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ABSTRACT 

Transfer learning is a method that transfers knowledge 

learned from a source domain to a similar target domain to 

improve learning. In power plants, obtaining sufficient 

anomaly data is difficult due to the characteristics of the 

systems. Transfer learning enables learning with only a small 

amount of data from the target domain by using a model 

trained in a similar domain. By applying transfer learning, 

models developed for one power plant can be expanded and 

used in other power plants where available data are limited. 

Using actual data from an operating combined-cycle power 

plant, an anomaly diagnosis model was developed and tested. 

Its applicability to different operating conditions and 

anomaly cases was evaluated through transfer learning. The 

fine-tuned pre-trained model was effectively adapted with 

limited target domain data. Transfer learning was applied 

despite the limitations of data and distribution differences. 

The expandability of anomaly diagnosis models to different 

power plant systems was demonstrated by applying transfer 

learning. 

1. INTRODUCTION 

The limited anomalous data and labels in power plants are 

challenges for training anomaly diagnosis models. Due to the 

requirements for safety and operational stability, inducing 

failures or obtaining sufficient anomalous data is difficult in 

power plants (Qian & Liu, 2023). Variations in operating 

conditions also complicate model training by changing the 

distribution of data. The operating conditions of power plants 

change with variations in power demand over time and 

external factors such as temperature and humidity (Bai, 

Yang, Liu, Liu, & Yu, 2021). In actual operating power 

plants, it is difficult to obtain data while operating under the 

same conditions consistently, as power demands and external 

factors vary. Differences in operating conditions disrupt the 

assumption of consistent data distribution between training 

and testing sets in anomaly diagnosis models (Li, Lin, Li, & 

Wang, 2022; Zhou, Lei, Zio, Wen, Liu, Su, & Chen, 2023).  

Developing diagnosis models for a new power plant system 

incurs additional costs, even after significant investments 

have been made to overcome challenges and develop the 

models. This is because the distribution of data collected 

varies due to differences in the structure and sensors of the 

systems in each new power plant. Each new power plant 

requires a customized approach to model development, 

involving the redesign of diagnosis models to fit the specific 

data characteristics of that plant. To develop models for other 

new power plants, the process should start anew with data 

collection. Training and validating models with the collected 

data are essential steps in developing the new model. This 

process again incurs significant time and costs. 

The fact that power plants of the same type share a common 

domain can be utilized. When applying models to new power 

plants, it is typically necessary to redesign them due to 

differences in data distribution. Since the power plants 

operate on similar principles within the common domain, this 

can enable the expansion of existing models without a 

complete redesign. This approach utilizes the commonalities 

from the same types of plants, reducing development time 

and costs. 

By applying transfer learning, a developed model can be 

expanded and adaptively used for a new power plant within a 

similar domain. Transfer learning is a method that transfers 

knowledge learned from a source domain to a target domain 

with insufficient data for a similar task (Pan & Yang, 2009). 

The transfer learning method involves fine-tuning model 

parameters pre-learned from the source domain using limited 

data from the target domain. With transfer learning, a model 

developed in the source domain can be adapted to a new 

system in the target domain, instead of restarting the entire 

process. Additionally, it can be applied to the target domain 

using only a small amount of data, serving as an approach to 

overcome the challenges of limited data and labels. By 
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applying transfer learning and using the model adaptively, the 

expandability and practicality of the diagnosis model can be 

enhanced. 

In this paper, an anomaly diagnosis model was developed 

using data collected from the actual gas turbine of an 

operating combined-cycle power plant. The developed 

diagnosis model was tested by applying transfer learning to 

data with different anomaly features and operating conditions 

than the training data. Collected data have an emergency 

shutdown called a “trip”, that occurs in the case of anomalies 

to prevent serious accidents. Cases, where actual data are 

collected under different operating conditions, have similar 

situations with other power plants data that have different 

data distributions. By fine-tuning with limited data from the 

target domain, this study demonstrated the potential to 

expand a developed model to different power plant systems. 

Comparative analysis was conducted by applying transfer 

learning, even in situations of data imbalance where little 

anomaly data is available in the target domain. 

Section 2 introduces the related works that developed a 

diagnosis model for the power plant and applied transfer 

learning to the model. Section 3 describes the data, model, 

and transfer learning methods used in this study. Section 4 

presents the results, Section 5 discusses these results, and 

Section 6 presents the conclusions and future work. 

2. RELATED WORKS 

Related studies on anomaly diagnosis in power plants have 

been conducted across various subjects and domains. 

Diagnosis using the Gaussian Process (GP) algorithm and 

model ensemble techniques were conducted at an actual coal-

fired thermal power plant (Zhang, Dong, Kong, & Meng, 

2019). They identified relationships between variables to 

reflect temporal dependencies and cross-variable 

associations, using combinational data relationships to 

develop the diagnosis model. Lee et al. (2021) collected data 

from a full-scope simulator for abnormality diagnosis in a 

nuclear power plant and developed a Convolutional Neural 

Network (CNN) algorithm model. To manage the 1004 

sensor variable data, they converted it into two-channel 2D 

images with a data size of 32*32. 

As mentioned in the introduction, power plants have 

challenges due to the limited anomaly data and differences in 

operating conditions. To address these challenges, transfer 

learning methods have actively been researched for 

diagnosing power plants. Studies have been conducted to 

apply transfer learning for fault diagnosis at different power 

levels in nuclear power plants. Data were collected at several 

power levels using a simulator, and a CNN algorithm was 

developed to handle numerous sensor variables. Maximum 

Mean Discrepancy (MMD) was used to develop the model to 

adapt to differences in distributions when power levels vary. 

With these approaches, Li et al. (2022) divided domains 

based on power levels and applied transfer learning across 

different power levels. They also analyzed the effects of 

various kernel functions used to calculate MMD. Wang et al. 

(2022) utilized Transfer Local MMD (TLMMD) combined 

with the ResNet-18 algorithm to develop a diagnosis model. 

Li, Lin, Li, and Wang, (2022) applied transfer learning to 

construct models for each power level. They proposed a 

framework that determines the current power level during 

actual operation and matches data to the model trained at each 

power level. 

The CNN algorithm and transfer learning were also applied 

for fault detection in the gas turbine combustion chambers of 

power plant systems (Bai et al., 2021). Exhaust Gas 

Temperature (EGT) data collected from two gas turbines 

were used. The turbine with more data was used as the source 

domain for training, and transfer learning was then applied to 

the other turbine, which had limited data. The performance of 

the transfer learning approach was evaluated and compared 

with various other diagnosis methods. 

3. APPROACH 

A diagnosis model was developed for the gas turbine of an 

operating combined-cycle power plant. Training and testing 

were conducted using data from collected anomaly cases, and 

transfer learning was applied. The model’s performance was 

evaluated, observing changes in performance based on the 

data used for training and the application of transfer learning. 

3.1. Data 

The operating data were collected from sensors related to the 

gas turbine equipment of a combined-cycle power plant A, 

located in region B of Korea. The power plant data were 

provided by KEPRI (Korea Electric Power Corporation 

Research Institute). A total of eight anomaly cases related to 

trips were detected. Data for each case were collected on the 

dates when the anomaly occurred for four years. Each case 

has different operating conditions, resulting in different 

characteristics.  

 

Data were collected from 118 sensors of the plant’s gas 

turbine system. Sensors collected data on flow rate, pressure, 

and temperature, such as EGT. Each sensor was related to the 

control and flow of fuel gas in the gas turbine.  

Within each of the eight anomaly cases, there are 128 

instances of both normal and anomaly data, labeled by 

Table 1. Collection of Data. 

 

Collection period 4 years 

Number of sensors 118 

Number of Cases 8 

Data instance per cases 

Total 256 

Normal 128 

Anomaly 128 
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domain experts based on the investigation reports conducted 

for each case. The data format consists of 60-minute windows 

for the 118 collected sensor data points.  

Figure 1. Example of collected data with a trip. 

To utilize the overall 118 sensor data, the collected time 

series data can be concatenated in parallel to form a two-

dimensional matrix. Each row is composed of a time series, 

and the patterns of the sensors contain information about 

anomalies. The data from 118 sensors have variations in units 

and ranges of values, depending on their measurement 

targets. To address this, min-max normalization was applied 

to each sensor. The matrix collected from 118 sensors over a 

60-minute window is represented as an image as follows. 

 

Figure 2. Example image of data. (a) Case 1, (b) Case 3. 

3.2. Transfer Learning 

Transfer learning was applied by taking a model trained in 

the source domain and fine-tuning it with a limited dataset 

from the target domain, with some weights of the 

convolutional layer fixed. The model was constructed using 

a Convolutional Neural Network (CNN) architecture, with 

1D kernels utilized to detect patterns in the data from 118 

sensors over a 60-minute window. The model’s structure 

includes convolutional layers, max-pooling layers, batch-

normalization layers, and fully connected layers. It is 

designed to learn features from the data and perform 

classification. 

In the CNN model, the initial convolutional layers extract 

general features, while the fully connected layers extract 

specific features (Zhu, Peng, Chen, & Gao, 2019). This 

characteristic enables the use of general features validated in 

the source domain while adapting specific features for 

classification in the target domain when applying transfer 

learning. The model was trained using all available data in 

the source domain, and fine-tuning was conducted with only 

60 data instances from the target domain. 

 

Figure 3. Outline for Structure of CNN model 

3.3. Evaluation 

Eight cases were used as different source domains, with each 

dataset being used to train a CNN model individually. Each 

trained source case model was evaluated using the validation 

data from that case and tested using the remaining seven 

cases as test data. Thus, there are eight evaluation results for 

one case model and a total of 64 results for all eight cases. 

The average of the calculated performance metrics was used 

to evaluate how each method applies. This average 

performance metric was compared based on the application 

of transfer learning and depending on the case used for 

training. 

The performance metric used is the Matthews Correlation 

Coefficient (MCC), which represents performance through 

the correlation between actual and predicted labels, among 

metrics for binary classification (Chicco, Tötsch, & Jurman, 

2021). MCC values range from [-1, 1], as it is a correlation 

coefficient. Accuracy, the commonly used performance 

metric, cannot represent cases of class imbalance and cases 

where predictions are made with only one label. The MCC 

metric can effectively show the relationship between actual 

and predicted labels. It is considered to perform well even in 

cases of class imbalance, indicating a value of 0 when 

predictions are made with only one label. 

4. RESULT 

The comparison of the average MCC for the three cases is 

shown in the figure below. CNN models were trained using 

data from eight different anomaly cases. The models for each 
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case were trained and validated in an 8:2 ratio, and data from 

different cases, which were not used in training, were utilized 

for testing.  

 

Figure 4. Comparison of the average MCC 

The performance of the model significantly improved when 

transfer learning was applied, compared to using data from 

only one case. Additionally, although the best performance 

was in the case that used data from both domains, the 

performance with transfer learning exhibited similar levels of 

effectiveness. 

Each anomaly case has different operating conditions and 

anomalies. While the models exhibit high performance in 

validation for each specific case, most exhibit low MCC 

scores when applied to other cases. Most test cases with low 

MCC scores are cases where predictions are made with only 

one label, either normal or anomaly. Figure 4 shows that the 

diagnosis models are well-trained for each specific case. 

Additionally, it indicates that the models cannot predict 

accurately in tests for other anomaly cases due to different 

operating conditions and anomalies. 

 
Figure 5. Performance of models trained with each case. 

The performance of each case was evaluated by applying 

transfer learning. To evaluate the effectiveness of transfer 

learning, a comparison was made between models that 

applied transfer learning and those that used all the data from 

both the source and target domains without transfer learning. 

Initially, each case was fine-tuned with limited data from the 

target domain, based on the model trained in the source 

domain. The performance metrics were evaluated using test 

data that were not used in the fine-tuning of the target domain. 

Transfer learning was applied as described in Section 3.2. 

  

Figure 6. Performance of models applied transfer learning. 

For comparison, a scenario was assumed in which data were 

collected and available from both domains. The model was 

trained using all the data from both the source and target 

domains without the use of transfer learning. The results are 

as follows. 
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Figure 7. Performance of models trained with both domains. 

When trained using data from both domains, the data for 

training and validation was the same as when only one 

domain was trained and validated, but the trained model was 

not completely accurate. This is because each domain has 

different operating conditions, making it challenging to treat 

and learn from them as a single domain. 

It can be observed that diagnoses performed with transfer 

learning are effective. The difference in the effectiveness is 

due to the different distributions of data from each anomaly 

case under different operating conditions. When using 

models trained with a single case, the features identified 

during training differ from those in the test, leading to poor 

performance of the model. In contrast, the application of 

transfer learning has shown that fine-tuning the model with a 

limited amount of data can enhance performance. When 

compared to cases where data from both the source and target 

domains are available, similar performance metrics were 

observed. This indicates the effectiveness of transfer learning 

in cases with different data distributions. When expanding the 

model to different new power plant systems, data newly 

collected under different operating conditions or anomaly 

cases differ from the previously trained data. Previous results 

demonstrate the expandability of the diagnosis model 

through transfer learning, which has been effective despite 

these differences. 

5. DISCUSSION 

In real-world situations, collecting anomaly data is more 

challenging compared to normal data, resulting in a data 

imbalance. Additional analysis was conducted to monitor 

changes in the training models by applying transfer learning. 

A sensitivity analysis was performed on the ratio of normal 

to anomaly data used in fine-tuning the target domain. To 

address this, the performance of transfer learning was 

evaluated by gradually increasing the proportion of normal 

data. Figure 8 shows the results of the average MCC 

according to the ratio of normal to anomaly data used in fine-

tuning. The results indicate a significant decrease in 

performance when no anomaly data were included. 

 

Figure 8. Average MCC according to the ratio of normal to 

anomaly data. 

Using transfer learning, the ratio of normal to anomaly data 

used for fine-tuning was changed to analyze factors that 

influence its effectiveness. It was observed that even a small 

amount of anomaly data could yield good results when the 

overall proportion of anomaly data was reduced. In real-

world application scenarios, normal data is generally more 

prevalent. The model could identify anomalies well even in 

imbalanced situations where the ratio of anomaly data was 9 

to 1. However, the performance significantly decreased when 

there was no anomaly data at all. This decrease occurs 

because fine-tuning without any information about anomalies 

makes it difficult to adaptively use the identified anomaly 

features through transfer learning.  

6. CONCLUSION AND FUTURE WORK 

In this study, an anomaly diagnosis model was developed 

using data from an actual combined-cycle power plant. 

Diagnosis models were developed for each case, and it was 

observed that the operating conditions and anomaly features 

varied according to each case. To use the diagnosis models 

adaptively, transfer learning was applied to fine-tune the 

models and evaluate their performance. Using transfer 

learning, the ratio of normal to anomaly data used in the fine-

tuning of the target domain was varied to analyze changes in 

performance. This process demonstrated that transfer 

learning could be effectively applied even in imbalanced 

situations with a predominance of normal data, and it also 

highlighted the importance of collecting anomaly data. 

Next, Research could be conducted to validate the 

expandability of the model through transfer learning using 

data collected from different new power plants. Research 

could be conducted on applying the model in real-time 
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scenarios at actual power plants using transfer learning. In 

actual power plant operations, the occurrence of an anomaly 

is already critical. There is a need for an approach that allows 

for fine-tuning without information about anomalies and 

adaptively uses the model under different operating 

conditions. Additionally, considering that data are collected 

in a sequential time series, there is a need for a transfer 

learning framework that fine-tunes the model using only 

initial data and adaptively detects anomalies. 
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