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ABSTRACT

Large-scale infrastructure systems are crucial for societal wel-
fare, and their effective management requires strategic fore-
casting and intervention methods that account for various
complexities. Our study addresses two challenges within the
Prognostics and Health Management (PHM) framework ap-
plied to sewer assets: modeling pipe degradation across sever-
ity levels and developing effective maintenance policies. We
employ Multi-State Degradation Models (MSDM) to repre-
sent the stochastic degradation process in sewer pipes and use
Deep Reinforcement Learning (DRL) to devise maintenance
strategies. A case study of a Dutch sewer network exemplifies
our methodology. Our findings demonstrate the model’s ef-
fectiveness in generating intelligent, cost-saving maintenance
strategies that surpass heuristics. It adapts its management
strategy based on the pipe’s age, opting for a passive approach
for newer pipes and transitioning to active strategies for older
ones to prevent failures and reduce costs. This research high-
lights DRL’s potential in optimizing maintenance policies.
Future research will aim improve the model by incorporating
partial observability, exploring various reinforcement learning
algorithms, and extending this methodology to comprehensive
infrastructure management.

ABBREVIATIONS

DRL Deep Reinforcement Learning.
IHTMC Inhomogeneous Time Markov Chain.
MDP Markov Decision Process.
MPO Maintenance Policy Optmization.
MSDM Multi-State Degradation Model.
PPO Proximal Policy Optimization.
RL Reinforcement Learning.
Lisandro A. Jimenez-Roa et al. This is an open-access article distributed under
the terms of the Creative Commons Attribution 3.0 United States License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

1. INTRODUCTION

Sewer network systems, crucial for public health, popula-
tion well-being, and environmental protection, require mainte-
nance to ensure their reliability and availability (Cardoso et al.,
2016). This maintenance is challenged by limited budgets, en-
vironmental changes, aging infrastructure, and hard-to-predict
system deterioration (Tscheikner-Gratl et al., 2019).

Optimizing maintenance policies for sewer networks requires
methodologies that can efficiently explore a broad solution
space while adapting to the system’s dynamic constraints and
complexities. Maintenance Policy Optmization (MPO) ad-
dresses these needs by developing and analyzing mathematical
models to derive maintenance strategies (De Jonge & Scarf,
2020) that reduce maintenance costs, extend asset life, maxi-
mize availability, and ensure workplace safety (Ogunfowora
& Najjaran, 2023).

This research explores the potential of Deep Reinforcement
Learning (DRL) for MPO of sewer networks, first focusing
on a component-level (i.e., pipe-level) analysis. DRL is a
framework that merges neural network representation learning
capabilities with Reinforcement Learning (RL), a branch of
machine learning known for its effectiveness in sequential
decision-making problems. RL is increasingly recognized for
its role in developing cost-effective policies in MPO across
diverse domains such as transportation, manufacturing, civil
infrastructure and energy systems. It is emerging as a promi-
nent paradigm in the search for optimal maintenance policies
(Marugán, 2023).

This paper aims to achieve two primary objectives: first, to
present a comprehensive model for pipe-level MPO analysis fa-
cilitated by DRL, considering degradation over the pipe length
and employing inhomogeneous-time Markov chain models
to simulate the nonlinear stochastic behavior associated with
sewer pipe degradation; second, to assess the efficacy of the
model’s policy through a case study of a large-scale sewer
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network in the Netherlands, comparing it with heuristics, in-
cluding condition-based, scheduled, and reactive maintenance.

We acknowledge as limitations in our approach the focus on
fully observable state spaces, which means that inspection
actions are not necessary, and our analysis is at the component-
level. Future research will aim to broaden this scope to include
partially observable state spaces and system-level analysis.

Contributions. This work’s primary contributions include:

(i) We propose a framework to carry out maintenance pol-
icy optimization for sewer pipes considering the deterio-
ration along the pipe length. This framework integrates
Multi-State Degradation Models (MSDMs) and Deep
Reinforcement Learning (DRL).

(ii) Our framework introduces a novel approach by encod-
ing the prediction of the MSDM into the state space,
aiming to harness prognostics that describe the degra-
dation pattern of sewer pipes.

(iii) We demonstrate that DRL has the potential to devise
intelligent strategic maintenance strategies adaptable to
various conditions, such as pipe age.

(iv) We provide our framework in Python and all data used
in this study at zenodo.org/records/11258904.

Paper outline. Section 2 presents the technical background.
Section 3 outlines our research methodology. Section 4 for-
mulates the MSDM. Section 5 details the framework for main-
tenance policy optimization via DRL. Section 6 presents our
experimental setup. Section 7 analyzes the results. Section 8
discusses findings, concludes, and suggests future research.

Related work. In the past two decades, the need for inte-
gral sewer asset management has become evident (Abraham
et al., 1998), emphasizing the necessity to understand the
mechanisms of deterioration and develop predictive models
for proactive and strategic sewer maintenance (Fenner, 2000).
Sewer asset management encompasses maintenance, reha-
bilitation, and inspection and has been investigated through
various methodologies, including risk-based strategies (Lee et
al., 2021), multi-objective optimization (Elmasry et al., 2019),
Markov Decision Processes (Wirahadikusumah & Abraham,
2003), considering the structure of the sewer network (Qasem
& Jamil, 2021), machine learning applications (Montserrat et
al., 2015; Caradot et al., 2018; Laakso et al., 2019; Hernández
et al., 2021), and decision support frameworks (Taillandier
et al., 2020; Khurelbaatar et al., 2021; Ramos-Salgado et al.,
2022; Assaf & Assaad, 2023).

The integration of RL into sewer asset management is largely
unexplored, with existing research mainly concentrating on
real-time control for smart infrastructure, adapting to envi-
ronmental changes such as storms. Mullapudi et al. (2020)
uses DRL for controlling storm water system valves through
simulation of varied storm scenarios. Yin et al. (2023) employ
RL for near real-time control to minimize sewer overflows.
Meanwhile, Zhang et al. (2023) and Tian et al. (2022) both
examine improving the robustness of urban drainage systems,
the former through decentralized multi-agent RL and the latter
through Multi-RL, with Tian et al. (2024) further improving
the model interpretability using DRL. Furthermore, Kerkkamp
et al. (2022) investigates the sewer network MPO by combin-
ing DRL with Graphical Neural Networks to optimize main-
tenance actions grouping. Jeung et al. (2023) proposes a
DRL-based data assimilation methodology to enhance storm
water and water quality simulation accuracy by integrating
observational data with simulation outcomes.

2. TECHNICAL BACKGROUND

2.1. Multi-state degradation model for sewer pipes
The modeling of sewer pipe network degradation has been
explored through various methodologies, including physics-
based, machine learning, and probabilistic models. For com-
prehensive discussions on this topic, the reader is directed to
Ana & Bauwens (2010); Hawari et al. (2017); Malek Moham-
madi et al. (2019); Saddiqi et al. (2023); Zeng et al. (2023).

We adopt a probabilistic approach employing Inhomogeneous
Time Markov Chains (IHTMCs) to model the multi-state
degradation of sewer pipes. This choice is motivated by the
IHTMC’s capability to better capture the degradation of long-
lived assets such as sewer systems as a non-linear stochastic
process, characterized by age-dependent transition probabili-
ties between degradation states (Jimenez-Roa et al., 2024).

Inhomogeneous Time Markov Chains (IHTMCs). An
IHTMC is a stochastic process {(Xt)}t≥0, where t ∈ [0,∞)
is continues and models time. The IHTMC is defined as a
tuple M = ⟨Ω, S0, Q(t)⟩, where Ω is a set of K finite states
indicating the state space, S0

k is an initial-state distribution
on Ω where

∑
k∈Ω S

0
k = 1, and Q(t) : Ω × Ω → R is a

time-dependent transition rate matrix, with entries qij(t) for
i, j ∈ Ω and i ̸= j, representing the rate of transitioning from
state i to state j at time t. The diagonal entries qii(t) are de-
fined such that the sum of each row in Q(t) is zero, ensuring
that the outflow from any state is equal to the sum of the in-
flows into other states. Q(t) may be parameterized by hazard
rates λ(t|θ) derived from the ratio f(t|θ) and S(t|θ), being
respectively a probability density function and a survival func-
tion, where θ corresponds to the function hyper-parameters.
The evolution over time of the IHTMC is governed by the
Forward Kolmogorov equation:

∂Pij(t, τ)

∂t
=
∑

k∈S

Pik(t, τ)Qkj(t) (1)

Here, Pij(t, τ) : Ω × Ω → [0, 1] is a continuous and differ-
entiable function known as the transition probability matrix,
indicating the probability of transitioning from state i to state
j in the time interval t to τ , where τ > t. From Eq. (1) one
can obtain the master equation of the Markov chain, which
models the flow of probabilities between states by including
inflow and outflow terms:

∂Sk(t)

∂t
=

∑

i∈Ω,i̸=k

Si(t)Qik(t)− Sk(t)
( ∑

j∈Ω,j ̸=k

Qkj(t)
)

(2)
Here, Sk(t) is the probability of being in state k ∈ Ω at time
t, the term

∑
j∈Ω,j ̸=kQkj(t) represents the rates of transition

from state k to all the other states j (excluding self-transitions).

Pipe-element degradation model. We define a pipe ele-
ment by K sequentially arranged states S = [S1, S2, ..., Sk],
where S1 signifies the pristine condition and Sk represents the
worst condition. This categorization is based on sewer net-
work inspection data, which documents types of damage and
their severities on a scale from 1 to 5, along with occasional in-
stances of functional failures (K = 6). The transitions within
our IHTMC, illustrated in Figure 1, permit only progression
from a better to a worse state, prohibiting direct improvements
without repairs, while allowing any severity level to escalate
to functional failure.
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Figure 1. Markov chain structure for IHTMC.

Parametrization of IHTMC. We employed a parameter-
ized approach for IHTMC, involving an assumption on the
hazard function. In Section 4.2, we detail the parametrization
used in our experimental setup. Several aspects related to
the multi-state degradation model, including hyper-parameter
tuning and interval-censoring, are beyond the scope of this
paper. For further information, we recommend referring to
(Jimenez-Roa et al., 2024).

2.2. Markov Decision Process
A Markov Decision Process (MDP) models a stochastic se-
quential decision process, where both costs and transition
functions are dependent solely on the current state and action
(Puterman, 1990). Formally, an MDP is described by the tuple
⟨S,A, P (st+1|st, at),R(st, at, st+1), π0, γ⟩, with S as state
space, A as the action space, P (st+1|st, at) as the transition
probability function indicating the probability of transitioning
from state st to st+1 given action at, where st, st+1 ∈ S and
at ∈ A. The reward function R(st, at, st+1) specifies the
reward for moving from st to st+1 by action at. The initial
state π0 represents the distribution across S, and γ ∈ [0, 1]
is the discount factor that balances immediate versus future
rewards.

2.3. Deep Reinforcement Learning
Deep Reinforcement Learning (DRL) produces virtual agents
that interact with environments to learn optimal behaviors
through trial and error, as indicated by a reward signal (Arulku-
maran et al., 2017). DRL has found applications in robotics,
video games, and navigation systems.

We utilize DRL to train agents in virtual environments exhibit-
ing degradation following the MSDM pattern, as detailed in
Section 5. Specifically, we apply Proximal Policy Optimiza-
tion (PPO) (Schulman et al., 2017), a policy gradient method
in RL.
PPO aims to optimize the policy an agent uses for action
selection, maximizing expected returns. It addresses stability
and efficiency issues encountered in previous algorithms like
Trust Region Policy Optimization by offering a simpler and
less computationally expensive method to ensure minor policy
updates.

This is achieved through an innovative objective function that
penalizes significant deviations from the previous policy, fos-
tering stable and consistent learning. The term “proximal”
denotes maintaining proximity between the new and old poli-
cies, facilitating a stable training process and rendering PPO
popular across various RL applications.

3. METHODOLOGY

Our methodology, illustrated in Figure 2, comprises six steps,
detailed below.
Step 1. Perform data handling of historical inspection records,

selecting subsets (cohorts) of interest, and calibrating

the MSDM on this data. This step is beyond the scope
of this paper; for details, see Jimenez-Roa et al. (2022,
2024). The results of this step are given in Section 4.

Step 2. After calibrating the MSDM, integrate these mod-
els into an environment suitable for RL applications.
We present the details of our environment integrating
MSDM in Section 5. In addition, we define environ-
ments for training RL agents. This is to test different
MSDM hypotheses; details on this can be found in
Section 6.

Step 3. Train DRL agents with PPO. Use optuna for hyper-
parameter tuning and Stable Baselines3 for
RL implementation. Details are in Section 7.1.

Step 4. Train and select the RL agents with the optimal hyper-
parameters on the training environments. In essence,
these agents learn the dynamics described by the
MSDM encoded in the environment.

Step 5. Compare the maintenance policies advised by the RL
agents using the test environment against the heuris-
tics: Condition-Based Maintenance (CBM), Sched-
uled Maintenance (SchM), and Reactive Maintenance
(RM). Find the definition of these heuristics in Sec-
tion 6.2.

Step 6. Analyze and compare the behavior of the maintenance
strategies for the different RL models and heuristics.
Reflect on the policies advantages and disadvantages.
Find in Section 7.2 the overview of this comparison,
and in Section 7.3 are the details along episodes.

4. MULTI-STATE DEGRADATION MODELS

4.1. Case study
Our case study conducts a detailed examination of the sewer
pipe network in Breda, the Netherlands, which comprises
25,727 sewer pipes covering 1,052 km, mostly built after 1950.
The network is primarily made of concrete (72%) and PVC
(27%), with the shapes of the pipes being predominantly round
(95%) and ovoid (5.4%). These pipes are designed for trans-
portation (98.2%), with 88% being up to 60 meters in length.
Additionally, 98.3% have a diameter of up to 1 meter, with the
most common diameter being 0.2 meters, and they carry mixed
(63%), rain (21%), and waste (16%) contents. The condition
of the pipes is evaluated through visual inspections accord-
ing to the European standard EN 13508 (EN13508, 2012;
EN13508-2, 2011), focusing on identifying and classifying
damage with specific codes. This study specifically addresses
the damage code BAF, which signifies surface damage and
was observed in 35.3% of the inspections.

4.2. Parametrization
We consider three distributions for hazard rate functions: Ex-
ponential, Gompertz, and Weibull. The hazard rates λ(t|·) for
these distributions are specified as follows:

Exponential function: λE(t|ϵ) = ϵ, (3a)

Gompertz function: λG(t|α, β) = αβeβt (3b)

Weibull function: λW (t|η, ρ) = ρ

η

( t
η

)ρ−1

(3c)

In Eq. (3a), a constant hazard rate indicates that the degrada-
tion model assumes a homogeneous time, exhibiting memory-
less properties. Eq. (3b) and Eq. (3c) present varying hazard
rates, which indicates inhomogeneous time.

3
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Figure 2. Methodology overview for sewer pipe maintenance policy optimization using Deep Reinforcement Learning and
Multi-State Degradation models.

4.3. Solving the Multi-State Degradation Model
In Figure 1, we defined the structure of the Markov chain
to model degradation in a sewer pipe, and in Section 4.2 we
introduced the hazard rate functions. In the following, we
present the corresponding system of differential equations.

∂S1(t)

dt
= −

(
λ12(t|·) + λ1F (t|·)

)
S1(t) (4a)

∂S2(t)

dt
= λ12(t|·)S1(t)−

(
λ23(t|·) + λ2F (t|·)

)
S2(t)

(4b)
∂S3(t)

dt
= λ23(t|·)S2(t)−

(
λ34(t|·) + λ3F (t|·)

)
S3(t)

(4c)
∂S4(t)

dt
= λ34(t|·)S3(t) +

(
− λ45(t|·)− λ4F (t|·)

)
S4(t)

(4d)
∂S5(t)

dt
= λ45(t|·)S4(t)− λ5F (t|·)S5(t) (4e)

∂SF (t)

dt
= λ1F (t|·)S1(t) + λ2F (t|·)S2(t) + λ3F (t|·)S3(t)

+ λ4F (t|·)S4(t) + λ5F (t|·)S5(t) (4f)

Eq. 4 is solved using numerical methods, specifically the
LSODA algorithm from the FORTRAN odepack library im-
plemented in SciPy (Jones et al., 2001–). This algorithm solves
systems of ordinary differential equations by employing the
Adams/BDF method with automatic stiffness detection.

4.4. Parametric Multi-State Degradation Models
We extract a subset from our case study data set to construct
a cohort with concrete sewer pipes carrying mixed and waste
content (cohort CMW), representing 37.1% of the sewer net-
work. The model parameters for this cohort are detailed in
Appendix A in Tables 7 and 8.
Figure 3 illustrates the MSDMs predictions, detailing the
stochastic dynamics of sewer pipe degradation for pipes in

cohort CMW. As Figure 1 describes, this degradation is seg-
mented into five sequentially ordered severity levels (k = 1
to k = 5), plus a functional failure state (k = F ). Differ-
ences in the y-axis scales are intentional, to emphasize details
and behaviors that various degradation models express across
severity levels.

Gray circles represent the frequency per severity level from the
inspection dataset. Jimenez-Roa et al. (2022) details how these
frequencies are computed. Vertical black lines in Figure 3
mark the last available data point for each severity level.

Additionally, Figure 3 presents the Turnbull non-parametric
estimator, which assumes no specific distribution for survival
times (Turnbull, 1976). In our context, this estimator repre-
sents the ground truth of stochastic degradation behavior in
sewer pipes.

Tables 1 presents the Root Mean Square Error (RMSE) com-
puted with respect to the Turnbull estimator, for each MSDM
assumption, for cohorts CMW. These results show that models
employing Gompertz and Weibull distributions yield smaller
RMSEs compared to the one using the Exponential distribu-
tion.

Table 1. RMSE with respect Turnbull estimator, per severity
level k and total RMSE, cohort: CMW.

Exponential Gompertz Weibull

Sk=1(t) 3.38E-02 3.27E-02 3.34E-02
Sk=2(t) 7.04E-02 3.70E-02 3.57E-02
Sk=3(t) 6.27E-02 2.81E-02 4.38E-02
Sk=4(t) 4.28E-03 1.13E-02 5.06E-03
Sk=5(t) 8.33E-03 1.09E-02 3.04E-02
Sk=F (t) 9.19E-03 1.17E-02 3.62E-03

Total 4.13E-02 2.45E-02 2.96E-02

These MSDMs serve two crucial roles within our environment:
first, they drive the degradation behavior of sewer pipes, effec-
tively emulating how sewer pipes degrade over time. Second,
the output from the MSDMs is incorporated as prognostic
information, available to the agent to support decisions at any

4
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Figure 3. Probability of being in state k ∈ Ω at pipe age t
Sk(t), using three hazard functions modeled via Exponential,
Gompertz, and Weibull probability density functions. The
Turnbull non-parametric estimator indicates the ground truth.
The gray circles indicate the frequency based on the inspection
data set.

time point. This latter aspect is considered a novel feature
of our framework. Details on the MDP are provided in the
section below.

5. DEFINITION OF MARKOV DECISION PROCESS FOR
MAINTENANCE POLICY OPTIMIZATION OF A SEWER
PIPE CONSIDERING PIPE LENGTH DEGRADATION

Figure 4 provides the workflow that the RL agent uses to learn
maintenance policies for sewer pipes, considering degradation
along the pipe length. In the following sections, we provide the
details of the environment, namely the state and action spaces,
as well as the transition probability and reward functions.

5.1. State space (S)
Our approach focuses on developing age-based maintenance
policies, incorporating the sewer pipe’s age into the state rep-
resentation. Our state space is continuous and it is structured
to include three key components: (i) the age of the pipe, (ii)
the health vector, and (iii) the stochastic prediction of severity
levels. We next describe the last two components.

5.1.1. Health vector (h)
In modeling the degradation of linear structures like sewer
pipes, it is essential to represent changes accurately along their
length. For this purpose, we define a health vector (h), which
quantitatively measures the degradation at various points along
the pipe. The vector is crucial in our framework, particularly
influencing the reward function as described in Section 5.4.
Construction of h: We discretize the pipe into segments of
equal length ∆L, with ∆L < L, where L is the total length
of the pipe. The number of segments, nd, is calculated using
the ceiling function to ensure it remains an integer even if L is
not perfectly divisible by ∆L:

nd =

⌈
L

∆L

⌉
(5)

Each segment’s degradation level is initially assessed and cat-
egorized into severity levels according to the MSDM. As the
degradation progresses, the state of each segment changes
following the transition probabilities described by the matrix
Pi,j , where i is the current severity level, and j is the subse-
quent severity level, as described by the forward Kolmogorov
equation (Eq. 1).

Notice that by doing this, we assume there is no statistical de-
pendency between segments, which is a strong assumption that
needs further research. However, for simplicity, we maintain
this assumption in our degradation model.
Quantifying Degradation: The distribution of severity lev-
els across the pipe is captured in vector d, with each element
indicating the severity level of a segment. To quantify this
distribution in the health vector h, we first count the num-
ber of segments at each severity level k using the following
expression:

ndk
=

nd∑

i=1

1{di=k} (6)

where 1 is the indicator function that is 1 if the condition is
true and 0 otherwise. The health vector h is then determined by
normalizing these counts to reflect the proportion of segments
at each severity level:

hk =
ndk

nd
(7)

Here, ndk
is the number of segments at severity level k. Thus,

hk becomes part of the state space indicating the level of
degradation present in the pipe.

5.1.2. Stochastic prediction of severity levels
To enable the agent to access information provided by the
MSDM, we incorporate the prediction of severity levels into
the state space. This is accomplished by solving Eq. 2, yield-
ing a distribution Sk(t).

Finally, our state space is defined as a tuple with 13 elements:

S = ⟨Pipe Age,h1,h2,h3,h4,h5,hF , S1, S2, S3, S4, S5, SF ⟩

5.2. Action space (A)

Our action space A is discrete with dimensionality |A| = 3.
At each time step t, the agent selects an action at. If the
decision at time t is do nothing, at is set to 0. To perform
maintenance, at is set to 1, and to replace the pipe, at is set to
2. The outcomes of these actions are discussed in Section 5.3.

5
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Figure 4. Environment for maintenance policy optimization of a sewer pipe via Deep Reinforcement Learning, considering
degradation along the pipe length.

5.3. Transition function (P )
Our transition function P (st+1|st, at) is stochastic, dependent
on time t, and considers both the actions a ∈ A and the current
st and next state st+1 dynamics described by the MSDM. We
illustrate the behavior of P with the following example.

For a 30-year-old pipe with length L = 40 meters and dis-
cretized in segments of length ∆L = 1, let the current state
space be st=30 ∈ S:

st=30 = ⟨30, 0.60, 0.35, 0.025, 0.025, 0.0, 0.0,
0.475, 0.436, 0.069, 0.010, 0.005, 0.005⟩ .

st=30 indicates the age of the pipe is 30 years. From Eq. 7, the
number of segments at severity k is determined by multiplying
the health vector (hk):

hk = [0.60, 0.35, 0.025, 0.025, 0.0, 0.0]

by 40 meters, yielding ndk
= [24, 14, 1, 1, 0, 0], indicating

that, out of the 40 meters of pipe length, 24 segments of 1
meter are at severity k = 1, 14 at severity k = 2, and so forth.

The distribution Sk(t = 30.0) predicts the probability of being
in a severity level k at age t = 30. This is achieved by
evaluating t = 30.0 in the corresponding MSDM.

Sk(t = 30.0) = [0.475, 0.436, 0.069, 0.010, 0.005, 0.005]

Assuming the agent takes an action every half year, we illus-
trate the effect of each action in A below.
- If at = 0: the agent decides to “do nothing”, the pipe’s

degradation evolves in line with the MSDM progression.
Here the new state space becomes sa=0

t=30.5.

sa=0
t=30.5 = ⟨30.5, 0.575, 0.35, 0.05, 0.025, 0.0, 0.0,

0.470, 0.439, 0.071, 0.010, 0.05, 0.05⟩
Notice that the pipe age increased to 30.5, and ndk

=

[23, 14, 2, 1, 0, 0], where a segment with severity k = 1
progressed to k = 2, and one segment with k = 2 advanced
to k = 3. Additionally, Sk(t) is updated by evaluating
t = 30.5.

- If at = 1: the agent decides to “perform maintenance,” all
damage points with severity levels k ∈ {3, 4, 5} are moved
to k = 2. Consequently, this action does not affect damage
points with severity levels k ∈ {1, 2, F}. The new state
space becomes sa=1

t=30.5.

sa=1
t=30.5 = ⟨30.5, 0.60, 0.40, 0.0, 0.0, 0.0, 0.0,

0.47, 0.439, 0.071, 0.010, 0.05, 0.05⟩
Notice that the pipe age increased to 30.5, and ndk

=
[24, 16, 0, 0, 0, 0]. However, Sk(t) is updated by evaluat-
ing t = 30.5, same as when at = 0.

- If at = 2: the agent decides to “replace” the pipe, resetting
its condition to as good-as-new. The new state space is
sa=2
t=0.0:

sa=2
t=0.0 = ⟨0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0,

0.986, 0.014, 0.0, 0.0, 0.0, 0.0⟩.
The pipe age is reset to 0.0, with ndk

= [40, 0, 0, 0, 0, 0],
and Sk(t) is updated for t = 0.0.

5.4. Reward function (R)
Our reward function R(st, at, st+1) assigns a reward rt at
every decision point t, determined by the current state st and
action at. This function integrates the costs of maintenance
(CM ), replacement (CR), and failures (CF ). R is sparse
because it issues a non-zero value only when failures occur or
interventions are undertaken.
Maintenance cost CM is calculated as per Eq. 8, where it com-
bines a variable cost based on severity k with a fixed logistic
cost of C500, covering the expenses related to maintenance.
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These costs vary with the severity level k, as detailed in Table 2.
Note that no maintenance costs are associated with k = F
because maintenance cannot be performed on a segment that
has already failed. In this case, the agent must replace.

CM = −(hk · ckM + 500) (8)

Table 2. Maintenance costs per severity k per segment (ckM )

k = 1 k = 2 k = 3 k = 4 k = 5 k = F

ckM = 0 0 -C500 -C700 -C900 N.A.

Replacement costs (CR) is computed with Eq. 9:

CR = −(450 + 0.66D + 0.0008D2)L (9)

Here, L and D denote the pipe’s length in meters and diameter
in millimetres, respectively. CR is in Euros (C).

The cost of failure, denoted by CF , entails assigning a sub-
stantial penalty when the agent allows a segment of the pipe to
achieve a failure state (k = F ). This penalty cost is established
at C-100,000. Our reward function is then:

rt =
CM + CR + CF

100′000 + 900× 40
=
CM + CR + CF

136′000
(10)

where rt represents the reward obtained at time t, the normal-
ization constant 136′000 corresponds to the most expensive
penalty possible at time t. Thus, rt is defined within the inter-
val [−1, 0]. This reward function aims for the agent to balance
maintenance actions with the prevention of undesirable pipe
conditions.

6. EXPERIMENTAL SETUP

6.1. Setup
We will evaluate our framework with a single pipe of constant
length (40 meters) and diameter (200 mm) from the cohort
CMW, which carries mixed and waste content. Given the con-
stant dimensions, the replacement cost CR, as defined in Eq. 9,
is C24,560. The pipe age, when initializing the episode, is
randomly sampled from the uniform distribution U ∼ [0, 50],
allowing the agent to learn the behavior of pipes within this
age range. Additionally, we evaluate the policy in steps of half
a year and ∆L = 1 meter.

In the methodology section, we describe the training of two
agents: Agent-E and Agent-G. Agent-E is trained in an envi-
ronment where sewer pipe degradation follows the MSDM pa-
rameterised with an Exponential probability density function,
while Agent-G is trained in an environment where degradation
follows the MSDM parameterised with a Gompertz probability
density function.

Both agents are tested in an environment where sewer pipe
degradation follows the MSDM parameterized with the Weibull
probability density function.

During training, each agent follows a specific state space,
defined as follows:

SAgent-E
Training = ⟨Pipe Age,hE

k , S
E
k (t)⟩ (11a)

SAgent-G
Training = ⟨Pipe Age,hG

k , S
G
k (t)⟩ (11b)

Here, S represents the state space for each agent during train-
ing. The subscripts E and G denote the Exponential and
Gompertz probability density functions, respectively. Each
agent’s objective is to learn an optimal maintenance strategy
based on their environment’s dynamics.

For testing, both agents are evaluated in the same environment,
with the state space defined as follows:

SAgent-E
Testing = ⟨Pipe Age,hW

k , SE
k (t)⟩ (12a)

SAgent-G
Testing = ⟨Pipe Age,hW

k , SG
k (t)⟩ (12b)

In both cases, SE
k (t) and SG

k (t) remain consistent with the
training phase, reflecting the MSDM predictions. However,
the health vector hk follows the degradation behavior de-
scribed by the Weibull probability density function, indicated
by the subscript W .

6.2. Comparison of maintenance strategies
We compare the RL agent’s performance against maintenance
policies based on heuristics. For this, we define the following:

• Condition-Based Maintenance (CBM): Maintenance ac-
tions are based on the sewer pipe’s condition. Specifically,
replacement (at = 2) is performed if pipe age ≥ 70
or hk=F ≥ 0.0; maintenance (at = 1) is conducted
if hk=4 ≥ 0.1 or hk=5 ≥ 0.05; otherwise, no action
(at = 0) is taken.

• Scheduled Maintenance (SchM): Actions are time-based.
Replacement (at = 2) is executed if hk=F ≥ 0.0; main-
tenance (at = 1) occurs every 10 years; otherwise, no
action (at = 0) is taken.

• Reactive Maintenance (RM): Replacement is under-
taken only upon pipe failure, i.e., replacement (at = 2) is
performed if hk=F ≥ 0.0; otherwise, no action (at = 0)
is taken.

Note that CBM and SchM are defined based on plausible
values. However, these heuristics can be further calibrated
for enhanced performance, which is beyond the scope of this
paper.

7. RESULTS

7.1. Implementation and hyper-parameter tuning
Our framework uses Stable Baselines3 (Raffin et al.,
2021), comprising robust implementations of RL algorithms
in PyTorch (Ansel et al., 2024). Specifically, we utilize the
PPO algorithm. Hyper-parameter optimization is performed
using optuna (Akiba et al., 2019), a framework dedicated to
automating the optimization of hyper-parameters.

The search space encompasses: exponentially-decaying learn-
ing rate with a decay rate of 0.05, with an initial learning rate
ranging from 10−5 to 10−2, discount factor (γ) from 0.8 to
0.9999, entropy coefficient from 0.0001 to 0.01, steps per up-
date (n steps) from 250 to 3000, batch sizes from 16 to 256,
activation functions (‘tanh’, ‘relu’, ‘sigmoid’), policy network
architectures ([16, 16], [32, 32], [64, 64], [32, 32, 32]), and
training epochs (n epochs) from 5 to 100.

We set up optuna to conduct 500 trials, aiming to maximise
cumulative reward in 100 episodes. Table 3 details the optimal
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hyper-parameters identified. These parameters are used to
obtain the results discussed in Sections 7.2 and 7.3, where our
agents are trained over a total of 5 million time steps.

Table 3. Optimal hyper-parameters found using optuna.

Hyper-parameter Value
Learning rate 0.0003

Discount factor 0.995
Entropy coefficient 0.008

Steps per update (n steps) 2080
Batch size 104

Activation function Sigmoid
Policy network architecture [32, 32, 32]

Training epochs (n epochs) 50

7.2. Policy analysis: overview
This section offers a broad evaluation of the policies, with a
detailed analysis over episodes presented in Section 7.3. We
compare the agents’ performances with the heuristics detailed
in Section 6.2 across 100 simulations in the test environment
(Eq. 12), considering pipe ages of 0, 25, and 50 years, aim-
ing to evaluate policy efficacy concerning degradation over
varying pipe ages.

Table 4 presents the mean policy cost for Agent-E, Agent-
G, CBM, SchM, and RM, highlighting the best and second-
best policies in blue and red, with corresponding means and
standard deviations from the simulations.

Table 4. Policy cost comparison: Mean and standard deviation
(Std.) of costs for Agent-E, Agent-G, CBM, SchM, and RM,
evaluated over 100 episodes in the test environment. Costs, in
thousands of Euros (C), for pipe ages of 0, 25, and 50 years.

Pipe age: 0 Pipe age: 25 Pipe age: 50

Policy Mean Std. Mean Std. Mean Std.

Agent-E 51.3 80.8 116.5 97.7 156.8 121.2
Agent-G 39.7 66.2 78.7 96.6 127.1 128.3

CBM 51.3 107.2 112.3 88.5 110.7 86.6
SchM 42.5 70.9 78.9 96.4 159.8 95.9

RM 48.6 76.6 135.8 86.5 165.7 80.8

From these results, we observe that Agent-G’s policy generally
outperforms others for pipe ages of 0 and 25 years, securing a
second-best position for pipes aged 50 years. It is noted that
the cost of all policies increases with pipe age, which aligns
with expectations as older pipes require more interventions.

After reviewing the mean policy costs, our focus shifts to the
specific actions involved in each policy. Table 5 provides a
summary of the actions executed by each policy across sim-
ulations for different pipe ages. For new pipes, the SchM
policy leads in maintenance activities (at = 1), with Agent-G
following. In terms of replacements (at = 2), Agent-E is the
foremost in implementing this action, with CMB in second
place. Both Agent-G and SchM exhibit lower replacement fre-
quencies, explaining the mean policy costs since maintenance
actions incur lower expenses compared to the penalties and
replacement costs resulting from pipe failures.

For pipes aged 25 years, Agent-G executes more maintenance
actions (at = 1), similar to SchM. Agent-E opts for no main-
tenance, aligning more with RM’s strategy. Although CBM

Table 5. Percentage of actions per policy obtained with
Agent-E, Agent-G, CBM, SchM, and RM, evaluated over
100 episodes in the test environment, for different pipe ages.

Pipe age Action Agent-E Agent-G CBM SchM RM

0
at = 0 99.5 97.51 99.54 94.76 99.61
at = 1 0.0 2.21 0.05 4.95 0.00
at = 2 0.5 0.28 0.41 0.29 0.39

25
at = 0 98.81 94.96 98.14 94.56 98.92
at = 1 0.00 4.50 0.62 4.94 0.00
at = 2 1.19 0.53 1.24 0.50 1.08

50
at = 0 98.4 94.52 98.05 93.99 98.68
at = 1 0.0 4.43 0.67 4.88 0.00
at = 2 1.6 1.05 1.28 1.13 1.32

carries out some maintenance actions, replacement actions
predominate, indicating a greater tendency to permit pipe fail-
ures, which explains the observed differences in mean policy
costs.
For pipes aged 50 years, CMB offers the most cost-effective
policy, with Agent-G’s following. CMB conducts fewer main-
tenance actions and more replacements than Agent-G, account-
ing for the cost disparity. The policies of Agent-E, RM, and
SchM have similar costs. Despite SchM conducting more
maintenance, its high number of replacements suggests the
maintenance interval requires adjustment. These results in-
dicate that the strategies of CBM, SchM, and RM are less
efficient for older pipes due to their higher failure probability.

Regarding the mean pipe severity level to assess the impact of
various policies on pipe degradation, as shown in Table 6. Our
analysis reveals a notable correlation between the average ac-
tions per policy, detailed in Table 5, and the mean pipe severity
level. Specifically, the Agent-G control strategy tends to main-
tain pipes within a severity level of k ∈ [1, 2, 3], whereas the
Agent-E, CBM, SchM, and RM policies often result in higher
severity levels k ∈ [4, 5, F ], which correlates with increased
policy costs.

Table 6. Percentage of severity level per policy obtained with
Agent-E, Agent-G, CBM, SchM, and RM, evaluated over 100
episodes in the test environment, for different pipe ages.

Pipe age Severity Agent-E Agent-G CBM SchM RM

0

k = 1 59.77 58.75 59.94 59.84 58.88
k = 2 33.27 39.14 32.67 38.05 33.15
k = 3 5.39 1.70 6.00 1.79 6.36
k = 4 1.38 0.28 1.13 0.26 1.30
k = 5 0.18 0.13 0.25 0.04 0.31
k = F 0.01 0.01 0.01 0.01 0.01

25

k = 1 50.49 41.72 46.88 39.07 46.62
k = 2 38.96 55.27 43.09 55.55 40.86
k = 3 8.37 2.63 8.48 4.85 9.80
k = 4 1.37 0.29 1.18 0.41 1.51
k = 5 0.78 0.07 0.36 0.10 1.18
k = F 0.02 0.01 0.02 0.01 0.03

50

k = 1 57.93 44.65 55.01 40.92 54.36
k = 2 32.58 51.40 36.14 50.46 33.09
k = 3 7.50 3.29 7.20 7.34 9.32
k = 4 1.31 0.39 1.19 0.59 1.64
k = 5 0.65 0.25 0.43 0.67 1.55
k = F 0.03 0.02 0.02 0.03 0.03
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To summarize, our findings indicate that the Agent-G’s policy,
derived using DRL, implements a dynamic management strat-
egy that varies with the pipe’s age. This strategy encompasses
a more passive approach with new pipes, transitioning to ac-
tive intervention as the pipes age. This indicates the agent’s
preference for more frequent maintenance actions rather than
allowing pipe failures, which incur higher penalties and re-
placement costs.

Moreover, Agent-G outperforms Agent-E, illustrating the im-
pact of the degradation model assumption. Specifically, Agent-
G’s prognostic model used during training aligns more closely
with the test environment’s degradation pattern than Agent-
E’s, potentially explaining why Agent-G is better equipped to
navigate and understand the degradation pattern. This, in turn,
enables it to devise a more effective maintenance policy by
leveraging a more accurate degradation model.

7.3. Policy analysis over episode
In Section 7.2, we present an overview of policy performances.
This section delves into the details per episode to provide
further understanding on these policies. Figures 5, 6, and 7
detail the performance of the Agent-E, Agent-G, CMB, and
SchM policies for pipes with ages 0, 25 and 50, respectively.
The RM heuristic is excluded from this analysis due to its
straightforward approach: allowing the pipe to fail before
replacing it.

Figure 5 shows that for a brand new pipe: (a) Agent-G per-
forms maintenance on the pipe at approximately 32 years old;
(b) Agent-E opts to replace the pipe when it is around 35
years old, which may be attributed to the presence of elements
with higher severity levels in that specific episode; (c) CBM
chooses not to act, which results in the least expensive policy
in this comparison. However, it is observed that some pipe
sections reach severity level k = 5 throughout the episode.
Not taking any action is deemed risky since progressing to
k = F becomes more likely and incurs higher costs; (d) SchM
effectively controls severity levels but is more expensive than
Agent-G’s policy due to more frequent maintenance actions.

Figure 6 shows that for a pipe aged 25: (a) Agent-G exhibits in-
creased activity, indicating more frequent maintenance actions,
especially as the pipe ages to 50, shortening the maintenance
intervals; (b) Agent-E postpones any action until the pipe fails,
at which point it replaces the pipe with a new one, akin to RM;
(c) CBM also initiates maintenance around the pipe’s 50-year
mark. However, degradation escalates from age 60, leading to
failure at 66. The inability to manage this increased severity re-
sults in significant penalty costs, diminishing the effectiveness
of this policy; (d) Similarly, SchM manages severity levels
effectively until the pipe reaches approximately 70 years of
age, at which point degradation accelerates, resulting in failure
at 73.
Figure 7 shows that for a pipe aged 50: (a) Agent-G opts to
replace the pipe at age 50, followed by maintenance in the
subsequent time step. This decision is likely influenced by
parts of the pipe being at severity levels k ∈ 3, 4. Such a
scenario is plausible, as new pipes can exhibit high severity
levels at a young age due to defects in the material or errors
during the construction and installation process. This concept
is represented in the MSDM by the initial probability state
vector (S0

k). Additionally, Agent-G recommends maintenance
at the interval when the pipe reaches the age of 26 years; (b)

Agent-E suggests replacement at approximately 62 years, with-
out recommending further maintenance; (c) CMB advocates
for maintenance at about 65 years, followed by replacement at
70 years, in line with heuristics described in Section 6.2; (d)
SchM consistently performs maintenance at regular intervals,
yet faces significant degradation, culminating in failure around
97 years.

8. DISCUSSION AND CONCLUSIONS

In this paper, we explore the applications of Prognostics and
Health Management (PHM) in sewer pipe asset management.
Our study focuses on component-level (i.e., pipe-level) main-
tenance policy optimization by integrating stochastic multi-
state degradation modeling and Deep Reinforcement Learning
(DRL). The goal is to assess the effectiveness of DRL in
deriving cost-effective maintenance strategies tailored to the
specific conditions and requirements of sewer pipes.

A key contribution of our work is the integration of prognostics
models with a maintenance policy optimization framework.
We utilize a tailored reward function that aligns with dam-
age severity levels, enabling a more complex and realistic
maintenance optimization setup.

Our methodology includes a real-world case study from a
Dutch sewer network, which provides historical inspection
data. Through hyper-parameter tuning and policy analysis, we
benchmark our optimized policies against traditional heuris-
tics, including condition-based, scheduled, and reactive main-
tenance.
Our findings suggest that agents trained with the Proximal
Policy Optimization algorithm are highly capable of devel-
oping strategic maintenance policies, adapting to pipe age,
and surpassing heuristic baselines by learning cost-effective
dynamic management strategies.

To evaluate the impact of degradation model assumptions,
we trained one agent using the Gompertz probability density
function and another using the Exponential probability density
function.
During testing, both agents were assessed in an environment
parameterized with the Weibull probability density function.
The Gompertz-trained agent, whose behavior more closely
resembled the Weibull model, demonstrated better general-
ization, resulting in more effective maintenance policies com-
pared to the Exponential-trained agent.

Future work: The following directions are identified:

• Advancing toward partially observable state spaces with
the introduction of inspection actions, considering context,
and leveraging deep learning capabilities.

• Utilizing knowledge acquired by agents to develop ex-
plainable and robust heuristics.

• Although this paper focused on a single cohort of pipes,
studies in Jimenez-Roa et al. (2022, 2024) show different
cohorts exhibit varied dynamics, highlighting the impor-
tance of understanding how RL agents adapt.

• Comparing RL-based approaches with other policy op-
timization algorithms to better understand the capacity
of RL methods to achieve global-optima maintenance
strategies.

• Investigating various reward functions (e.g., dense) and
RL algorithms to determine the most effective for devising
maintenance policies.

• Extent to system-level analysis and evaluate aspects such
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k=1
k=2
k=3
k=4
k=5
k=F

Total Costs ( -6.0K): [Maintenance: -6.0K, Replace: 0.0K, Failure: 0.0K], Total Reward: -0.00

0.00
0.25
0.50
0.75
1.00

0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0
Time horizon

Action
at = 0
at = 1
at = 2

(d) Scheduled Maintenance (SchM)

Figure 5. Behavior of policies over an episode for a new pipe, showing the health vector over the pipe age and actions per policy:
(a) Agent-G, (b) Agent-E, (c) Condition-based Maintenance (CBM), and (d) Scheduled Maintenance (SchM).

as scalability.
• Moving toward multi-infrastructure asset management to

promote coordinated management for optimizing costs
and minimizing disruption from interventions.
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Figure 6. Behavior of policies over an episode for a pipe aged 25, showing the health vector over the pipe age and actions per
policy: (a) Agent-G, (b) Agent-E, (c) Condition-based Maintenance (CBM), and (d) Scheduled Maintenance (SchM).
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(d) Scheduled Maintenance (SchM)

Figure 7. Behavior of policies over an episode for a pipe aged 50, showing the health vector over the pipe age and actions per
policy: (a) Agent-G, (b) Agent-E, (c) Condition-based Maintenance (CBM), and (d) Scheduled Maintenance (SchM).
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APPENDIX A. PARAMETERS OF MULTI-STATE DEGRA-
DATION MODELS

Table 7. MSDM hyper-parameters for cohort CMW, using haz-
ard functions modeled with the exponential (λE(t|ϵ)), Gom-
pertz (λG(t|α, β)), and Weibull (λW (t|η, ρ)) probability den-
sity functions.

λE(t|ϵ) λG(t|α, β) λW (t|η, ρ)
i → j ϵ α β η ρ

1 → 2 2.4E-02 2.3E+00 8.4E-03 1.3E+00 4.4E+01
2 → 3 9.4E-03 2.1E-02 5.5E-02 2.9E+00 7.7E+01
3 → 4 5.7E-03 3.3E+00 2.8E-03 3.5E+00 8.1E+01
4 → 5 1.8E-02 2.4E+00 8.7E-03 7.0E+00 5.5E+01
1 → F 3.0E-18 1.4E-01 3.1E-04 4.1E-06 4.6E+01
2 → F 6.0E-04 8.8E-01 7.0E-19 2.7E-04 4.6E+01
3 → F 1.0E-18 2.2E-03 4.5E-02 3.0E-05 4.7E+01
4 → F 1.0E-18 9.8E-05 8.6E-03 1.1E-03 4.5E+01
5 → F 1.0E-18 7.0E-19 3.8E-01 1.7E+00 5.9E+01

Table 8. Initial state vector S0
k for MSDM of cohort CMW.

S0
k Exponential Gompertz Weibull

k = 1 9.89E-01 9.58E-01 9.23E-01
k = 2 1.26E-17 0.00E+00 2.59E-02
k = 3 3.70E-23 4.00E-02 3.10E-02
k = 4 1.11E-02 1.61E-03 1.13E-02
k = 5 2.11E-22 2.00E-15 2.07E-03
k = F 3.87E-22 1.56E-04 6.40E-03
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