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ABSTRACT 

As a key component of rotating parts, rolling bearings largely 

determine the operation safety of equipment. However, in 

practical applications, because the degradation trajectory of 

rolling bearings cannot be truly characterized, the existing 

model cannot accurately describe the degradation trajectory 

of rolling bearings, resulting in the running state of rolling 

bearings cannot be directly evaluated. Therefore, a method of 

rolling bearing state assessment based on deep learning 

combined with Wiener process is proposed in this paper. 

Firstly, a deep network model is constructed by deep learning 

to mine the degradation information of rolling bearings. 

Secondly, the mined degradation information is fused, and 

then the degradation indicator used to characterize the 

degraded trajectory of the rolling bearing is constructed. Then, 

based on Wiener process, the degradation model of rolling 

bearing is established to describe the degradation mode of 

rolling bearing. Finally, the constructed degradation indicator 

is input into the established degradation model to predict its 

RUL, and then the running state of the rolling bearing is 

evaluated. 

1. INTRODUCTION 

During the operation of mechanical equipment, due to the 

influence of many factors, mechanical equipment will 

inevitably degrade. This degradation process generally 

occurs first in components that produce relative motion, 

especially rolling bearings(Zhu et al. 2024). Therefore, in 

order to ensure that mechanical equipment always serves in a 

safe state, it is very necessary to evaluate the operating status 

of rolling bearings. The remaining useful life (RUL) 

prediction method has been recognized as a basic and 

effective method for state assessment of rolling bearings(Li 

et al. 2024). (If the RUL of the rolling bearing can be 

predicted, the current service status of the rolling bearing can 

be assessed) Currently, in the field of prediction of the RUL 

of rolling bearings, scholars have proposed a series of life 

prediction methods of rolling bearings, but generally they can 

be divided into methods based on expert knowledge base, 

data-driven, physical models and hybrid methods(Wang et al. 

2023). 

The method based on expert knowledge base achieves 

prediction by comparing the similarity between the observed 

data and the previously defined fault database through expert 

system or fuzzy system(Qin et al. 2023). For example, Qin et 

al. proposed a two-stage RUL prediction method based on 

similarity, constructing a degradation indicator (DI) of 

bearings through a multi-head self-attention mechanism, and 

comparing the constructed DI with other bearing degradation 

indexes in the expert knowledge base, thereby realizing the 

prediction of the RUL of the bearing(Qin et al. 2023). Xia et 

al. proposed a hybrid Gaussian-evidence hidden Markov 

model that integrates expert knowledge and condition 

monitoring information to predict the RUL of bearings under 

the framework of belief function theory(Xiahou, Zeng, and 

Liu 2021). These methods often require special knowledge 

about the fault data, however obtaining this knowledge is 

expensive in practice. The data-driven method uses the 

historical status data of the equipment to extract characteristic 

information related to the status changes of the monitored 

object. Through statistical analysis, pattern recognition, 

machine learning and other technologies, it attempts to 

simulate the fuzzy functional relationship between sensor 

data and equipment status, and then realize the status 

assessment and RUL prediction of the monitored object(Li et 

al. 2022). For example, Cheng et al. extracted nonlinear 

features from bearing vibration signals and inputted them into 

convolutional neural networks to evaluate the health status of 

bearings, and combined them with relevant vector machines 

to predict the RUL of bearings(Cheng et al. 2021). Yoo et al. 

used continuous wavelet transform to convert bearing 

vibration signals into image signals and input them into 

convolutional neural networks for predicting the RUL of 

bearings(Yoo and Baek 2018). Ren et al. used deep self-

coding neural networks to compress the time-frequency 

wavelet features of rolling bearings and predict the RUL of 
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rolling bearings(Ren et al. 2018). However, these methods 

need to establish the state characterization function of the 

rolling bearing, and with the increase of the prediction time 

span, the characterization ability of the model decreases, and 

the prediction accuracy of the RUL decreases. The physical 

model method is based on the mathematical representation of 

the physical behavior during the degradation process to 

predict the degradation performance and RUL of the bearing. 

For example, Kogan et al. established a multi-body dynamics 

model of rolling bearings based on classical dynamics and 

kinematic equations to describe the health degradation 

process of rolling bearings under different faults and predict 

their RUL by fitting its degradation process(Kogan et al. 

2015). Qian et al. improved the Paris-Erdogan model and 

constructed a multi-time scale degradation model to track the 

changes in the degradation rate of the bearing in different 

time periods to predict the RUL of the bearing(Qian, Yan, 

and Gao 2017). These methods can provide accurate 

prediction results, it still requires an in-depth understanding 

of the physical characteristics of the bearing and the 

prognosis of the bearing. The accuracy depends heavily on 

the accuracy of the physical model used. The hybrid 

prediction method is a RUL prediction method that combines 

the advantages of physical models and data drivers(Wang et 

al. 2020). Wang et al. constructed a new scalable two-stage 

linear/nonlinear composite model to describe various 

degradation behaviors of bearings through a hybrid data- and 

model-driven method, and predicted the RUL of bearings by 

using a long and short time memory network(Wang, Cui, and 

Wang 2022). Rezamand et al. defined the role of 

environmental conditions in the dynamics of bearing failure. 

They achieved the RUL prediction of faulty bearings through 

vibration signal recognition and fault dynamics 

analysis(Rezamand et al. 2021). The hybrid prediction 

method can effectively simulate the degradation process of 

rolling bearings. However, these methods complicate the 

algorithm and is limited by the physical behavior of the 

rolling bearing during the degradation process, which in turn 

leads to modeling difficulties.  

Due to the limitations of different methods, the unclear 

exploration of the failure mechanism of rolling bearings, the 

lack of degradation data, and especially the neglect of 

historical operating data of rolling bearings in normal service, 

these methods cannot accurately evaluate the service status 

of rolling bearings. There are two reasons for this. First, the 

degradation characteristics used cannot accurately represent 

the degradation trajectory of rolling bearings; second, the 

degradation model used cannot map the failure mechanism of 

rolling bearings. Due to the powerful feature extraction 

ability of convolutional neural networks, by stacking multiple 

convolutional and pooling layers, more and more abstract and 

advanced features can be gradually extracted. This 

hierarchical feature extraction can better capture the 

degradation information of bearings, thereby improving the 

performance of the model. In addition, due to the excellent 

non monotonic characteristics of the Wiener process, it can 

effectively describe the local fluctuation characteristics on 

the degradation path of bearings. Therefore, in order to 

overcome the limitations of the above methods, this paper 

proposes a rolling bearing state assessment method based on 

deep learning combined with Wiener process, starting from 

the construction of degradation indicators of rolling bearings 

and the failure mechanism mapping of the model. This 

method first constructs a degradation indicator extractor for 

the full- life cycle of rolling bearings based on one-

dimensional convolutional neural. Secondly, a mapping 

model between its degradation trajectory and RUL is 

established based on the Wiener process. Then, using DI to 

estimate the unknown parameters in the model, the RUL 

prediction of the rolling bearing at different monitoring 

points is completed. Finally, the status evaluation of the 

rolling bearing is realized through the prediction results at the 

current moment. 

2. METHOD PROPOSED 

2.1. DI construction method  

Convolutional neural network is a type of deep neural 

network, which consists of multiple neural network layers. 

Each layer consists of multiple neurons that are connected to 

the neurons in the previous layer. Convolutional neural 

networks usually contain three types of layers: convolutional 

layers, pooling layers, and fully connected layers. Because 

the dimensional convolutional neural network has good 

information mining and weight sharing capabilities(She and 

Jia 2019). Therefore, this paper constructs the bearing 

degradation index of the rolling shaft based on the one-

dimensional convolutional neural network. The specific 

construction method is as follows: 

Let  1 2 1, ,
T

m M−X XX X represent the full-life vibration 

signal of the M group of rolling bearings, and 

,1 ,2 , 1 ,, ,
T

i i i i n i N−
 =  X x x x x  be the full-life cycle signal of 

the i-th group, where N is the number of sampling times of 

the bearing. Therefore, the whole life vibration signals of the   

group of rolling bearings can generate 
1

M

i

i

N
=

  group of 

samples. As shown in Figure 1, samples are input into the 

constructed one-dimensional convolutional neural network 

(1DCNN) in batches to perform convolution normalization 

and other operations. Finally, a neuron is connected to the 

output end to represent the current service status of the rolling 

bearing. In this way, the collected samples are sequentially 

input into the constructed one-dimensional convolutional 

neural network to obtain the degradation index that 

characterizes the degradation trajectory of the rolling bearing. 
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Figure1. DI construction process 

2.2. State Assessment Method 

The Wiener process has good statistical properties. Therefore, 

this paper establishes a degradation model of rolling bearings 

based on the Wiener process to describe its degradation 

state(Ta et al. 2023). The degradation process of the rolling 

bearing is described based on the Wiener process as shown in 

Equation (1), where ( )y t  represents the degradation state of 

the rolling bearing at time t, and 0y  is the initial state of the 

rolling bearing. a is the drift coefficient, which represents the 

difference between similar rolling bearings and obeys the 

normal distribution 
2( , )a aN   .  bt is the degradation trend 

term describing the severity of rolling bearing degradation, 

where b  is a fixed coefficient. c is the diffusion coefficient, 

which represents the degree of fluctuation when the rolling 

bearing degrades, and ( )B t  is the standard Brownian motion 

(BM), which represents the inherent variability of the random 

degradation process over time. The fluctuation term describes 

the uncertainty when the rolling bearing degrades and obeys 

the normal distribution 
2(0, )N c t . 

0( ) ( )by t y at cB t= + +  (1) 

In order to ensure that rolling bearings always operate safely. 

Therefore, as shown in equation (2), the RUL kl  of the 

rolling bearing at time k  is defined based on the first hitting 

time(Cheng et al. 2023), where   is the failure threshold. 

( ) ( ) inf :k k k kl l y l t y t y= +  =  (2) 

According to the characteristics of BM and the definition of 

the RUL of the above formula, the probability density 

function (PDF) of the RUL of the rolling bearing at any time 

is shown in Equation (3)(Si et al. 2012). 
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where ( ) ( ) bb

k k k kA l t l t= + − , ( ) ( ) ( )
1b

k k k k kB l A l l b t l
−

= − +  

and ( ) ( )k kw t w y t= − . After obtaining the PDF of the RUL. 

As shown in equation (4), the pseudo life is first integrated 

and averaged, and then the RUL of the rolling bearing at time 

is obtained(Hu et al. 2020). Then use equation (5) to evaluate 

the service status of the bearing at the current moment, pastT  

represents the length of time the bearing has been in service 

relative to the current moment, kBC  represents the service 

status of the bearing at the current moment, and the closer 

kBC  is to 100%, the healthier the bearing is. 

( )
0

k k k kL l f l dl


=   (4) 

*100%k

pas

k

t k

B
LT

L
C =

+
 (5) 

According to formula (3) and (4), if the RUL of the rolling 

bearing at the current time is obtained, the values of 

parameters 
2, ,a a b   and 2c  need to be estimated. The 

parameters 
2, ,a b c  can be obtained using the mapping 

model (1) as the fitting function. The parameter 
2

a  can be 

obtained by the maximum likelihood estimation method. 

According to the nature of Wiener process, sample 

 1: 1 2, ,N Ny y y=y  follows multivariate normal 

distribution, let 
1 2, ,

T
b b b

Nt t t =  Λ , then its mean and 

variance are shown in equation (6): 

( )

 

2 2

1 ,

,

min ,

T

i j
i j N

a aN c

t t

 

 

 +

 =
 

Λ ΛΛ Q

Q

y

 (6) 

Obtain the PDF of the multivariate normal distribution 

according to Equation (6) and take the logarithm of both sides 

to obtain the likelihood function containing unknown 

parameters. Then use the likelihood function to partially 

derive the parameter 
2

a , and make the equation equal to 0. 
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The solution expression for parameter 
2

a  is obtained as 

shown in Equation (7): 

( ) ( )

( )

1 1 2 1

2 1: 1:

2
1

a a

T T T

M

T
a

M c 


− − −

−

− − −
=

Λ ΛΛ Λ Λ Λ

Λ Λ

Q Q Qy y

Q
 (7) 

2.3. Method framework 

The proposed method is shown in Figure 2. This method first 

divides the obtained full-life data into 
1

M

i

i

N
=

  samples 

according to the number of collections, and performs data 

processing on each sample to remove abnormal points and 

avoid interference with the DI construction model. Secondly, 

input the processed data into the constructed 1DCNN in 

batches to train the network until the network converges. 

Then, the trained network is used as the DI extractor of the 

rolling bearing, and the newly collected data is input into the 

DI extractor in sequence according to the number of sampling 

times, so as to obtain the DI describing the historical 

operating status of the rolling bearing. Then, use the historical 

DI data of the rolling bearing to estimate the unknown 

parameters in the mapping model, and bring them into 

equations (3) and (4) to obtain the RUL of the rolling bearing 

at the current moment. Finally, equation (5) is used to 

evaluate the current service status of the rolling bearing. 

 

Figure2. Method framework 

3. EXPERIMENT 

In order to verify the effectiveness of the method, this paper 

uses two sets of public full-life rolling bearing data sets for 

verification. The constructed DI is quantitatively analyzed 

using robustness (Rob), monotonicity (Mon), trendability 

(Tre) and comprehensive evaluation methods (Com)(Ta et al. 

2023). If these four evaluation indicators are larger, it means 

that the constructed DI can better characterize the 

degradation trajectory of the bearing. Similarly, in order to 

analyze the prediction results from a quantitative perspective, 

this paper uses root mean square error (RMSE), adaptability 

(R2), mean absolute error (MAE) and cumulative relative 

accuracy (CAR) to analyze the prediction results. The smaller 

the RMSE and the MAE, the better the prediction effect; the 

larger R2 means the model has stronger adaptability; the 

greater the CAR, the better the prediction effect. 

3.1. Case 1 

Case 1 uses the full-life bearing data provided by the IEEE 

PHM 2012 Challenge to verify the method. Experimental 

data comes from PRONOSTIA experimental bench. This 

data set contains a total of 17 sets of accelerated degradation 

experimental data of rolling bearings, which were completed 

under three working conditions, as shown in Table 1. The 

operating conditions of the 17 sets of rolling bearings are 

shown in Table 2. 

Table1. Operating conditions table 

Condition 

number 
Conditions 1 Conditions 2 Conditions 3 

Rotating 

speed 
1800 rpm 1650 rpm 1500 rpm 

Apply load 4000 N 4200 N 5000  

Table2. IEEE PHM 2012 Dataset 

Data set Conditions 1 Conditions 2 Conditions 3 

Training 

set 

Bearing1_1  Bearing2_1  Bearing3_1  

Bearing1_2  Bearing2_2  Bearing3_2  

Test set 

Bearing1_3 Bearing2_3 Bearing3_3  

Bearing1_4 Bearing2_4  

Bearing1_5 Bearing2_5  

Bearing1_6 Bearing2_6  

Bearing1_7 Bearing2_7  

In this experiment, each group of bearings used two vibration 

sensors to collect data. The sampling frequency was 25.6kHZ, 

the sampling interval was 10 seconds, and the duration of 

each sampling was 1 second. In this experiment, this paper 

uses Bearing1_3 as a test sample, and the others as training 

samples to train the network, and continuously adjust the 

network parameters until the network converges. Bearing1_3 

data samples are input into the DI extractor successively, and 

the output DI are smoothed successively. The DI of 

Bearing1_3 is shown in Figure 3. The constructed DI is 

compared with the 7 commonly used DI of rolling bearings. 

The comparison results are shown in Table 3 (Proposed 

method (M1), Degenerate angle (M2), Maximum value (M3), 

Mean absolute value (M4), Root mean square (M5) Root 

Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN – 978-1-936263-40-0

Page 132



European Conference of the Prognostics and Health Management Society 2024 

5 

amplitude (M6), Standard deviation (M7) Variance (M8)). It 

can be seen from the table that the DI constructed using the 

proposed method has good Tre, Rob and Mon. Because the 

range of these three evaluation indicators is between [0,1]. 

Therefore, the three of them are added to form a Com. 

Judging from the comprehensive indicator column in the 

table, the DI constructed in this paper is the best. 

 

Figure3. Bearing1_3 DI 

Table3. Performance comparison of 8 DIs 

 Rob Mon Tre Com 

M1 0.9932 0.8484 0.8867 2.7283 

M2 0.9932 0.1276 0.4102 1.531 

M3 0.9797 0.4599 0.7402 2.1798 

M4 0.9737 0.3571 0.7402 2.0710 

M5 0.7311 0.4207 0.8216 1.9734 

M6 0.5934 0.0113 0.2156 0.8203 

M7 0.9931 0.4233 0.8145 2.2309 

M8 0.9909 0.4382 0.7979 2.2270 

Bearing1_3 conducted a total of 2375 samples in the 

experiment. In order to make the intervals between each 

condition monitoring (CM) point equal, this paper took the 

first 2300 samples as test samples, in which the monitoring 

interval was 100. Finally, Bearing1_3 was monitored 23 

times according to the service process of the bearing. The k-

th CM point represents the service status of the bearing at 

time k, and the previous k-th CM point represents the 

historical service status of the bearing at time k. The 

constructed DIs are input into the PDF of the RUL in batches 

and the corresponding unknown parameters are estimated. 

The obtained PDF of the RUL is shown in Figure 4. It can be 

seen from the figure that with more and more historical data, 

the PDF becomes more and more convergent, indicating that 

the credibility of the prediction is getting higher and higher. 

 

Figure4.   PDF of RUL 

 

Figure5. Prediction results at different CM points 

Table4. Quantitative analysis of prediction results 

RMSE R2 MAE CAR 

63.5707

（2.76%） 
0.9908 

60.5620

（2.63%） 
0.8610 

As can be seen from Figure 5, the prediction results of 

different CM points are close to the actual RUL of the rolling 

bearing Bearing1_3. It can be seen from Table 4, the RMSE 

of the prediction result is only 2.76%, the MAE is 2.63%, R2 

is close to 1, and the CAR is 86.10%. The above analysis 

results show that the method has good accuracy. In addition, 

Figure 6 shows the service status of the rolling bearing 

Bearing1_3 at different CM points. It can be seen from the 

figure that the service performance of the rolling bearing 
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Bearing1_3 gradually decreases as its service time becomes 

longer. It also illustrates the effectiveness of this method for 

evaluating the service status of rolling bearings. 

 

Figure6. Bearing1_3 service status 

3.2. Case 2 

Case 2 uses the public data set of XJTU-SY for verification. 

This data set contains a total of 15 sets of full-life bearing 

data. The sampling frequency is 25.6 kHz, the sampling 

interval is 1min, and each sampling is 1.28 seconds long. In 

the same verification method as Case 1, 14 sets of bearings 

are used as training samples and 1 set is used as test samples. 

The test sample is Bearing 3_1. The DI of Bearing 3_1 

obtained after the final test is shown in Figure 7. It can be 

seen from the figure that although the DI produces large local 

volatility, the overall Tre and Rob show good performance. 

In addition, the performance comparison of different DIs in 

Table 5 also proves that the DI constructed by this method 

has good representation performance. 

 

Figure7. Bearing1_3 DI 

 

Table5. Performance comparison of 8 DIs 

 Rob Mon Tre Com 

M1 0.9431 0.7887 0.9530 2.6848 

M2 0.9968 0.0292 0.1321 1.1581 

M3 0.9919 0.0252 0.3321 1.3492 

M4 0.9919 0.0996 0.3423 1.4338 

M5 0.6331 0.0548 0.0941 0.7820 

M6 0.5731 0.0236 0.1641 0.7608 

M7 0.9960 0.1204 0.3419 1.4583 

M8 0.9961 0.1064 0.3427 1.4452 

Bearing 3_1 took a total of 2538 samples. In order to keep the 

monitoring interval unchanged, the first 2500 sampling 

points were taken for verification, and a total of 25 times of 

monitoring were conducted. The RUL of PDF for each 

monitoring is shown in Figure 8. It can be seen from the 

figure that with more and more historical data, the PDF 

becomes more and more convergent, which shows that the 

credibility of the prediction is getting higher and higher. This 

leads to the same conclusion as Case 1. 

 

Figure8.   PDF of RUL 

Figure 9 shows the results of the actual life and predicted life 

of Bearing 3_1 at different monitoring points. It can be seen 

from the figure that the deviation at some CM points is larger, 

and the deviation at some CM points is smaller. This is 

because the constructed DI has greater volatility at this CM 

point, which in turn leads to a greater deviation between the 

prediction results and the actual results. However, from the 

overall prediction effect, the prediction results are gradually 

closer to the actual prediction results. As can be seen from 
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Table 6, the RMSE of the prediction result is 9.72%, MAE is 

7.10%, R2 is 0.8865, and CAR is 77.01%. The above analysis 

results show that the method has good accuracy. Figure 10 is 

the result of mapping the predicted RUL to service 

performance, and then determines the service status of the 

bearing. It can be seen from the figure that as the service time 

of the bearing increases, the performance of the bearing 

gradually decreases. Although there was a "recovery" during 

the period, this can be considered as the self-healing behavior 

of the bearing during service. Therefore, this method can well 

evaluate the service status of bearings. 

 

Figure9. Prediction results at different CM points 

Table6. Quantitative analysis of prediction results 

RMSE R2 MAE CAR 

242.9127

（9.72%） 

0.8865 177.4692

（7.10%） 

0.7701 

 

Figure10. Bearing1_3 service status 

4. CONCLUSION 

In order to evaluate the service status of rolling bearings, this 

paper proposes a rolling bearing status evaluation method 

based on deep learning combined with Wiener process. Since 

the existing DIs cannot characterize the degradation 

trajectory of rolling bearings. This paper uses a 1DCNN to 

extract the DIs of rolling bearings. Aiming at the problem of 

the RUL of rolling bearings, this paper constructs a 

degradation model of rolling bearings based on the Wiener 

process, and uses its PDF to estimate the RUL of rolling 

bearings. The RUL of the rolling bearing is mapped to its 

service status, thereby completing the service status 

assessment of the rolling bearing. This paper uses the IEEE 

PHM 2012 public data set to verify the method. The 

experimental results show that the extracted DI has good 

trend and monotonicity, and the service status assessment of 

the rolling bearing has good accuracy. However, the 

contribution of this paper is limited. From the verification 

results, the bearing prediction accuracy is largely determined 

by the constructed DI and the complexity of the model. 

Therefore, the follow-up work of this paper will start from 

mining the degradation information of bearings and 

establishing more complex prediction models to improve the 

prediction accuracy of bearings. 
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