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ABSTRACT 

This study addresses a critical shortfall in aircraft landing 

gear (LG) maintenance: the challenge of detecting 

degradation that necessitates intervention between scheduled 

maintenance intervals, particularly in the absence of hard 

landings. To address this issue, we introduce a Performance 

Degradation Metric (PDM) utilising Flight Data Recorder 

(FDR) output during the touchdown and initial roll phases of 

landing. This metric correlates time-series accelerometer data 

from a Saab 340B aircraft’s onboard sensors with non-linear 

response dynamic models that predict expected LG travel and 

reaction profiles across a set of ground contact cycles within 

a single landing. This facilitates the early detection of 

deviations from standard LG response behaviour, pinpointing 

potential performance abnormalities. The initiator of this 

approach is the Landing Sequence Typology, which 

systematically decomposes each aircraft landing into 

successive dynamic periods defined by their representative 

boundary conditions. What follows is the setting of initial 

parameters for the ordinary differential equations (ODE)s of 

motion that determine the orientation and impact responses 

of the most critical components of the LG assembly. Solving 

these ODEs with the integration of a non-linear 

representation of an oleo-pneumatic shock absorber model 

compliant with CS25 aircraft standards produces anticipated 

profiles of LG travel based on factors such as aircraft weight 

and speed at touchdown, which are subsequently cross-

referenced with real accelerometer data, enhanced by video 

footage analysis. This footage is crucial for verifying the 

sequence of LG touchdowns and corresponding 

accelerometer outputs, thereby bolstering the precision of our 

analysis. Upon the conclusion of this study, by facilitating the 

early identification of LG performance deviations in specific 

landing scenarios, this diagnostic tool shall enable timely 

maintenance interventions. This proactive approach not only 

mitigates the risk of damage escalation to other components 

but also transitions main LG maintenance practices from 

reactive to proactive. 

1. INTRODUCTION 

Landing gear (LG) operational health is of paramount 

importance in ensuring aviation safety and optimising 

maintenance practices. Accurate assessment of LG 

component health can prevent catastrophic failures and 

reduce unscheduled downtime. Given the unique challenges 

posed by LG structural health monitoring (SHM)—arising 

from the use of high-strength, low-toughness materials in 

primary LG components, with relatively smaller critical 

crack propagation thresholds compared to the airframe—

there is a compelling need for tailored monitoring 

approaches. A crucial constituent of LG SHM involves the 

monitoring of load, usage, and/or signs of crack initiation to 

estimate the remaining fatigue life of its monitored 

component/s. As a consequence, a prominent number of 

proposed LG health monitoring techniques rely on direct 

sensor placements, which can be intrusive, add weight, and 

increase the risk of error and maintenance requirements due 

to the introduction of said sensors. This study thereby 

addresses a prominent issue in the current LG integrity 

assessment approach followed by operators and MROs: the 

inability to detect LG degradation that requires intervention 

between scheduled maintenance intervals without the 

presence of hard landings. By inspecting touchdown and 

follow-up roll data at each landing cycle of the aircraft being 

monitored, we aim to remove the need for additional sensors. 

A Performance Degradation Metric (PDM) is being 

formulated, wherein the correlation of accelerometer time-

series outputs with outputs from dynamic Ordinary 

Differential Equations (ODE)s of motion solved by Simulink 

models provides an indication of whether the LG’s reaction 

profile was typical or deviant. This approach shifts the focus 
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from identifying issues like structural cracks and bearing 

wear to detecting abnormalities through deviations in 

dynamic performance from the models derived from a 

distinct set of conditions under which the aircraft interacts 

with the ground, incorporating shock absorber behaviour, 

aircraft mass, and impact speed. Awaiting identical 

conditions for comparison would necessitate an impractical 

volume of test data and landings. Therefore, this strategy 

focuses on assessing how and to what extent each of these 

variables impacts each of the main LG’s performance during 

each landing.  

Data for this study were collected using the Cranfield 

University Saab 340B aircraft, operated by the National 

Flying Laboratory Centre. This twin-engine turboprop, 

known as the National Flying Laboratory, has been 

customised to include specific experimental and teaching 

equipment to enhance its utility as a flying laboratory. The 

key modification vital for this study is the installation of an 

Ekinox-D: An INS sensor that offers orientation, heave, and 

centimeter-level position accuracy.  

The rest of the paper is organized as follows: Section 2 delves 

into the traditional and contemporary methods of LG 

maintenance, discussing the shift from time-based strategies 

to real-time health monitoring, illustrated through various 

studies and the integration of progressive monitoring systems 

like fiber-optic sensors. In Section 3, we outline our 

methodology, emphasizing the integration of video footage, 

on-board sensor data, and dynamic modelling to analyse 

aircraft landing dynamics. Data collection techniques and the 

specific analytics used to extract and process this data are also 

detailed. Section 4 projects the future direction of our 

research, outlining the subsequent phases including sensor 

data analysis, structural dynamic response assessment, and 

the continuous development of our Performance Degradation 

Metric (PDM).  

2. BACKGROUND 

2.1. Traditional LG Maintenance Approaches 

Traditionally, LG maintenance has leaned on time-based 

preventive strategies and Non-Destructive Testing (NDT) 

methods, including magnetic particle inspection, ultrasonic 

testing, and eddy current testing, as Schmidt (2008) notes. 

These conventional methods, applied during fixed 

maintenance intervals, often necessitate the disassembly of 

LG components for thorough inspection. In this context, the 

introduction of progressive monitoring marks a significant 

shift in maintenance paradigms. For instance, Kaplan et al. 

(1997) demonstrated the application of damage tolerance 

methods to extend the life of LG assembly subcomponents of 

a CASA 212 aircraft beyond their initial Safe-life design 

limits. By conducting loads, stress, and crack-growth 

analyses, they determined tailored inspection intervals. This 

approach underscores the potential of integrating damage 

tolerance principles to refine LG maintenance practices, 

paving the way for the adoption of landing profile-specific 

and load-adaptive health monitoring. Despite their intuitive 

approach and its success in extending the gear’s service life, 

their methodology does not support real-time nor near-real-

time assessment of LG health—a capability our current study 

seeks to develop. Importantly, while their approach 

contributes to extending the safe operational life of LG 

components, our project does not address direct estimations 

of life extension beyond set service limits, focusing instead 

on identifying and addressing immediate health concerns in 

operational conditions. 

2.2. Advancements in Real-Time LG Health Monitoring 

Building on these developments, recent advancements have 

shifted focus towards real-time LG health monitoring 

systems. These often involve the placement of sensors on 

critical LG components to monitor their condition during 

operation, such as that proposed by Zhang et al. (2018), who 

studied the placement of fiber-optic sensors on the outer tube 

weld of a LG assembly to capture weld crack signals. Further 

illustrating this trend, the EU-funded E-LISA project aims to 

develop an intelligent test facility for electro-mechanical LG, 

which will include PHM functionalities for the electrical 

brake system (De Martin et al., 2022). This project focuses 

on integrating sensors and monitoring systems into a novel 

LG design to enable condition-based maintenance. Similarly, 

Delebarre et al. (2017) contribute to the expanding landscape 

of sensor-based health monitoring with their development of 

a wireless monitoring system for lightweight aircraft LG, 

which uses pressure sensors and accelerometers to measure 

the mass distribution on each LG and monitor the shock 

during the landing phase. The system aims to provide real-

time information to the pilot and maintenance personnel to 

improve safety and ease maintenance operations. 

2.3. Data Analytics and Physics-Based Modelling in LG 

Health Monitoring 

Integrating health monitoring systems into the LG 

architecture presents numerous challenges, such as coping 

with the harsh operational environment, managing the 

constraints on sensor placement, and ensuring the reliability 

of data transmission and analysis. These hurdles 

notwithstanding, the advancements in sensor technology and 

data analysis techniques offer promising pathways to 

surmount these obstacles, thereby enhancing the efficacy of 

aircraft LG health monitoring. In this vein, the work by 

(Bakunowicz & Rzucidło, 2020) presents an approach to 

detecting aircraft touchdowns using virtual sensing 

techniques by employing data from accelerometers mounted 

on structural parts of the airframe, utilising continuous 

wavelet transformation (CWT) to identify unique frequency 

signatures characteristic of LG touchdown. The CWT 

method, focusing on the detection of aircraft touchdowns 

with a high degree of precision, aligns closely with the 
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present paper’s emphasis on optimising aircraft sensor output 

for LG health assessment. By extracting critical frequencies 

from accelerometers on-board during touchdown, our 

approach seeks to isolate and analyse pre-impact signatures, 

enhancing the precision of our health assessment metrics. 

Another pertinent reference in the context of virtual sensing 

is the work of Hsu et al. (2022) and its continuation by Chang 

et al. (2023), where they harness Flight Data Recorder (FDR) 

accelerometer outputs from a fleet of aircraft to detect early 

signs of exacerbated LG shimmy, thus indicating potential 

degradation that could require maintenance beyond 

scheduled intervals. Their study covers the taxiing phase 

before take-off and following landing, employing machine 

learning (ML) to link accelerometer readings with 

maintenance records across various LG components. They 

subsequently predict potential faults with almost 100% 

accuracy on almost all LG subcomponents used in training 

their ML model based on expert input and extensive data 

from landing cycle-based maintenance actions recorded on 

those specific LG components. Our study, while also utilising 

accelerometer data, extends the analysis to include 

longitudinal accelerations and converges specifically on the 

dynamics of landing impact and the subsequent short roll 

period, used in this case to include jumps and consequentially 

the Landing Sequence Typology approach which thereby 

defines non-linear response models representing their 

corresponding periods, for a CS25 aircraft.  

 

The development of physics-based models for LG dynamics 

and health prediction has garnered significant attention in the 

field of LG SHM. These models aim to capture the 

interactions between various LG components and the forces 

they experience during operation (Schmidt, 2021). Recent 

studies have furthered this endeavour, focusing on high-

fidelity dynamic modelling, synthetic dataset generation, and 

the advancement of prognostic algorithms for enhanced 

predictive accuracy. Wu, Gu, and Liu (2007) have notably 

developed a Nonlinear Model Predictive Control (NMPC) 

algorithm for semi-active LGs, utilizing Genetic Algorithms 

(GA). This method demonstrates an enhancement in LG 

performance by optimising the damping characteristics at 

touchdown, validated through drop tests that confirm the 

simulation model's accuracy. The GA-based NMPC 

approach effectively addresses the complex nonlinear 

dynamics of semi-active LGs, ensuring optimal performance 

despite constraints like the control valve's rate and magnitude 

limitations. In our approach, unlike the empirical validation 

possible through drop tests as utilised by Wu et al. (2007), we 

navigate the absence of a drop-test rig by emphasizing the 

integration of real-world operational data and physics-based 

models to refine our simulation accuracy further. This is in 

line with Krüger and Morandini's (2011) emphasis on the 

critical role of numerical simulation in LG dynamics 

assessment. Their research highlights the significance of 

modelling LG's dynamic response to various load excitations, 

underscoring the importance of a comprehensive 

understanding of LG dynamics for safety and performance. 

Finally, De Martin et al. (2022) present the development of 

the E-LISA iron bird, an innovative test facility for LG 

systems that includes PHM functionalities for the electrical 

brake system. The E-LISA project aims to reproduce the 

dynamic loads on the LG during landing, taxiing, and take-

off, as well as the real contact between the LG wheel and 

runway. This approach aligns with our research objective of 

integrating real-world operational data and physics-based 

models to refine simulation accuracy and develop a hybrid 

approach for LG health assessment. De Martin. et al. (2022) 

present a high-fidelity dynamic model of the test rig, which 

incorporates the effects of runway-irregularities. This model 

serves as a foundation for generating synthetic datasets 

representative of various operating conditions and 

degradation levels, facilitating the development of prognostic 

algorithms. Their approach is similar to our use of physics-

based models to predict the degradation of LG performance 

over time, and it highlights the importance of incorporating 

realistic operational conditions and representative component 

interactions in the set dynamic equations used to represent the 

conditions of a landing. 

Figure 1. Integrated Framework for Aircraft Touchdown Analysis 
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3. METHODOLOGY 

The methodology of this research is designed to analyse 

aircraft landing dynamics by integrating aircraft touchdown 

video footage, on-board sensor data, and bookcase non-linear 

response dynamic models, or ‘archetypes’, representative of 

the touchdown phases of each landing analysed. This multi-

faceted approach allows for a robust examination of the 

impact sequences and a connection to the oleo-pneumatic 

shock-absorber (OSA) behaviours of the LG associated with 

different landing types. The study focuses on the following 

key aspects: capturing precise landing dynamics through 

video and sensor data, categorising landing types, 

formulating and solving ODEs to simulate these events, and 

validating these simulations against real-world data as 

feasibly as possible. Details follow in the subsections below, 

with corresponding visualisations provided in Figure (1), 

where the actions and outputs are denoted in green and blue 

blocks, respectively. 

3.1. Data Collection 

3.1.1. Video Footage Acquisition 

A mirrorless APS-C video camera equipped with a telephoto 

lens is positioned on a fluid-head-equipped tripod by the 

runway border to record the final approach and touchdown. 

Operating at a frame rate of 29.97 fps and keeping the aircraft 

in-frame while extending the focal length to include only the 

undercarriage in the frame as soon as the aircraft is critically 

close to the airstrip, we ensure that each phase of the LG’s 

contact sequence with the runway is meticulously 

documented. To ensure clarity and precision in the footage, 

the camera's shutter speed is set to at least four times the 

frame rate. This serves two critical purposes: it counteracts 

the shutter roll effect noticeable during fast panning—

important for preventing  deformations in the objects in-

video, affecting important parameters such as adding 

distortions to tire deformation, which would be misleading—

and it minimises motion blur to capture crisp imagery (when 

inspecting each frame in the video) of exact moments of 

touchdown, spin-up, spring-back, and hop. Additionally, the 

ISO setting is carefully controlled to prevent excessive photo 

grain, which impairs the accurate identification of the wheel 

edges contacting the airstrip. This footage is crucial for 

visualizing the aircraft's attitude at approach and touchdown, 

and the temporal separation between all undercarriage units; 

the main right, main left, and nose gear contacting the 

runway. The video data serves two primary purposes: it 

provides a visual reference for validating sensor data 

(temporal OSA impact delivery to on-aircraft accelerometer 

response output) and helps in identifying any discrepancies 

between observed and simulated main LG assembly 

behaviours. In Figure (2), an example of the footage contents 

may be seen. 

 

Figure 2. touchdown footage frame 

3.1.2. On-board Data 

The aircraft is equipped with an IMU as part of a custom fit 

Inertial Navigation System (INS); the Ekinox-D, operating at 

sampling rates of 50Hz. The onboard data acquisition takes 

place by the use of the Curtiss-Wright/ ACRA Control KAM-

500 system, which collects analog data from the Saab 340B’s 

on-board sensors, including the Rockwell Collins AHS-3000 

Attitude Heading Reference System. This setup captures 

essential aircraft dynamics and engine metrics using the 

Commercial Standard Digital Bus (CSDB) protocol (Alam, 

Whidborne, and Westwood, 2024). The data from these 

sensors are filtered to focus specifically on the touchdown 

phase, where detailed information about acceleration spikes 

and other dynamic responses is crucial for later analysis and 

simulation. The parameters recorded by these instruments 

include data on: 

• Inertial Measurement Unit (IMU) and navigation: roll, 

pitch, heading, heave, surge, and sway from a MEMS 

(Micro-Electro-Mechanical Systems) sensor. 

• Aircraft dynamics and engine metrics: accelerations, 

aileron and elevator deflections, angle of attack, fuel 

flow rates, gas generator speeds, propeller speeds, and 

turbine pressures. 

• Environmental conditions: Airspeeds (indicated, true), 

Mach numbers, air temperatures, and radio altitudes. 

In this study of aircraft dynamics, particularly before the 

initiation of gas generators and propellers, it is essential to 

calculate the root mean square (RMS) of accelerometer 

readings under stationary conditions. RMS is a statistical 

measure used extensively in signal processing to quantify the 

magnitude of a varying quantity. It provides a concise metric 

of the vibrational and transient accelerations experienced by 

the aircraft when it is static, which serves as a baseline for 

understanding the alterations in mechanical vibrations once 

the aircraft's propulsion components are activated. This 

baseline is critical for isolating and analysing the effects of 

mechanical and aerodynamic forces on the aircraft's 

structural integrity and operational efficacy. By calculating 
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the RMS value of accelerometer data while the aircraft is 

stationary, we can establish a reference point against which 

deviations caused by the gas generators and propellers can be 

measured, thereby offering insights into the dynamic 

behaviour of the aircraft under different operational 

conditions. Below are the RMS values which show minimal 

deviations and reaffirm the trustworthiness of the 

accelerometers for our use case: 

INS MEMS Sensor: 

• Lateral Acceleration: 0.0199g 

• Longitudinal Acceleration: 0.0049g 

• Normal Acceleration: 1.026g (indicative of gravity's 

influence) 

Aircraft's on-board accelerometers: 

• Lateral Acceleration: 0.0046g 

• Longitudinal Acceleration: 0.0015g 

• Normal Acceleration: 1.026g 

3.1.3. Parameters Monitored for Data Pruning 

In this step, a subset of the original time-series data is created 

based on the critical time period for analysis. Here, the 

Gaussian kernel, synonymous with the Radial Basis Function 

(RBF), is pivotal in the field of kernel-based change point 

detection (KPD), offering a nuanced approach to analysing 

complex data patterns. Its efficacy proves useful as a part of 

our method when filtering the time-series accelerometer 

readings for point-of-touchdown. This algorithm was 

rigorously tested across numerous flights, to ensure 

consistent touchdown indications across all accelerometer 

axes. Seeking a universally applicable method across diverse 

flight profiles, the single-point RBF approach (dynamic 

programming) was used. This method, applied to the 

derivative of time-series accelerometer readings showed 

promising adaptability and accuracy.  Providing start and end 

points close to a chosen cut-off of radio-altitude also reduces 

its computing requirements and is currently the chosen 

approach. In Figure (3), you may see a plot of accelerometer 

measurements, their derivatives, and a red dashed line 

running vertically along the plot, indicating the KPD output 

corresponding to point of touchdown for the landing aircraft.  

 
Figure 3. Accelerometer values and their derivatives w.r.t 

time for a level touchdown. 

3.2. Landing Sequence Typology 

To facilitate a structured analysis where causes and effects 

are recognised between landing load and landing variables, 

be they environmental, kinematics based, and/or temporal, 

each landing event is decomposed into several periods based 

on the amount of ground contact cycles. Each period is 

subsequently fitted to a category of distinct profiles based on 

observed dynamics and impact characteristics. The profiles 

are developed by analysing both video footage and sensor 

data to characterise each sequential landing period. This 

involves examining footage frames for the tyre impact 

timing, impact sequence, and the incidence angle, in addition 

to KPD-dictated touchdown indicators which serve in 

conjunction with the footage to dictate when the first period 

(linked to a profile) ends and the next begins. Each profile 

represents a set of initial conditions that are subsequently 

used to tailor the non-linear response archetypes. The profiles 

are categorised to be represented by, at their simplest: 

• A smooth landing characterized by a negligible time 

difference between the touch-down of the rear right and 

left LG. 

• High impact landings with minimal temporal separation 

between the rear LGs. 

• Asymmetrical high impact landings affecting one side 

more than the other. 

• Landings involving bounces, skips, or jumps. 

By defining the characteristics of each period and linking it 

to a profile, the dynamic equations set for each profile can be 

adjusted to reflect the real-world dynamics observed during 

the data collection phase. This step ensures that they are 

representative of the variety of conditions the aircraft 

encounters in the duration of its single landing event. 
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3.2.1. Empirical Data Subsets Creation  

Following the detailed decomposition of landing sequences 

as outlined in Section 3.2, and the rigorous data pruning 

mechanisms discussed in Section 3.1.3, the next phase 

focuses on compiling targeted time-series databases. These 

databases commence from the precisely determined 

touchdown point, leveraging the Gaussian kernel's efficacy in 

pinpointing this instant with high accuracy. The newly 

formed databases are confined to the parameters that are most 

indicative of landing dynamics and are crucial for the 

subsequent analysis: 

• Accelerometer Outputs: Capturing the triaxial forces 

during the landing, these readings are pivotal for 

assessing the aircraft's response to touchdown dynamics. 

• Aircraft Attitude: This includes the pitch, roll, and yaw 

of the aircraft at the point of touchdown, offering insights 

into the angular orientations that influence landing 

impacts. 

• Speed: Ground speed and airspeed are included to 

correlate the velocity at touchdown with the landing 

impact severity. 

• Gross Weight: The total weight of the aircraft influences 

the impact force and is thus critical for understanding the 

stress distribution on landing gears. 

• Radio Altitude: For confirming the moment of 

touchdown and aids in synchronising other data streams. 

Each database subset is tailored to represent a single impact 

cycle, which is identified based on the landing sequence 

typology. This approach ensures that each dataset is 

representative of specific landing conditions, thereby 

allowing for a more granular analysis of landing dynamics. 

The speed, gross weight, and radio altitude are inserted into 

the completed landing condition archetypes for an output of 

the sequential response profiles that would allow for 

comparisons with the original subset databases containing the 

additional parameters representative of the period being 

inspected. 

3.3.  Landing Condition Archetypes 

The preceding step, landing sequence typology, carries us 

closer to accurately representing the dynamics of a landing 

event by segmenting it into distinct sequential periods. Each 

period is tailored with specific boundary conditions 

corresponding to a respectively identified landing profile, 

enhancing the ground truth of our simulations, herein referred 

to as ‘archetypes’ which consist of non-linear dynamic ODEs 

combined with a model of a CS25 aircraft’s shock absorber 

and its interaction with the tyre and aircraft mass at level 

landing, which are critical for characterising the physical 

response of the aircraft's landing gear system under load. 

Given the lack of physical drop test rigs for empirical 

validation, it is imperative to assess the fidelity and 

robustness of these models. 

Validation occurs in a bifurcated approach: Initially, the 

fidelity of the physics-based Simulink model is confirmed to 

ensure alignment between simulated performances with 

actual aircraft landing observations. This verification 

leverages detailed video stream analysis and FDR 

accelerometer data, which guide the establishment of 

stringent constraints and operational requirements specific to 

the landing gear system components in the simulation. These 

requirements are grounded in recognized benchmark 

methods, such as implementing damping strategies to 

mitigate resonance phenomena like shimmy and gear walk in 

the simulated landing gear assembly. A critical damping 

target, as stipulated by SAE International (2017) is reducing 

system oscillation to no more than a third of its original 

amplitude within three oscillation cycles post any 

perturbation. 

3.3.1. Sequential Period Differential Equations 

Using the data derived from the landing profiles, a set of 

ODEs is devised for each scenario. Free body diagrams 

(FBD) are utilised prior to forming these equations, ensuring 

that all relevant forces and interactions are accurately 

represented. The FBD of a level landing can be seen in Figure 

(4). These equations consider the mass, damping 

characteristics, and stiffness of the aircraft’s LG and 

structure. They include the non-linear characteristics of a CS-

25 aircraft shock absorber, the interaction between the LG 

and the runway surface, and the effects of tyre dynamics on 

the LG system performance.  

 

Figure 4. FBD for a level landing 

 

The Simulink model in Figure (5) is adapted from that 

provided by (Jan R. Wright & E. Cooper, 2014). Simulink's 

environment allows for the continuous adjustment and real-

time simulation of the equations, facilitating an iterative 

process of model refinement. The system is broken down into 

the aircraft rigid body mass and tyre mass, each with their 

own set of ODEs. The aircraft mass ODE includes terms for 

the spring and damper forces connecting the aircraft and tyre. 

The tyre mass ODE considers the forces from the OSA spring 

and damper, the tyre spring force, and runway height profile. 

A simple rigid aircraft landing system, assuming lift equals 

weight at touchdown, and ignoring spin-up and spring-back 
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and resulting LG motion due to them, is broken down as 

follows. Given: 

• 𝒉𝒂: Height of the aircraft mass from a reference point. 

• 𝒉𝒕: Height of the tyre mass from the same reference 

point. 

• 𝒉𝒈(𝒕): Runway height from the reference point, which 

is a function of time. 

• 𝒌𝒂: Spring constant connecting aircraft and tyre. 

• 𝒅𝒂: Damper constant connecting aircraft and tyre. 

• 𝒌𝒕: Spring constant connecting tyre and ground. 

The resulting ODEs for the aircraft and tyre mass, 

respectively, are in Eq. (1) and Eq. (2) below: 

𝑚ℎ̈𝑎 = −𝑘𝑎(ℎ𝑎 − ℎ𝑡) − 𝑑𝑎(ℎ̇𝑎 − ℎ̇𝑡)         (1) 

𝑚𝑡ℎ̈𝑡 = 𝑘𝑎(ℎ𝑎 − ℎ𝑡) + 𝑑𝑎(ℎ̇𝑎 − ℎ̇𝑡) − 𝑘𝑡(ℎ𝑡 − ℎ𝑔(𝑡))   (2) 

Additional ODEs are introduced for pitch and yaw 

dynamics depending on the period profile being modelled, 

considering the aircraft's moments of inertia, aerodynamic 

moments, and LG forces, and are a work-in-progress. 

 

 
Figure 5. Simulink representation for a rigid-body level 

aircraft landing on main landing gear. 

 

3.3.2. Non-linear Oleo-Pneumatic Shock Absorber 

The OSA modelled employs a gas spring mechanism (the 

integral part affecting its dynamics), where the dynamics are 

significantly influenced by changes in gas volume and 

pressure during landing impacts. Its functionality is governed 

by the Ideal Gas Law, expressed as  
𝑃𝑉𝛾 = 𝐶 , where P represents the absolute pressure, V the 

volume of the gas, γ the polytropic constant, and C a constant. 

The value of γ varies based on the OSA’s operational 

conditions: 

• Static Conditions (γ=1): This scenario represents steady, 

slow compressions such as during taxiing, where the 

temperature is maintained constant due to sufficient time 

for heat transfer. 

• Dynamic Conditions (γ=1.3−1.4): During rapid 

compressions, such as landings, the process is adiabatic 

with no heat transfer, reflecting a higher γ value. 

 

During the OSA’s operation, as the LG encounters forces 

from the runway, the piston compresses, altering the gas 

volume. For a given change in volume ΔV caused by the 

piston stroke z, the new volume 𝑉2 is given by 𝑉2 = 𝑉1 − 𝐴𝑧 

, where A is the piston area. The corresponding pressures 

before and after compression, from the fully extended state 

𝑉∞ to the compressed state 𝑉𝑐 are linked by Eq. (3): 

 

𝑃∞𝑉∞
𝛾 = 𝑃𝑐(𝑉∞ − 𝐴𝑧)𝛾         (3) 

 

The absolute pressure/displacement relationship can then be 

expressed in Eq. (4), where 𝑧∞ is the fully bottomed distance 

(Jan R. Wright & E. Cooper, 2014): 

(
𝑃

𝑃∞
) = (1 −

𝑧

𝑧∞
)

−𝛾

                (4) 

 

According to Currey (1988), the typical characteristics for 

these calculations are as follows: 

• Piston Area (A): Depends on the static pressure in the 

shock absorber, e.g., A=0.005m2 if 𝑃static = 100 bar. 

• Pressures: 𝑃𝑐 = 3𝑃static  and 𝑃∞ = 0.25𝑃static . 

• Volume Ratios: Assuming 𝑉∞/𝑉𝑐 = 12, then 𝑉∞ = 𝑉𝑐 +
𝐴 ⋅ 𝑧static . 

During landing, assuming that the lift equals the weight of the 

aircraft and neglecting tyre deformation to simplify the 

energy considerations, the kinetic energy of the aircraft 

equates to the work done by the OSA as in Eq. (5) (Jan R. 

Wright & E. Cooper, 2014): 

1

2
𝑚𝑣𝑦

2 = 𝜂SA𝐹LGmax𝑧𝑠 = 𝜂𝑠𝜂LG𝑊𝑧𝑠               (5) 

Where: 

• 𝑚 : Mass of half the aircraft plus part of the landing gear 

above the OSA. 

• 𝜂SA : Efficiency of the OSA, typically around 0.8. 

• 𝜂LG : LG load factor, ranging from 2 to 2.5 for CS-25 

aircraft, representing the ratio of (static + dynamic 

reaction load) to (static load). 

• 𝑊 : Weight of the aircraft, equal to 𝑚𝑔. 
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The force generated by the OSA, which is crucial for 

mitigating the impact during landing, is a function of the 

pressure differential across the piston. This force contributes 

to the overall dynamics of the aircraft's LG by opposing the 

landing load and dissipating kinetic energy. This is then 

translated into the Simulink environment through a series of 

blocks representing the aircraft's landing dynamics. The 

forces calculated from the OSA’s pressure and volume 

changes are fed into the model to simulate the periods within 

the real-time landing event. These blocks use look-up tables 

generated from the aforementioned theoretical calculations. 

3.3.3. Sequential Response Profiles 

Sequential response profiles are derived from the outputs of 

the Simulink model to assess the performance of the OSA  

and the travel behaviour of the main LG during each 

sequential period. These profiles are essential for evaluating 

what similarities can be inferred between the archetypes and 

the empirical subset time-series data.  The response profiles 

include the shock-absorber travel time-series, which tracks 

the displacement and normalised load absorbed over time, 

and the tyre reaction time-series, documenting the reaction 

forces of the tyre which reflect the dynamics of the unsprung 

mass. The analytical approach involves aligning the data 

starting at the moment of touchdown, identified by radio 

altitude and verified through accelerometer data, ensuring 

that the simulation phases are synchronized with the actual 

event timings. The Simulink solver continuously processes 

the differential equations representing the landing dynamics. 

The shock-absorber's travel and tyre reaction forces are 

methodically captured and plotted to provide an examination 

of the forces at play during the landing.  

3.4. Comparison with On-board Data 

In parallel, while video footage is used to validate the 

temporal and sequential accuracy of the archetypes in some 

capacity, the sequential response profiles (Simulink outputs) 

are compared to the time-series empirical accelerometer 

output corresponding to each of these periods. In our study, 

the primary objective of comparing Simulink model outputs 

to empirical accelerometer data is to establish a robust 

relationship in terms of observed trends and to correlate these 

observations with specific landing profiles, such as a hard 

level landing. This analysis involves comparisons of both 

Simulink outputs and accelerometer data collected from the 

aircraft during defined landing scenarios. The goal is to 

systematically expand this analysis across multiple flights 

and varying initial conditions, thereby compiling a 

comprehensive set of correlations between the model's 

predictions and the actual accelerometer responses recorded 

on the aircraft. For each period of each landing event 

analysed, the model outputs and accelerometer readings are 

compared to determine how closely the simulated responses 

(from the Simulink model) align with the real-world data 

under similar operational conditions. Key parameters 

considered during these comparisons include aircraft speed, 

gross weight, and radio altitude variation which would give 

us vertical speed at the point of touchdown. Through repeated 

evaluations across diverse flight conditions, this method 

allows us to refine our understanding of the dynamic 

interactions between the aircraft's LG and the runway 

surface.  

3.5. Performance Degradation Metric Definition  

As the dataset grows, encompassing a wider array of flight 

profiles, we progressively build a Performance Degradation 

Metric (PDM). This metric is designed to assess, using only 

the time-series output from the aircraft's accelerometers at 

touchdown, whether the observed accelerometer responses 

align with expectations derived from our simulations and 

previous correlations. This involves two critical analyses: 

first, evaluating the output of the Simulink model 

corresponding to the given profile (in the form of sequential 

response profiles for the specific period), and second, 

examining the established relationships between key 

accelerometer performance indicators, including peak-to-

peak time, temporal peak separation, and time interval 

analysis relative to specific thresholds, and their alignment 

with Simulink model outputs. Based on the discrepancies 

identified between the simulated results and the actual data, 

adjustments are made to the ODEs and their parameters in the 

Simulink model. These adjustments may include changes in 

the damping coefficients, stiffness parameters, and mass 

distribution within the landing gear system. Each iteration 

aims to reduce the error margin and enhance the fidelity of 

the model. This approach aims to ensure as much as possible 

that each phase of the investigation contributes to a 

systematic and scalable understanding of the landing 

dynamics, which is crucial for advancing the predictive 

capabilities of our models.  

Central to the separation in terms of model comparison of this 

analysis is the delineation of the minimal interval necessary 

for both main LGs to contact the runway simultaneously in a 

level touchdown—a scenario that equally distributes the 

landing load but remains exceedingly rare due to the 

imperative for pilots to adjust for crosswinds through 

controlled bank angles and the inherent inconsistencies 

present in airstrip surfaces. In recognising that aircraft 

landings may encompass a complex combination of the 

aforementioned scenarios, the PDM shall incorporate a 

nuanced measurement of the intensity and category of each 

phase encountered, leading to the point of analysing 

probability of performance degradation; assessing each LG 

unit’s potential for operational wear (be it the right or left LG 

assembly). By continuously refining the correlation between 

simulated outcomes and actual flight data, our study aims to 

provide reliable predictive tools that can effectively 

anticipate operational degradation of the aircraft’s landing 

systems under varied operational conditions. 
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This PDM is to output a relative operational health status of 

the main LG assemblies as shown in Figure (4). This plot 

displays the relative operational health status of the main LG 

assemblies over the course of successive landings. The initial 

operational health status is set at 100% at the commencement 

of operation (0 landings), with the Safe-life indicating the 

theorised lifespan, shown as a fixed endpoint in the plot at a 

landing life of 60k. The plot simplistically portrays the 

relative operational health as declining linearly; however, this 

does not reflect real-world conditions and is merely a 

simplification for illustrative purposes. The plot serves as a 

theoretical model, illustrating the projected outcomes we aim 

to achieve by the conclusion of the project. Key components 

include: 

• Safe Life Health Status: The dashed red line serves as 

a theoretical performance threshold. Should the 

operational health of any LG assembly drop below this 

line, as predicted by the hybrid model, this would 

suggest potential risks at which an inspection is required. 

• Left and Right LG Hybrid Approach Health Status: 

The blue and green lines show actual health status 

tracking for left and right LG, respectively, with 

maintenance actions represented by ‘x’ markers.  

• LG Failure at 5400 Landings: This trend exemplifies 

the characteristic decline preceding a failure event. 

• LG Health in Ideal Low Wear Conditions: A trend 

representing a LG assembly that has undergone 

extremely low-impact landing cycles. 

 

Figure 6. LG Operation Health Status 

 

The value of the relative operational health status represents 

the current operational condition of the system, rather than 

direct LG part degradation. Its value is relative to the 

corresponding value of the Safe Life Health Status at that no. 

of landings. In Figure (7), a closer examination of the initial 

segment of the plot in Figure (6) reveals inherent 

uncertainties in the model's operation, stemming from the 

requisite number of landing cycles needed to establish 

reliability. Currently, this figure is illustrative and subject to 

refinement as our project evolves towards more precise and 

realistic estimations. 

 

Figure 7. A close-up on no. of landings required for model 

validity 

4. PROJECT DIRECTION AND FUTURE WORK 

This paper marks the commencement of a structured 

approach for enhancing LG health assessments by means of 

virtual sensing combined with landing scenario-

representative empirical models. While this paper discusses 

the initial stages of the first study, subsequent planned 

investigations will further this exploration: 

Study 1 - Sensor Data Analysis and LG Dynamics: This 

segment focuses on extracting and analysing data from the 

FDR and IMU, comparing these to LG response profiles that 

are a result of landing condition archetypes to detect 

deviations in accelerometer oscillations and other critical 

parameters. Objectives include: 

• Operational Condition Analysis: Examining variations 

in LG dynamics across different operational conditions. 

• Performance Pattern Identification: Identifying 

desirable performance patterns and recognising 

limitations. 

Study 2 - Sensor Placement and Data Precision: This study 

aims to compare IMU and on-aircraft accelerometer outputs 

during the landing's touchdown and roll phases, to identify 

the most effective sensor placements for LG response 

evaluation. This assists in pinpointing LG performance 

patterns during crucial phases. The focus areas are: 

• Sensor Output Comparison: Crafting strategies for 

comparing sensor outputs to underline strategic 

placement. 

• Filtering Techniques: Applying filtering methods to 

sensor outputs for improved data accuracy. 

Study 3 - Structural Dynamic Response: Initiates a 

quantitative examination of modal frequencies and structural 

resonances before landing, employing high-fidelity spectral 

analysis to differentiate these from frequencies observed 
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post-touchdown. This study encompasses high-fidelity 

spectral analysis to separate pre-impact from post-impact 

frequencies. 

Results and Future Directions: Following these studies, we 

shall present: 

• PDM Development: A more detailed discussion on the 

development and validation of the PDM, including an 

assessment of operational degradation in the port and 

starboard LG relative to maintenance schedules. 

• Empirical and Theoretical Insights: A comparative 

analysis offering essential insights from our empirical 

data and theoretical models. 

• Case Studies: Application of our hybrid approach to 

real-world scenarios. 

Future initiatives will broaden these methodologies to 

encompass more aircraft components and scenarios, aiming 

to reduce aircraft downtime and enhance safety across 

various models.  
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