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ABSTRACT 

This study seeks to address the challenge of limited 

degradation data in developing Fault Detection and Isolation 

(FDI) models for multi-component degradation (MCD) 

scenarios. Utilizing a small fraction (0.05%) of a previously 

utilized water distribution testbed dataset in a previous 

publication, a weighted ensemble hybrid approach is 

proposed and evaluated against more established modelling 

approaches used in the previous publication. The proposed 

approach combines heuristic approximation and Physics-

Informed Neural Network (PINN) methods with a recurrent 

neural network (RNN) model to enhance diagnostic 

performance for predicting MCD scenarios. The hybrid 

model generally outperformed other algorithms when tested 

on an MCD dataset, demonstrating improved diagnostic 

accuracy in such scenarios. Future research aims to optimize 

ensemble weights based on model uncertainty, further 

enhancing diagnostic capabilities.   

1. INTRODUCTION 

Data has become the story of engineering design in recent 

times as the availability of system data provides insights into 

the dynamics of any complex system. This is particularly true 

for developing analytics in digital twin (DT) design for asset 

health management applications (Lu, Xie, Parlikad, & 

Schooling, 2020). Figure 1 shows the nexus between the 

analytics developed for PHM applications and a virtual 

representation of a physical asset highlighting how DTs can 

enable PHM applications. In exploring cost mitigation 

strategies, different maintenance data-driven models often 

rely on large amounts of data to train effectively (Maass, 

Parsons, Purao, Storey, & Woo, 2018). The more data is 

available, the better the model can learn patterns and 

relationships within the data, leading to more accurate 

predictions or insights (Barimah, Niculita, McGlinchey, & 

Cowell, 2023). This helps data-driven models generalise 

better to unseen data the more data is available (Duriez, 

Brunton, & Noack, 2017). This is particularly useful when it 

comes to asset health management where the availability of 

trainable degradation data is critical in the design and 

execution of Prognostics and Health Management (PHM) 

strategies for complex systems undergoing multi-component 

degradation scenarios.  

  

Figure 1. Relationship between DT and PHM applications. 

However, obtaining asset degradation data can be expensive, 

time consuming, and often requires specialized equipment, 

sensors, or monitoring systems (Hu, Miao, Si, Pan, & Zio, 

2022). Operators often rely on post-failure degradation data 

(Barimah, Niculita, McGlinchey, & Alkali, 2021) which 

enables the development of statistical-based techniques for 
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system-level anomaly detection. The statistical-based 

technique alone prevents an operator from isolating the sub-

systems contributing to the anomaly in the larger system. The 

scenario becomes even more complex when two components 

of the same system degrade simultaneously (very often, at 

different rates). Simulated degradation data calibrated with 

the actual physical system (Higdon, Kennedy, Cavendish, 

Cafeo, & Ryne, 2004) can also be used to train predictive 

models. However, this approach becomes limited when MCD 

scenarios are being considered as degradation data from the 

different combinations of sub-systems undergoing 

degradation need to be simulated to generated the required 

data. For complex systems with a lot of sub-systems with 

different operating conditions, this approach becomes 

untenable.  

To address the issue of limited data, several authors have 

suggested combining the insights given by data-driven 

models with some physical equations that govern the 

dynamics of a system. Physics-Informed Neural Networks 

(PINNs) integrate the physics of an asset into their training 

process, enforcing physical constraints alongside data-driven 

learning. PINNs can generalize well with limited data (Cai, 

Mao, Wang, Yin, & Karniadakis, 2021) and have 

applications in various fields (Huang & Wang, 2022), making 

them valuable for tackling complex, multi-physics problems 

(Bararnia & Esmaeilpour, 2022) by reducing computational 

costs and providing insights (Rizi & Abbas, 2023). The aim 

and objectives of this paper are presented in section 2 below.  

2. OBJECTIVES OF STUDY 

This paper aims to develop and benchmark an ensemble 

hybrid fault detection and isolation model for components 

(sub-systems) undergoing multi-component degradation 

(MCD) scenarios in a water distribution system.  

 

• Identify a physical equation that represents the 

degradation severity level of either blockages or 

leakages in the system. 

• Design a Fault Detection and Isolation (FDI) 

algorithm using a PINN-enabled Hybrid model for 

each component in the water distribution system. 

• Train all FDI models on limited degradation data 

and test models on test multi-component 

degradation scenario data from the same system at 

different operating conditions. 

• Identify areas of model improvement and potential 

research. 

The paper is structured as follows: Section 3 covers the 

methodology. Sections 4 and 5 present and discuss the results 

of FDI model performance. Finally, the paper concludes with 

contributions and future research work. 

 

3. METHODOLOGY   

3.1. System Description 

Data from the dynamic behaviour of a water distribution 

system undergoing multi-component degradation presented 

in Barimah et. al (2023) was used in this report. Figure 2 

below shows the water distribution experimental testbed, 

where an external gear pump pumps water from a main 

supply tank. A variable speed drive (VSD) controls the 

rotational speed of the pump and the motor. The system also 

has five (5) direct proportional valves (DPV1 to DPV5) and 

a solenoid shut-off valve (SHV) that were included to support 

the emulation of deterioration phenomena affecting five 

different components in a controlled manner. Data is 

collected from five pressure transmitters (P1, P2, P3, P4, and 

P5), turbine flow meters (f1 and f2), and a laser sensor to 

gauge the pump's speed.  Table 1 lists the control valves in 

the system's default operating states, their respective fault 

codes, and the fault emulation mechanism for each 

component on the testbed. 

 

 
Figure 2. Water Distribution System Testbed Schematic (Barimah 

et. al 2023). 

Table 1. Healthy condition operating state of the system's 

control valves and associated fault codes 

Component/Fault 

Codes 

Testbed 

Valves 

Healthy 

State 

Fault Emulation  

Mechanism 

Filter/FC1 DPV 1 FO DPV1 GC 

Pump/FC2 DPV 2 FC DPV2 GO  

Valve/FC3 DPV 3 FO DPV3 GC  

Nozzle/FC4 DPV 4 FO DPV4 GC  

Pipe/FC5 DPV 5 FC DPV5 GO  

FO - Fully Open | FC - Fully Closed  

GC - Gradually closing | GO - Gradually opening. 

3.2. Process Data Capture 

The degradation data used in the previous publication by 

Barimah et. al (2023) was recorded within four (4) weeks for 

healthy condition (HC), Single Component Degradation 

(SCD) and Multi-Component Degradation (MCD) scenarios 

between pump speeds of 700rpm and 950rpm in intervals of 

50rpm. The SCD process data represents the degradation of 

individual components (See Table 2) with pressure and flow 
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measurements at 𝑃1, 𝑃2 … . . 𝑃5 and 𝑓1, 𝑓2 respectively. 

Data logging for each faulty condition scenario last between 

three (3) to four (4) minutes and also starts at least 10 minutes 

after the process reaches steady state conditions or when there 

is a step change in pump speed or a change in the failure 

condition scenario with each data file having different sample 

sizes. The degradation level of severity  (0 ≤ 𝑆 ≤ 1)  for 

each component on the testbed is determined by gradually 

closing or opening the respective direct proportional valve.  

Table 2. Data capturing process with a sampling rate of 0.2s 

Test period 4 consecutive weeks 

Faulty Condition 

Scenarios (Total No of 

Tests) 

FC0 – Healthy Condition (24) 

FC1–Clogged Filter (24) 

FC2–Degraded Pump (24) 

FC3–Blocked Valve (24) 

FC4–Blocked Nozzle (24) 

FC5–Leaking Pipe (24) 

Pump Speed (rpm) 700/750/800/850/900/950 

 

3.3. FDI Model Development 

Sections 3.3.1 to 3.3.5 presents the process for developing 

physics informed fault detection and isolation (FDI) 

algorithms. Using limited training data, the paper also 

benchmarks the statistical process control (SPC), ensemble 

classification models and a recurrent neural network model 

presented by the author in a previous paper (see Figure 4) 

with the physics Informed FDI models presented in this 

paper. This is to determine the performance of FDI models in 

detecting multi-component degradation scenarios when 

limited degradation data is available for model training. The 

Statistical Process Control, the ensemble and neural network 

models were trained with full degradation dataset in Table 2 

simultaneously, tagged as models 𝑀1, 𝑀2𝑎𝑛𝑑 𝑀3 

respectively and stored in a Fault Detection and Isolation 

model repository. The function 𝑓2(𝑥) is then used to 

determine the proportion of accurate predictions of test 

degradation scenario data by 𝑀1, 𝑀2𝑎𝑛𝑑 𝑀3.  

 

A physics-informed Neural Network (PINN) enabled hybrid 

FDI algorithm is also developed in this report to detect multi 

component degradation scenarios. The hybrid model consists 

of a weighted average of a heuristic approximation model, a 

naïve recurrent neural network and a feedforward PINN 

model for each component in the water distribution system. 

The training of all models was done using randomly selected 

0.05 % of the full degradation data from the original 

historical dataset used in Barimah et. al (2023) shown in 

Table 2. Figure 5 below shows the various cases in which the 

various randomly sampled degradation data can occur. Case 

A represents a scenario where part of the live process data 

from the system forms part of the distribution of the sampled 

random data. Case B is the non-ideal situation where the live 

process data is a subset of the sampled distribution while case 

C is the ideal case where the degradation data available is 

truly limited. The rationale for the random approach is to 

reduce the quantity and diversity of degradation data 

available for model training and development hence the 

limited nature.  This is done to determine the impact of 

limited data conditions on the performance of FDI algorithms 

in MCD scenarios. The levels of severity are categorized into 

two (2) groups with below 0.21 defined as healthy and 

between 0.21 and 1.0 defined a faulty in both MCD and SCD 

scenarios (see Figure 3). The performance of the FDI 

algorithms is measured using the interval (0 ≤
𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 ≤ 1) where 1 means the algorithm predicted 

correctly all the categorized severity states of the asset in 

operation while 0 means the algorithm failed to predict 

correctly any severity state of the asset. 

3.3.1. Physics Informed Neural Network Model 

As shown in Figure 2, five direct-acting proportional valves 

are used to emulate the dynamics of degradation patterns in 

the main components on the water distribution system. 

Equation (1) is used to determine the fluid flow through a 

valve where 𝑓(𝑉0) is the function of valve opening with 0 ≤
𝑓(𝑉0) ≤ 1 as the interval for the valve opening and 𝐶𝑣 is the 

valve coefficient (Knight, Russell, Sawalk & Yendell, 2013). 

Equations (2) & (3) are used to determine the level of severity 

𝑆(0,1) for blockages (Blocked Filter, degraded valve & 

Blocked Nozzle) and leakage (leaking pipe) respectively. For 

the pump, Eq. (4) is used to determine the severity level in a 

leaking pump degradation scenario for the gear pump on the 

testbed where 𝑁𝑣 and 𝑁𝑚 are the volumetric and mechanical 

efficiencies respectively. The maximum level of severity 

occurs when  𝑆 = 1 with no fault condition being 𝑆 = 0. 

Therefore, the interval of degradation for each component on 

the testbed is 0 ≤ 𝑆 ≤ 1 (see Figure 3). 

𝑓𝑙𝑜𝑤 = 𝐶𝑣𝑓(𝑉0)√
∆𝑃

𝑆𝐺
   (1) 

 

𝑆(0,1) = 1 − 𝑓(𝑉0)    (2) 

 

                𝑆(0,1) = 𝑓(𝑉0)       (3) 

 

                 𝑆(0,1) = 1 − (𝑁𝑚𝑁𝑣)       (4) 

 

 
Figure 3. Change in component degradation severity level.
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Figure 4. Proposed process for benchmarking the FDI algorithms (Barimah et. al 2023). 

 
 

Figure 5. Random sampling of full degradation dataset for FDI model training. 

Equations (2), (3) & (4) are used as physical constraints in 

constructing the loss function in the training process for the 

physics-informed neural network (PINN). Equation 2 is used 

for the filter, valve and nozzle all of which degrade via the 

gradual closing of DPV 1, DPV 3 and DPV 4 respectively. 

Since the gradual opening in DPV 5 represents a leakage in 

the main line, Eq. 3 is used to determine the extent of valve 

opening which represents the level of severity in the pipe. 

Equation (4) which represents the drop in gear pump 

volumetric efficiency when DPV 2 is opened is used in 

developing the loss function for the PINN model for the 

pump. The PINN model architecture used consists of a fully 

connected feedforward neural network with a Leaky version 

of the rectified linear unit (LeakyReLU) activation function 

to prevent any potential dying ReLU problem during the 

training process. The network has 1 input and output node, 3 

hidden layers with 100 neurons in each layer. The Nadam 

optimizer is used for its good coverage and faster training 

time (Bera & Shrivastava, 2020). A Mean Squared Error 

(MSE) Loss function of the PINN model 𝐿(𝜃) used is shown 

below where 𝜆 is a hyperparameter manually set to 1. Figure 

6 below shows the PINN model architecture for each 

component on the testbed. The total loss for the PINN model 

which consists of the data and physics loss is shown in 

Equation (5). Table 3 also shows the various parameters used 

for the PINN model and the associated loss functions in Eqs. 

(6), (7) & (8) where 𝛽 =
𝑓𝑙𝑜𝑤×√𝑆𝐺

𝐶𝑣
 and 𝑁𝑚 are treated as 

trainable parameters in the training process. 
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Figure 6. PINN Model Architecture for each component  

 

 

𝑇𝑜𝑡𝑎𝑙 𝐿𝑜𝑠𝑠 = (𝜆 × 𝐷𝑎𝑡𝑎 𝐿𝑜𝑠𝑠) + 𝑃ℎ𝑦𝑠𝑖𝑐𝑠 𝐿𝑜𝑠𝑠 (5) 

 

𝐿1(𝜃) =  
𝜆

𝑁𝑏
∑ (𝑆𝑃𝐼𝑁𝑁(𝑥𝑖 , 𝜃) − 𝑆𝑜𝑏𝑠(𝑥𝑖))2 +

𝑁𝑏
𝑖=1

1

𝑁𝑝
∑ ([𝑉0 − 1 + [

𝛽

√∆𝑃
⁄ ]] 𝑆𝑃𝐼𝑁𝑁(𝑥𝑗 , 𝜃))

2

𝑁𝑝

𝑗=1
 (6) 

 
 

𝐿2(𝜃) =  
𝜆

𝑁𝑏
∑ (𝑆𝑃𝐼𝑁𝑁(𝑥𝑖 , 𝜃) − 𝑆𝑜𝑏𝑠(𝑥𝑖))2 +

𝑁𝑏
𝑖=1

1

𝑁𝑝
∑ ([𝑉0 − 1 + 𝑁𝑚. 𝑁𝑣]𝑆𝑃𝐼𝑁𝑁(𝑥𝑗 , 𝜃))

2𝑁𝑝

𝑗=1
  (7) 

 

𝐿3(𝜃) =  
𝜆

𝑁𝑏
∑ (𝑆𝑃𝐼𝑁𝑁(𝑥𝑖 , 𝜃) − 𝑆𝑜𝑏𝑠(𝑥𝑖))2 +

𝑁𝑏
𝑖=1

1

𝑁𝑝
∑ ([𝑉0 − [

𝛽

√∆𝑃
⁄ ]] 𝑆𝑃𝐼𝑁𝑁(𝑥𝑗 , 𝜃))

2

𝑁𝑝

𝑗=1
  (8) 

 

Table 3. Parameters used for the construction of the PINN 

Model 

Component Learning 

Rate 

𝝀 Input Output 𝑳(𝜽) 

Filter 1e-3 1 ∆𝑃 =  |𝑃2 − 𝑃1| 𝑆(0,1) 𝐿1(𝜃) 

Valve 1e-3 1 ∆𝑃 =  |𝑃3 − 𝑃4| 𝑆(0,1) 𝐿1(𝜃) 

Nozzle 1e-3 1 ∆𝑃 =  |𝑃5 − 𝑃4| 𝑆(0,1) 𝐿1(𝜃) 

Pump 1e-3 1 𝑁𝑣 𝑆(0,1) 𝐿2(𝜃) 

Pipe 1e-3 1 ∆𝑃 =  |𝑃5 − 𝑃4| 𝑆(0,1) 𝐿3(𝜃) 

 

3.3.2. Approximation Model 

A heuristic model 𝑆(0,1) = 1 − 𝑥𝑂.𝐶 is used to approximate 

the level of severity of both blockages and leakages (see Eqs. 

10 & 11) in the system with a domain of [0,1]. The variable 

𝑥 is the feature of the component which is sensitive to a 

change in degradation levels and it is defined as 𝑥𝑂.𝐶  (see Eq. 

9) with a domain of 𝑥𝑂.𝐶[0,1]. The operating condition in this 

case is the speed of the pump.  

 

𝑥𝑂.𝐶 =  
𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛

𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝐻𝑒𝑎𝑙𝑡ℎ𝑦 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛
                 (9) 

𝑥𝑂.𝐶(𝐵𝑙𝑜𝑐𝑘𝑎𝑔𝑒) =

 
 (𝐷𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒

𝑈𝑝𝑠𝑡𝑟𝑒𝑎𝑚 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒⁄ )
𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛

(𝐷𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒
𝑈𝑝𝑠𝑡𝑟𝑒𝑎𝑚 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒⁄ )

𝐻𝑒𝑎𝑙𝑡ℎ𝑦 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛

    (10) 

𝑥𝑂.𝐶(𝐿𝑒𝑎𝑘𝑎𝑔𝑒) =

 
 |𝐷𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒−𝑈𝑝𝑠𝑡𝑟𝑒𝑎𝑚 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒|𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛

 |𝐷𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒−𝑈𝑝𝑠𝑡𝑟𝑒𝑎𝑚 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒|𝐻𝑒𝑎𝑙𝑡ℎ𝑦 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛
    (11) 

3.3.3. Recurrent Neural Network (RNN) Model 

An FDI classifier based on a neural network architecture in a 

previous publication Barimah et. al (2023) which uses a 

recurrent neural network (RNN) architecture is used in this 

report. The RNN model comprises a single hidden layer with 

150 neurons followed by a dense layer and a sigmoid 

activation function (see Figure 7 below). The model is 

compiled with binary cross-entropy loss and the Nadam 

optimizer. Early stopping is then employed to prevent 

overfitting during the training of the model.  

 

 
Figure 7. Recurrent Neural Network Architecture (Barimah 

et. al 2023) 

3.3.4. PINN enabled Hybrid FDI Model 

The physics-informed Neural Network (PINN) enabled 

hybrid FDI algorithm shown in Figure 8 is a weighted 

ensemble of the outputs of the RNN model, approximation 

model and PINN model. The weights of the model are 

skewed more towards the PINN model due to the limitations 

of purely data-driven model in the face of limited training 

data and its ability to generalize outside its training 

distribution. This PINN enabled hybrid model is then 

benchmarked against the other FDI algorithms, presented in 

Figure 4, for the system undergoing multi-component 

degradation scenarios. The model weights (𝑊𝐷 , 𝑊𝑃, 𝑊𝐴) for 

each component in the hybrid ensemble model are shown in 

Appendix B. 
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Figure 8. Ensemble Hybrid Framework for FDI models 

 

3.3.5.  Test Degradation Scenarios 

Benchmarking is done using a series of test datasets recorded 

by Barimah et. al (2023) to assess the performance of FDI 

algorithms in the context of multi-component degradation. 

Table 3 below describes the nature of the test data with the 

components under consideration for the multi-component 

degradation scenarios, at different pump speeds, as well as 

their specific levels of severity.  

 

Table 3. Test Degradation scenarios for FDI Model Testing 
Dataset Degradation 

(Component 1) 

Degradation 

(Component 2) 

Operational 

Speed Range 

(RPM) 

T13 Pump (Medium-

severity) at 45% 

DPV2 opening 

Constant 

degradation of 

Nozzle: 30-70% 

DPV1 opening 

700 

T14 Pump (Medium-

severity) at 45% 

DPV2 opening 

Constant 

degradation of 

Nozzle: 30-70% 

DPV4 opening 

950 

T15 Filter (High 

severity) at 32% 

DPV1 opening 

N/A 700 to 950 

T16 Pump (Medium-

severity) at 50% 

DPV2 opening 

Nozzle (Medium-

severity) at 40% 

DPV4 opening 

700 to 950 

 

T17 Constant 

degradation of 

Pump: 0-100% 

DPV2 opening 

Constant 

degradation of 

Pipe: 0-100% 

DPV5 opening 

800 

T18 Intermittent 

faults for the 

pump between 

45%-60% DPV2 

opening 

N/A 850 

T19 Constant 

degradation of 

Pump: 0-100% 

DPV2 opening 

Constant 

degradation of 

Valve: 30-70% 

DPV3 opening 

850 

T20 Pump (Medium-

severity) at 55% 

DPV2 opening 

Nozzle (High 

severity) at 30% 

DPV4 opening 

700 to 950 

4. RESULTS 

4.1. Healthy Condition (HC) Scenario  

The FDI algorithms showed very good performance in 

determining the healthy condition scenario in a situation 

where no fault had been injected into the system. Figure 9 

shows the performance of all the FDI models in a healthy 

condition scenario with the pump speed at 700rpm and at 950 

(see Appendix B). However, the performance of some of the 

models for components in a healthy state deteriorates once 

failure is introduced into the system. The performance of the 

FDI algorithms in faulty condition scenarios are presented in 

sections 4.2 to 4.4 showing the prediction of the conditions 

of various components on the testbed for the test scenarios.  

4.2. Statistical Process Control (SPC)  

The statistical process control (SPC) which relies on 

deviation from the mean of a process variable generally 

showed poor performance in the detection of the test MCD 

scenarios for components where faults were injected. For the 

test degradation scenario T13 which is has a leakage in the 

pump at DPV 2 of 45% opening and the gradual closure of 

DPV 4 which represents nozzle from 70% to 30%, the SPC 

model resulted in a 0.42 and 0.61 model performance for the 

pump and nozzle respectively (see Figure 9). In the case of 

T14 which has the same components under consideration but 

at a higher pump speed of 950rpm, the SPC showed an even 

poorer performance than in the case of T13 with 0.22 and 

0.55 for the pump and nozzle respectively. However, for the 

components which had no failure injection, the SPC had a 

performance of 1.0 for the components not undergoing any 

form of degradation. This pattern of poor performance for 

components undergoing MCD scenarios and healthy 

components is seen in the rest of the test degradation 

scenarios T15, T16, T17, T18, T19 & T20 (see Appendix A).   

4.3. Ensemble (Classifiers) and Recurrent Neural 

Network (RNN)  

The ensemble classifier which uses the weighted outputs 

from logistic regression, support vector machine and decision 

tree classifier models also showed poor performance 

particularly for components not undergoing any form of 

degradation. This was revealed in T13 where it had a 

prediction performance of 0.42 for the pipe even though the 

pipe had no leak. This is also identified in T14 where the 
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model performance was 0.23 and 0.22 for the filter and pipe 

respectively. For components undergoing MCD scenarios the 

model showed some good performance for components (see 

Figure 10 &11). The recurrent neural network (RNN) also 

showed a similar pattern of prediction to the SPC model 

albeit slightly better than the former. The performance of the 

RNN model of the nozzle deteriorates from 0.81 for T13 

(700rpm) to 0.45 for T14 (950rpm). This drop in performance 

is also seen in the pump where the performance reduces from 

0.42 to 0.22. For the test degradation scenarios T15, T16, 

T17, T18, T19 & T20 (see Appendix), the RNN model 

showed very good prediction for the components not 

undergoing degradation. Nonetheless, for the components 

undergoing the MCD scenarios, the RNN model showed 

mixed model prediction performance. 

4.4. PINN enabled Hybrid FDI Model 

The performance of the PINN enabled hybrid FDI model on 

the test degradation scenarios in Table 3 above showed 

improved performance compared to the other algorithms in 

the context of the MCD scenarios. Although the PINN model 

performs better than the other FDI models in the hybrid 

model, it sometimes underperforms as seen in T17 (see 

Appendix A4) where the weighted ensemble hybrid model 

compensates for the limitations in the PINN model in 

predicting the degradation of the leak in the pipe due to the 

impact of the other models in the hybrid model. For all the 

test degradation scenarios, the hybrid approach showed a 

much better performance as seen in Figures 10 & 11 as well 

as for test scenarios T15, T16, T17, T18, T19 & T20 (see 

Appendix A).

 

 

 

 
Figure 9. Performance of FDI algorithms for a Healthy Condition scenario at a pump speed of 700rpm. 
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Figure 10. Performance of FDI algorithms on Test Degradation Scenario T13

 
Figure 11. Performance of FDI algorithms on Test Degradation Scenario T14 
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5. DISCUSSION 

For stakeholders in industry, training Fault Detection and 

Isolation models for PHM applications is key to optimizing 

asset health and logistics management. The challenge in 

model development as alluded to above is the availability of 

degradation data. The limited data available for training the 

FDI models presents a challenge in detecting MCD scenarios 

as seen in the results section above. The performance of the 

deep learning model for the test degradation scenarios 

showed the limitation in developing data-driven models on 

limited training data.  This is seen in prediction of the state of 

the pump and nozzle in T13 & T17 as compared to the 

approximation and PINN models. However, it performs well 

when the training distribution of the available limited 

degradation data fall within the test degradation data 

scenario. This presents a challenge for stakeholders who have 

training data outside the distribution of the real time data 

from their assets. The ensemble hybrid approach proposed in 

Figure 8 compensates for this shortfall by integrating a 

heuristic approximation and a PINN approach with a neural 

network model to improve the overall model diagnostic 

performance. The main contributing parameters to the 

ensemble performance are the weights which were assigned 

using domain knowledge on the performance of the 

individual models with limited degradation data.  This 

presents an interesting research opportunity for dynamically 

optimizing the weights in the ensemble hybrid model. The 

hybrid model also reduces the computational requirements 

for training the FDI models which ultimately reduces the cost 

for FDI model development for PHM applications.  

6. CONCLUSIONS AND FUTURE WORK 

In conclusion, this study highlights the capabilities of physics 

enabled fault detection and isolation algorithms for PHM 

diagnostics, emphasizing the challenges associated with 

limited training data and generalization issues. The proposed 

PINN-enabled hybrid model demonstrates promising FDI 

predictive capability for MCD diagnostics despite limited 

training data, indicating its potential for addressing the 

identification of multiple degraded conditions occurring 

simultaneously in a complex system. The contributions of the 

paper are: 

C1. This study contributes to the application of physics 

informed FDI models for PHM applications in MCD 

scenarios, ultimately reducing model training data 

requirements for asset health management. 

C2. The paper also presents an ensemble FDI approach with 

the capability of addressing the limitations of integrating both 

data-driven and physics based FDI models in multi-

component degradation scenarios which can also be used in 

the analytics that drive digital twin applications.  

Future research would focus on dynamically optimizing 

ensemble hybrid model weights, leveraging prediction 

uncertainty to further enhance model performance.  

 

NOMENCLATURE 

DT Digital Twins 

DPV Direct Proportional Valve 

FDI Fault Detection and Isolation 

𝐿(𝜃) Loss Function 

MCD Multi- Component Degradation 

NN Neural Network 

PHM Prognostic and Health Management 

PINN Physics Informed Neural Network 

RNN Recurrent Neural Network 

SCD Single Component Degradation 

SPC Statistical Process Control 
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APPENDIX 

Appendix A. FDI Model Performance  

Figure A1. Healthy condition at 950 RPM 

 

Figure A2. Test Scenario T15 
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Figure A3. Test Scenario T16 

       

 

Figure A4. Test Scenario T17 
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Figure A5. Test Scenario T18 

 

Figure A6. Test Scenario T19 
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Figure A7. Test Scenario T20 

 
 

Appendix B. Model Weights for FDI algorithms 
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