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ABSTRACT

We introduce an object detection model specifically designed
to identify failure modes in images of bearing components,
including the inner ring, outer ring, and rolling elements. The
method effectively detects and pinpoints failure features, sub-
sequently determining the associated failure mode within the
image. With images sourced from real-world bearing appli-
cations, our model can recognize various ISO-failure modes
such as surface-initiated fatigue, abrasive wear, adhesive wear,
moisture corrosion, fretting corrosion, current leakage ero-
sion, and indents from particles. The proposed model could
be used in an assistive tool where failure modes give insights
on how to prolong average future bearing life in an asset and
therefore reduce related costs and environmental impacts.

1. INTRODUCTION

Bearings are extensively utilized in a wide range of rotating
equipment and are essential for ensuring their proper func-
tion. Bearing failures can lead to unplanned downtime with

unforeseen costs, or even result in hazardous situations. Sensor-

based condition monitoring has been an important tool for the
prediction of these undesired events and are a key ingredi-
ent for a predictive maintenance strategy (Randall & Antoni,
2011). In this paper, the focus is on a subsequent stage after
sensor-based fault detection, that is, a visual inspection of the
replaced disassembled bearing to further prolong the average
future bearing life in an asset (SKF, 2017).

A visual inspection of the bearing provides additional infor-
mation on how to prevent problems from reoccurring. This
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includes altering the bearing design, lubrication or operation
and maintenance procedures. Another important application
of bearing inspections is quantifying its damage severity, such
as spall size. This information can be fed back to sensor-
based condition monitoring systems enabling supervised ma-
chine learning for bearing diagnostics and prognostics. In-
spections are also being used to determine whether a bear-
ing qualifies for remanufacturing (Chiarot, Cooper Ordofiez,
& Lahura, 2022). Remanufacturing is a process which en-
ables re-using the bearing by means of polishing or grinding
its components, potentially doubling its life. To summarize,
visual bearing inspections can significantly prolong average
future bearing life in an asset and therefore reduce related
costs and environmental impacts, e.g., due to the manufactur-
ing process of the bearing.

Unfortunately, visual postmortem analysis of bearings require
an application engineer with many years of experience, which
is something not always readily available. This limits its scal-
ability to be applied to a large population of bearings used
in an asset. In this work we propose an image-based deep
learning algorithm, which can assist the technician replacing
the bearing. For example, a picture can be taken of the bear-
ing components with a smart-phone, where the software auto-
matically provides insights on proposed maintenance actions,
altering bearing designs, its remanufacturability and provide
an automated connection in supervising condition monitoring
algorithms.

Bearing failures can occur due to a wide variety of reasons
(Liu & Zhang, 2020), where each failure category can lead to
a unique footprint observable during visual inspection (SKF,
2017). The different categories of bearing failures have been
standardized and well described in (ISO-15243-2017, 2017),
also referred to as bearing failure modes, where, in total,
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Figure 1. ISO 15243-2017 failure mode classifications. Im-
age taken from (SKF, 2017).

seven main categories of failure modes are proposed. An
overview of the different failure modes is shown in Figure 1.
In Figure 2 an overview is shown on the most common failure
modes based on collected statistics from bearing inspections
(SKF, 2017).
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Figure 2. An example of SKF’s field failure statistics, de-
tailing the frequency of various failure modes. Image taken
from (SKF, 2022).

Applying deep learning algorithms to automate visual inspec-
tions in PHM applications is not new. A significant amount
of work has been done in the field of structure health mon-
itoring. Examples include crack detection in concrete struc-
tures caused by, e.g., changing loading and corrosion (Azimi,
Eslamlou, & Pekcan, 2020). More examples can be found
from the steel industry, that is, detection and classification of

steel surface defects (Fu et al., 2019; Wang, Xia, Ye, & Yang,
2021). However, to the authors knowledge there is no specific
method to classify bearing failure modes.

In this work a framework of selecting a deep-learning based
object detection model is introduced. The object detection
model is specifically tasked to identify failure modes in im-
ages of bearing components, including the inner ring, outer
ring, and rolling elements. This model effectively detects and
pinpoints failure features, subsequently determining the as-
sociated failure mode within the image. As a first step, the
selected model is trained for the top 7 most common fail-
ure modes, namely: abrasive wear, surface-initiated fatigue,
moisture corrosion, adhesive wear, current leakage erosion,
fretting corrosion, and indentations from particles (Figure 2).

2. DATASET

The foundation of bearing failure mode object detection model
lies in the curated dataset. The dataset encompasses a broad
spectrum of bearing images, taken from industrial centres
across the globe and showcases various bearing types along
with the one or more of the top seven primary failure modes
identified for diagnosis. This breadth in dataset variety was
crucial for the development of a model capable of accurately
identifying and classifying a range of real-world bearing fail-
ures captured in their operational environment.

Number of images per class
3635

Number of images

Figure 3. Final number of images per failure class after se-
lecting process and annotation done by expert.

The precision in our dataset was ensured by an expert led data
labelling team based on SKF employee’s experience. Special-
ists in bearing maintenance meticulously labeled and anno-
tated each image, drawing accurate bounding boxes around
the designated failure modes. During the annotation pro-
cess images were selected based on their representation of
the failure mode, making sure the failure mode characteris-
tics and features are within clear view according to the ex-
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pert. Furthermore, an assessment was made on the quality
of the image itself, filtering any blurry images. Images ob-
jects other than bearing components (maintenance tools, ta-
bles, etc) were also removed from the training set. In the
end the dataset comprised of 11k images across the 7 chosen
failure modes as shown in Figure 3. Images were normalized,
padded and resized to 640x640 pixels. Additionally, augmen-
tation techniques were applied to the images before ingesting
into the model.

Here the bar graph illustrates a significant class imbalance
within our object detection dataset, where certain classes are
overly represented with a high number of images, while oth-
ers have markedly fewer instances. This imbalance poses a
challenge for effective model training, as it can lead to bi-
ases towards the more prevalent classes, potentially compro-
mising the model’s ability to accurately detect and classify
less represented objects. Addressing this issue is crucial for
enhancing the model’s overall performance and ensuring a
balanced sensitivity across all classes. To overcome this, as
a first step, the shift-scale-rotate augmentation was applied
with a rotation limit set to +/- 15 degrees. This method in-
volves stochastic affine transformations that adjust the origi-
nal images through shifting, scaling, and rotating. Such trans-
formations significantly increase the dataset’s variety without
the need to collect new samples.

3. PROPOSED METHODOLOGY

The methodology employed in developing an object detection
model aimed at detecting failure modes in images of bearings
was twofold: firstly, leveraging out-of-the-box (pretrained)
models, and secondly, fine-tuning these models on the earlier
described dataset split into an 80%-20% training and test set,
respectively.

3.1. Model Selection

To determine the optimal pre-trained model for our applica-
tion, we conducted a comparative analysis of several state-of-
the-art models. Each model was evaluated using its default
parameters, with the only modifications being the image size
and batch size. Specifically, all models were trained with im-
ages resized to 640x640 pixels and a batch size of 4. The
models included in the study were as follows with their re-
spective backbone (Zou, Chen, Shi, Guo, & Ye, 2023):

* EfficientDet (DO)

e EfficientDet (D4)

* Retinanet (Resnet - 101 - 2x)
¢ Retinanet (Resnet - 101 - 1x)
e Retinanet (Swin)

* Yolo-x (Yolo - Tiny)

The models were compared using the COCO metric. The

COCO metric, used for evaluating object detection models,
includes several key components: Average Precision (AP)
and Average Recall (AR) across multiple IoU thresholds (0.50
to 0.95). The metric also evaluates performance across differ-
ent object sizes (small, medium, large), providing a compre-
hensive and standardized assessment of a model’s detection
capabilities. This robust evaluation ensures accurate localiza-
tion and detection across varied conditions (Lin et al., 2014).

3.2. Training the Model

The dataset, characterized by class imbalance among differ-
ent failure modes, necessitated a tailored approach to model
training. To mitigate the effects of class imbalance, focal loss
was integrated into the model’s loss function (Lin, Goyal,
Girshick, He, & Dolléar, 2017). This modification aimed to
amplify the loss associated with misclassified examples, par-
ticularly those from underrepresented classes, thereby enhanc-
ing the model’s sensitivity to such cases. The models were
trained with a learning rate of 1e-4 for 20 epochs.

One of the paramount challenges encountered during train-
ing was the potential for overfitting. To counteract this, tech-
niques such as early stopping, layer normalization, and weight
decay were employed. Additionally, model performance was
evaluated using the test set to ensure generalizability beyond
the training data. Early stopping as a regularization technique
was also used to prevent overfitting, by halting the training
process before the model’s performance on the test set starts
to degrade. By terminating the training at this optimal point,
early stopping ensures that the model retains its ability to
generalize well to new, unseen data, thereby mitigating over-
fitting and improving the model’s overall predictive perfor-
mance.

4. RESULTS

Figure 5 shows the results of the comparative study of differ-
ent model architectures. The study revealed that EfficientDet
and RetinaNet emerged as top candidates in terms of accu-
racy in contrast to the Yolo methods. The RetinaNet model,
with its ResNet backbone, was ultimately selected based on
its performance.

The implementation of early stopping mechanisms helped mit-
igate this risk by halting training once the test loss plateaued,
as shown in Figure 6. This strategy proved invaluable in pre-
serving the model’s generalizability.

Example model predictions for the different failure modes are
shown in Figure 4. Looking at the confusion matrix in Figure
7, the Retinanet model detection threshold was set in a way
that left around 32% of the images without any predictions
resulting in low recall. Among the images with predictions,
there was a notable emphasis on precision, as evidenced by a
significant number of predictions aligning along the matrix’s
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Figure 4. Example predictions for several failure modes. From left to right, top to bottom: Surface initiated fatigue, abrasive
wear, adhesive wear, moisture corrosion, fretting corrosion, current leakage erosion and indentations from debris.
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Figure 5. Comparative analysis of investigated object detec-
tion models.
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Figure 6. Graph depicting model accuracy along epochs with
and without early stopping indicated to prevent overfitting.
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Figure 7. Confusion matrix for the top performing model
(RetinaNet - ResNet 101, fpn) model applied to the test set.
Displayed results pertain exclusively to images with predic-
tions.

In evaluating the performance of the object detection models,
we have observed a notable discrepancy between the model’s
precision and recall, as measured by the COCO metric sys-
tem. Specifically, our model demonstrates high precision (as
shown in Figure 7), indicating a strong ability to correctly
identify and label objects when it decides to do so. However,
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this is adjacent to a significantly lower recall, suggesting that
the model is more conservative in its detection, often missing
objects that should have been detected. This characteristic
leads to a lower overall COCO metric score, which incorpo-
rates both precision and recall into its evaluation. Despite
this, the high precision of our model still presents substantial
utility in specific applications where the cost of false positives
is high, and accuracy in the detection of identified objects is
paramount. In such scenarios, our model’s ability to mini-
mize incorrect detection — ensuring high confidence in the
positive detection it makes — can be more valuable than de-
tecting every possible object, underscoring the importance of
considering application-specific requirements when evaluat-
ing model performance. Therefore, while the overall COCO
metric may be lower, the high precision of our model affirms
its applicability and effectiveness in contexts where precision
is critically valued over recall.

5. CONCLUSION

The model, selected through bench-marking various neural
network architectures, was trained to detect seven primary
bearing failure modes, addressing challenges such as class
imbalance and image rotation inconsistencies. Key to the suc-
cess was the meticulous collection and preparation of images.
A dataset comprising 11k images of bearings with annotated
failure modes was curated to train the model. Through thor-
ough data gathering, precise annotation, and strategic data
augmentation, we created a robust dataset that improved the
accuracy of the model and real-world applicability. Reti-
naNet, with its ResNet 101 - fpn backbone, was chosen for
its performance. This work shows the feasibility of such a
model to be used in an assistive tool where failure modes
give insights on how to prolong average future bearing life in
an asset and therefore reduce related costs and environmental
impacts.
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