demonstrated in Table 1, where each represent-
ing an individual engine, with varied failure profiles. Due to
its complexity and diversity, C-MAPSS serves as a popular
testbed for validating PdM techniques in the aerospace engi-
neering field.

Researchers often leverage this dataset to benchmark their al-
gorithms and methodologies, comparing the performance of
different approaches in predicting engine failures and assess-
ing the health status of engines. Moreover, C-MAPSS pro-
vides a valuable resource for studying the behavior of engines
under various operating conditions and environmental factors
(Vollert & Theissler, 2021).

3. RELATED WORK

3.1. Predictive Maintenance & PHM Background

In light of the evolving and knowledge-intensive nature of
the manufacturing domain, there has been a growing interest
in employing semantic technologies (Xia, Zheng, Li, Gao,
& Wang, 2022), particularly ontology-based approaches, for
PdM. Recent research has introduced various ontologies and
rule-based extensions aimed at enhancing knowledge repre-
sentation and reuse in PdM with several applications in Indus-
try 4.0 (Dalzochio et al., 2020) like in Machinery: (mechan-
ical machines) (Nuñez & Borsato, 2018), (bearings) (Cao,
Giustozzi, Zanni-Merk, de Bertrand de Beuvron, & Reich,
2019), elevator running systems (Hou, Qiu, Xue, Wang, &
Jiang, 2020), hydraulic systems (Yan et al., 2023), Cyber-
Physical Systems (Cao et al., 2022a; Oladapo, Adedeji, Nzen-
wata, Quoc, & Dada, 2023) and industrial robots (X. Wang,
Mingzhou, Liu, Lin, & Xi, 2023). This section provides a re-
view of the most significant research efforts in this area. In

Table 2. Related work applied semantic approaches in the
context of Industry 4.0.

Reference Application Field Proposition

(Nuñez & Borsato,
2018)

Mechanical machines Ontology-based model

(Cao, Giustozzi, et
al., 2019)

Bearings / rotating ma-
chinery

Ontology-based ap-
proach

(Hou et al., 2020) Elevator running sys-
tem

Knowledge graph-
based approach

(Cao et al., 2022a) Cyber-Physical Sys-
tems

Hybrid approach based
on statistical and sym-
bolic AI technologies

(Chhetri, Kurteva,
Adigun, & Fensel,
2022)

Hard Drive Failure Pre-
diction

Knowledge Graph
Based approach

(Yan et al., 2023) Hydraulic systems Knowledge graph-
based approach

(X. Wang et al.,
2023)

Industrial robots in in-
telligent manufacturing

PdM method based on
data and knowledge

(Oladapo et al.,
2023)

Routine maintenance in
Industry 4.0

Fuzzified Case-Based
Reasoning

(Li, Zhang, Li,
Zhou, & Bao,
2023)

steel factory bridge
cranes

Knowledge-based ap-
proach

(Cao, Samet, Zanni-Merk, De Bertrand de Beuvron, & Reich,
2019), the authors argue that existing PdM approaches have
been limited to predicting the timing of machinery failures,
while lacking the capability to identify the criticality of the
failures. This may lead to inappropriate maintenance plans
and strategies. Authors introduce a novel ontology-based ap-
proach to facilitate PdM in industry, by combining fuzzy clus-
tering with semantic technologies. Fuzzy clustering tech-
niques are employed to determine the criticality of failures
based on historical machine data, while semantic technolo-
gies utilize the results of fuzzy clustering to predict the tim-
ing and severity of these failures. In (Cao et al., 2022b),
the authors address the problem of complexity arising from
heterogeneous industrial data, which leads to a semantic gap
among manufacturing systems. There is an increasing need
for uniform knowledge representation and real-time reason-
ing in Cyber-Physical Systems (CPS) to automate decision-
making processes. In response to this challenge, the authors
propose a hybrid approach that combines statistical and sym-
bolic AI. They introduce a system called Knowledge-based
System for PdM in Industry 4.0 (KSPMI), which utilizes sta-
tistical techniques such as ML and chronicle mining, along
with symbolic AI technologies like domain ontologies and
logic rules. This hybrid method enables automatic detection
of machinery anomalies and prediction of future events. The
effectiveness of the approach is demonstrated through evalu-
ation on both real-world and synthetic datasets. In (Chhetri et
al., 2022), authors raise the need to improve hard drive failure
prediction, given its critical role in computing systems. The
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authors point out that existing studies mostly rely on either
ML or semantic technology, but each approach has its lim-
itations: ML lacks context-awareness, while semantic tech-
nology lacks predictive capabilities. To address these limi-
tations, the authors propose a hybrid approach that combines
the strengths of both ML and semantic technology to enhance
hard drive failure prediction accuracy. In (Yan et al., 2023),
authors are interested in the problems due to the knowledge-
intensive and heterogeneous nature of the manufacturing do-
main, the data and information required for PdM are normally
collected from ubiquitous sensing networks. This leads to
the gap between massive heterogeneous data/information re-
sources in hydraulic system components and the limited cog-
nitive ability of system users. To address this limitation, the
authors propose a virtual knowledge graph-based approach
for digitally modeling and intelligently predicting maintenance
tasks.

3.2. Knowledge Representation & Spational Reasoning

In the industrial domain, representing knowledge involves or-
ganizing and structuring information about processes, sys-
tems, and domains. This helps in better understanding and
decision-making. With the advancement of technology in In-
dustry 4.0, effective knowledge representation is crucial for
optimizing operations and driving innovation. In (Smith et
al., 2019), authors highlight the need for a comprehensive on-
tology to support digital manufacturing, particularly in terms
of standardizing terminology across various branches of the
advanced manufacturing industries. They propose to develop
an upper ontology for the Industrial Ontologies Foundry (IOF),
based on the Basic Formal Ontology (BFO), to serve as a
foundation for creating a suite of ontologies tailored for dig-
ital manufacturing. In (Confalonieri & Guizzardi, 2023) au-
thors discuss the Multiple Roles of Ontologies in Explainable
AI. Knowledge-based approaches for RUL estimation have
several advantages over other methods (Barry & Hafsi, 2023),
including the ability to incorporate domain-specific knowl-
edge and experience into the model, and the ability to han-
dle complex systems where data-driven methods may not be
effective. However, they also have limitations, such as be-
ing dependent on the availability of expert knowledge and
the potential for subjective judgments to influence the model.
From an Operations perspective, knowledge-based methods,
including fuzzy systems, provide a direct and cost-effective
means for RUL estimation by leveraging expert knowledge.
These methods prioritize ease of implementation and inter
rater reliability. However, their effectiveness is closely tied
to the quality of expert input.

Qualitative spatial reasoning, a branch of artificial intelligence,
plays a significant role in enhancing decision-making pro-
cesses within the industrial domain (Fraske, 2022). This ap-
proach focuses on analyzing spatial relationships and con-
figurations without precise numerical measurements, allow-

Figure 1. The 8 basic relations of RCC formalism.

ing for a more intuitive understanding of industrial environ-
ments and processes. In the context of Industry 4.0, where
smart manufacturing systems heavily rely on interconnected
and sensor-rich environments, qualitative spatial reasoning
offers valuable insights for optimizing resource allocation,
scheduling tasks, and ensuring efficient workflow manage-
ment (Ladron-de Guevara-Munoz, Alonso-Garcia, de Cozar-
Macias, & Blazquez-Parra, 2023).

RCC (Region Connection Calculus) is a logical formalism
used in qualitative geometry intended for representing and
reasoning about qualitative spatial relations among regions
(Marc-Zwecker, De Bertrand de Beuvron, Zanni-Merk, & Le Ber,
2013). Based on the primitive connection relation C(x, y),
where x and y represent spatial regions consisting of a set
of points in a plane, delimited by a continuous boundary.
The RCC8 formalism defines eight basic relations between
regions in space. These relations are exhaustive and mutually
disjoint, allowing the definition of any relation between two
spatial regions (Y. Wang, Mengling, Liu, & ye, 2018). The
eight basic relations are DC (disconnected), EC (externally
connected), PO (partially overlapping), EQ (equal), NTPP
(non-tangential proper part), TPP (tangential proper part), NTPPi
(the inverse of non-tangential proper part), and TPPi (the in-
verse of tangential proper part) as illustrated in Figure 1 (Lima,
Costa, & Moreno, 2019).

4. PROPOSITION

To develop a PdM method based on relationships between
industrial components, we propose an approach with appli-
cation to C-MAPSS aircraft engines as follows: (1) Domain
study and advanced data characteristics analysis of aircraft
engine components and sensors. (2) Formalization of knowl-
edge in concepts and relationships with a focus on topological
relationships between components. (3) Upgrading and de-
scribing topological relationships between components based
on basic RCC8 relationships. (4) Configuration of a rule-base
(based on assumptions) for error propagation across defined
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relationships. (5) Determination of alert thresholds for each
sensor and component to configure reasoning rules by using
data-driven techniques. (6) Test the method and compare it
with existing data-driven approaches.

This structured approach describes the steps involved in ap-
plying a knowledge-based PdM approach to aircraft engines,
integrating domain knowledge with data-driven techniques
for effective fault detection and planning main

4.1. Practical Insights into Knowledge Representation for
C-MAPSS Scenario

To model and formalize domain knowledge, it is important
to understand the functioning of the engine, its components,
and the generated data. C-MAPSS consists of four datasets,
with each dataset further divided into training and test sub-
sets (Saxena et al., 2008). Each time series originates from
a different engine of the same type. Three operational set-
tings, which significantly affect engine performance, are in-
cluded in the data. Furthermore, the data are contaminated
with sensor noise. The engine operates normally at the begin-
ning of each time series but begins to degrade at some point
during the series. Multiple aircraft engines undergo varied us-
age throughout their operational history. A single engine unit
may experience different flight conditions from one flight to
another. Due to various factors, such as flight duration and en-
vironmental conditions, the extent and rate of damage accu-
mulation will vary for each engine. Although the data is sim-
ulated, numerous phenomena and challenges have been incor-
porated to enhance the realism of the dataset. For instance, an
initial wear is simulated reflecting typical manufacturing in-
efficiencies observed in real systems. The initial wear, man-
ifested as minor alterations in pressure, temperature, airflow
measurements, etc., is primarily intended to introduce a cer-
tain level of manufacturing variability into the data. Indeed,
each engine is not identical upon leaving the factory due to
manufacturing tolerances and differences in production pro-
cesses, introducing variability right from the beginning of
their use. Additionally, some non-ideal starting conditions
or pre-existing degradations are simulated as initial wear due
to manufacturing inefficiencies or storage conditions prior to
use. Finally, noise is introduced at various stages of the simu-
lation process, ultimately affecting the sensor measurements
and mirroring real-world conditions (Saxena et al., 2008).

The engine consists of multiple components, as depicted in
Figure 2 (Sánchez-Lasheras, Garcia Nieto, de Cos Juez, Bayón,
& González, 2015) :

• Fan: The fan component draws in air, providing the ini-
tial thrust and airflow into the engine, crucial for com-
bustion.

• Combustor: This section mixes fuel with the incom-
ing air and ignites it, generating high-pressure and high-
temperature gas for propulsion.

Figure 2. Schematic illustration of an aircraft engine model.

• LPC (Low-Pressure Compressor): It further compresses
the air before it enters the combustion chamber, enhanc-
ing efficiency and power output.

• HPC (High-Pressure Compressor): This component
significantly raises the pressure of the air, preparing it for
combustion and ensuring optimal engine performance.

• N2: Represents the low-pressure shaft, connected to the
LPC and fan, responsible for driving the fan and low-
pressure compressor.

• HPT (High-Pressure Turbine): Extracts energy from
the high-pressure gas flow to drive the HPC, maintaining
compression efficiency.

• LPT (Low-Pressure Turbine): Utilizes remaining en-
ergy in the gas flow to drive the fan and LPC, contribut-
ing to overall engine power generation.

• Nozzle: This component accelerates the exhaust gases to
produce thrust, directing the flow and converting thermal
energy into kinetic energy.

The C-MAPSS dataset simulates engine operation data with-
out providing a detailed description of the sensors utilized. In
real-world engines, a diverse array of sensors is commonly
employed to monitor various operational and performance
parameters. These sensors may encompass:

• Pressure sensors: To measure pressure in different parts
of the engine, such as combustion chambers, air inlets
and outlets, and fuel lines.

• Temperature sensors: To monitor temperature in crit-
ical areas of the engine, such as combustion chambers,
turbines, and exhaust sections.

• Flow sensors: To measure the flow rate of fuel, air, or
coolant circulating through the engine.

• Vibration sensors: To detect abnormal vibrations or signs
of imbalance in rotating components of the engine, such
as turbine shafts and bearings.
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Table 3. Description of the 21 C-MAPSS Sensors.

Sensor ID Measurement Unit
T2 Fan inlet temperature ◦R
T24 LPC outlet temperature ◦R
T30 HPC outlet temperature ◦R
T50 LPT outlet temperature ◦R
P2 Fan inlet pressure psia
P15 bypass-duct pressure psia
P30 HPC outlet pressure psia
Nf Physical fan speed rpm
Nc Physical core speed rpm
epr Engine pressure ratio -

Ps30 HPC outlet Static pressure psia
Phi Ratio of fuel flow to Ps30 pps/psi
NRf Corrected fan speed rpm
NRc Corrected core speed rpm
BPR Bypass Ratio -

htBleed Bleed Enthalpy -
Nf dmd Demanded fan speed rpm

PCNfR dmd Demanded fan conversion speed rpm
W31 HPT Coolant air flow lbm/s
W32 LPT Coolant air flow lbm/s

• Speed sensors: To monitor the rotational speed of en-
gine components, such as turbines and compressors.

• Position sensors: To determine the position of valves,
flaps, and other moving components of the engine.

• Exhaust gas sensors: To analyze exhaust gases and mon-
itor emissions, including gas composition and pollutant
levels.

These sensors play a crucial role in collecting engine opera-
tion data, which is then used to assess performance, diagnose
issues, and predict potential failures as part of PdM and en-
gine health monitoring. Table 3 provides an overview of the
sensors included in C-MAPSS.

4.2. Conceptualization and Formalization of Knowledge
Domain Ontology

A specialized methodology is used to conceptualize and de-
velop the domain ontology. The Methontology methodol-
ogy, developed by (Fernández-López, Gomez-Perez, & Ju-
risto, 1997), provides a framework for constructing ontolo-
gies at the knowledge level. It includes the identification of
the ontology development process and a lifecycle based on
evolving prototypes, along with specific techniques for pro-
cess description as depicted in Figure 3 (Blázquez, Fernández-
López, Garcı́a-Pinar, & Gomez-Perez, 1998).

Our ontology creation follows a systematic approach. The
initial step involves the preparation of a formal document
meticulously describing the domain to be represented accord-
ing to the previous section. Subsequently, the conceptualiza-
tion phase ensues, entailing the definition of concepts, prop-
erties, and relationships. For instance, an illustration of the
main concepts related by three types of relations in two levels

Figure 3. Development process ontology with the Methontol-
ogy methodology.

Figure 4. Diagram of ontology classes (concepts) in two main
levels.

(subsumption relation/is-a, part-of/part-whole relation, and
semantic relations) is provided in Figure 4. Following con-
ceptualization, the third step focuses on formalizing the con-
ceptual knowledge into a language understandable by com-
puters. This modeling can be implemented in an ontology
editing tool. In our case, we express the formal ontology in
Description Logics (DL) language (Baader, Horrocks, & Sat-
tler, 2005) and implement it using the OWL (Web Ontology
Language) format (Taylor, 2009) within the open-source on-
tology editor Protégé 5.6 2. Once the ontology is created,
it can be used to annotate and enrich the C-MAPSS dataset
with semantic information about the components and their
relationships, facilitating advanced analyses and data inter-
operability. In line with these principles, we establish a con-
ceptual framework to represent pivotal elements and relation-
ships within the C-MAPSS dataset domain. This domain in-

2Protégé editor: https://protege.stanford.edu/
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Figure 5. Diagram of modules and their connections in the
aircraft engine model.

formation is captured as knowledge within a domain ontol-
ogy named EngineFailureOntology. Within this ontology, we
delineate various concepts, including: Aircraft engine, En-
gine component, Flight, Condition, Cycle, Measure, Sensor,
Heath state, etc. The Definition in DL of Some Design Ex-
amples is Provided as Follows:

Engine ≡ ComplexDevice ∧ hasComponent some (Turbine
⊓ Compressor ⊓ Shaft)

Sensor ≡ Device ∧ measures some (Temperature ⊓ Pressure
⊓ Vibration)

TemperatureSensor ≡ Sensor ∧ measures only Temperature

OperationalSetting ≡ Setting ∧ includes some (EngineSpeed
⊓ Load ⊓ AmbientConditions)

4.3. Description of Topological Relationships Between Com-
ponents

This step involves defining the topological relationships be-
tween components using the extension of RCC8 relations and
drawing inspiration from diagram in Figure 5, which high-
lights the interconnections between components.

Some examples to illustrate how RCC8 relations can be used
to describe spatial interactions among components of the C-
MAPSS engine as follow:

Disjointness DC(Fan,Nozzle) : Fan and Nozzle components
are mutually disjoint, as they occupy distinct spatial areas
within the engine. This relationship can be expressed by:

Fan ⊓Nozzle ≡ ∅
Others disjoitness relationships can be expressed as follows:
Combustor ⊓Nozzle ≡ ∅
Combustor ⊓ Fan ≡ ∅
LPC ⊓ LPT ≡ ∅
External-Connected EC(HPC, Combustor): The Com-
pressor (HPC) touches the Combustor because the compressed
air from the compressor is then directed to the combustor for
the combustion process. This relationship can be expressed
as follows:

HPC ⊓ Combustor ̸= ∅
Other components are externally connected to each other; these
relations can be expressed as follows:

HPC ⊓ LPC ̸= ∅
LPC ⊓N2 ̸= ∅
N1 ⊓ Combustor ̸= ∅
HPT ⊓ LPT ̸= ∅
LPT ⊓N2 ̸= ∅
LPT ⊓Nozzle ̸= ∅
The shaft or rotor (corresponding to the N2 component) is a
tangential proper part of the turbine because it is physically
attached to the turbine and rotates together with it. Addition-
ally, some of its parts are covered by two other components:
N1 and HPT. These relations can be expressed as follows:

N2 ⊓HPT ̸= ∅
N2 ⊓HPC ̸= ∅
Partially Overlapping PO(Fan , LPC): The fan overlap
some part of the low pressure chamber and it overlap partially,
as they share a common space within the engine. This relation
can be expressed by:

Fan ⊓ LPC ̸= ∅
The definition of topological relations based on the 2D dia-
gram allows for connecting various components to facilitate
the propagation of alerts if a malfunction is observed on a
component. This enables the system to identify spatial inter-
actions and dependencies between components, enhancing its
capability to detect and propagate alerts effectively through-
out the system.

4.4. Reasoning with SWRL rules

Several reasoning rules can be defined in collaboration with
domain experts in aeronautics. In this study, we rely on ex-
tracting rules from our understanding of the data.

The first rule that can be defined pertains to subjecting a com-
ponent to significant variations, which may cause fluctuations
in sensor values, potentially leading to component fragility
and resulting in localized and then generalized malfunction.
The risk of impacting neighboring components directly may
consequently increase. This rule will be formulated in the
form of a SWRL (Semantic Web Rule Language) rule. Af-
ter defining this rule, the next steps involve loading the time
series data from the dataset, initiating the reasoning process,
generating a new dataset, and studying the correlation of the
new variables obtained through reasoning, in the form of new
links or instance values in the knowledge base, with the RUL
value. Although it is a logical rule, it is necessary to define
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Figure 6. Main steps of the proposed approach involve treat-
ing each time series separately and creating features based on
the proposed spatial reasoning.

alert thresholds for each sensor to weigh the estimated risk
on each component. The definition of these thresholds can
be initially done through advanced analysis of the C-MAPSS
dataset using ML techniques. Subsequently, collaboration
with aeronautical experts can further refine these thresholds.

Finally, we propose this validation technique because the dataset
does not provide information on the types of failures and
faulty components. Therefore, we will evaluate the validity
and performance of our approach by assessing whether the
learned knowledge has a positive or negative impact on the
estimation of RUL through ML techniques.The process of the
proposed approach is illustrated in Figure 6.

5. DISCUSSION

The present study aimed to investigate a novel approach grounded
in knowledge representation and spatial reasoning to predict
failures by examining fault propagation and its repercussions
across components, ultimately impacting the entire system.
While similar methodologies have been explored in scien-
tific literature for analogous yet distinct problems, the ap-
plication of this approach remains novel within the context
of our investigation. Despite the inherent complexity associ-
ated with its implementation, the potential contribution of this
approach towards enhancing the explainability of machine
learning (ML) models and elucidating degradation mecha-
nisms holds substantial promise.

5.1. Consensus on the representation of domain and ex-
pert knowledge

The conceptualization, formalization, and formulation of rules
within this study are predicated upon assumptions crafted within
the confines of our research framework. However, it is im-
perative to acknowledge that such methodologies necessitate
close collaboration with domain experts to ascertain the valid-
ity and relevance of the defined rules for effective reasoning.
To further validate the efficacy of the approach delineated in
this article, future endeavors will entail concerted efforts to
engage domain experts in refining the formalization of knowl-
edge and iteratively updating the associated reasoning rules.
This iterative process of validation and refinement holds the
potential to fortify the robustness and applicability of the pro-
posed approach in real-world industrial settings.

5.2. Transition to RCC8 3D Formalism

Furthermore, it is essential to note that the rules of RCC8 per-
tain to regions in a 2D plane. In this study, we took into ac-
count the 2D diagram of components; however, transitioning
to 3D objects could offer intriguing avenues for exploration in
future research. By extending our analysis to encompass 3D
objects, we can potentially enhance the fidelity and accuracy
of our predictive models, thereby augmenting the applicabil-
ity of our approach in diverse industrial scenarios.

5.3. Lack of data on failure types and their origins

Our study is based on the analysis of failure propagation among
components, which assumes that a malfunction in one com-
ponent can be detected or identified. However, the C-MAPSS
dataset does not provide the necessary data to obtain this in-
formation. Preliminary work is required to estimate the health
status of each component and define a threshold indicating
failure at its level, as well as to study the propagation to other
components. For this purpose, several SWRL reasoning rules
can be specified to transition a component to a failure state
when its condition is deemed critical. This also involves a
detailed analysis of sensor data. For instance, sensors that
detect abnormal fluctuations in the data of a component may
indicate an impending failure.

6. CONCLUSION & FUTURE WORK

In the context of Industry 4.0 overall, and specifically in the
estimation of aircraft engine lifespan, our objective in this
article was to investigate the possibility and feasibility of a
knowledge-based approach focusing on component degrada-
tion as a separate entity before overall system failure, by ex-
ploring the potential of qualitative spatial reasoning. The pro-
posed method is currently under implementation, and its re-
sults have not yet been evaluated. However, the approach
appears to offer tangible benefits, particularly in enhancing
our understanding of internal functioning and incident prop-
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agation among components. The next steps in this work in-
volve finalizing the proof of concept and obtaining prelimi-
nary results. Subsequently, we plan to engage with domain
experts to refine the established conceptualization and define
reasoning rules that accurately reflect real-world scenarios.
Depending on the outcomes, there is potential for applying
the method to a cyber-physical system to enhance the explain-
ability of machine learning models in place.
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Monnet of Saint-Étienne. Later, Meriem
completed her PhD in Computer Science
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