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ABSTRACT

Recent domain adaptation approaches have been shown to
generalise well between distant data domains achieving high
performance in machine fault detection through time series
classification. An interesting aspect of this transfer-learning
inspired approach, is that the algorithm need not be exposed
to fault data from the target domain during training. This pro-
motes the application of these methods to environments in
which fault data is unfeasible to obtain, such as the detection
of loss-of-coolant accidents (LOCA) in nuclear power plants
(NPPs).

A LOCA is a failure mode of a nuclear reactor in which
coolant is lost due to a physical break in the primary coolant
circuit. If undetected, or not managed effectively, a LOCA
can result in reactor core damage.

Three high-fidelity physics based models were created with
divergent behaviour that represent different data domains. The
first model is used to generate source domain data by simu-
lating labelled training data under both nominal and LOCA
conditions. The second and third models act as surrogates of
real plants and are used to generate target domain data, i.e. to
simulate nominal data for training and LOCA condition data
for validation.

Several deep-learning feature encoders (with varying levels
of connectivity) were applied to this LOCA detection prob-
lem. Among these, a ’Baseline’ encoder was used to quan-
tify the improvement that domain adaptation techniques make
to LOCA detection performance under large domain diver-
gences.

Classification accuracy for each model is explored within the

Henry Wood et al. This is an open-access article distributed under the terms
of the Creative Commons Attribution 3.0 United States License, which per-
mits unrestricted use, distribution, and reproduction in any medium, provided
the original author and source are credited.

context of LOCA break size and location within each plant
model.

The proposed method for LOCA detection demonstrates how
the dependence upon sparse accident-specific data can be al-
leviated through the use of domain adaptation. Detection ca-
pability of the LOCA condition is maintained even when no
data examples are available in the target domain.

1. INTRODUCTION

There is an opportunity in the nuclear industry to adopt data-
driven methods to help maintain the safe operation of critical
systems, both as a result of the improved availability of sens-
ing instrumentation and the rapid evolution of network archi-
tectures for fault detection (Gomez-Fernandez et al., 2020).
A plethora of approaches for identifying abnormal transient
behaviour, such as a LOCA, exist with foundations in proba-
bilistic methods (Aldemir, 2013), complex fluid-structure in-
teraction models (Mahmoodi et al., 2011) and Markov mod-
elling (Sakurahara et al., 2019). Although effective in fi-
nite environs, conventional methods suffer when attempting
to compensate for the lack of available labelled fault data in
the nuclear domain.

A LOCA occurs when a physical break in the reactor coolant
system releases coolant faster than recovery systems can re-
plenish it. This increases the temperature of the core, which
can damage the plant and potentially release reactivity. De-
tection of this transient behaviour is paramount to the safe
operation of pressurised water reactors (PWRs).

Time series classification through deep learning methods has
seen increased attention (Ismail Fawaz et al., 2019) in previ-
ous years, with myriad techniques being derived to tackle a
spectrum of fault detection problems (Wei & Keogh, 2006).
The nuclear industry has received its share of attention in this
regard, with neural network based methodologies tasked with
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aiding the monitoring of numerous aspects of NPPs, includ-
ing diagnosing the source of abnormalities in operation data
(Lee et al., 2021) and tuning a digital twin to provide supple-
mentary NPP data (Wang et al., 2021).

Existing examples of these methods simultaneously identify
and characterise transients whilst making remaining useful
life predictions (Rivas et al., 2024). Typically, though, these
approaches rely upon the assumptions that similar quantities
of nominal and faulty data exist, and that data gathered from
differing NPP sources (physical plants and simulations alike)
will share a similar data distribution.

One branch of deep-learning research aims at tackling this
manner of problem through Transfer Learning. Current works
in industrial contexts display impressive results regarding fault
diagnosis with minimal labelled training data under diverse
application domains (Y. Zhang et al., 2023), as well as com-
binations of global and local models providing more robust
remaining useful life predictions (J. Zhang et al., 2023). Do-
main adaptation (a subset of Transfer learning where data
sources share the same input space) can simultaneously make

data gathered from multiple sources appear more similar, whilst

separating sub-classes within those sources, eg. "Normal’ and
’Faulty’ data (Qian et al., 2023).

Existing LOCA detection procedures that attempt to over-
come the issue of the lack of available NPP accident data per-
form well in a limited range of operating conditions (Farber
& Cole, 2020). The generalised knowledge available through
leveraging transfer-learning from attainable model data has
not yet been fully exploited in the context of LOCA detec-
tion. Domain adaptation allows the transfer of the knowledge
contained in such a classifier on to a new domain containing
previously unseen behaviour.

In this work, we introduce adaptations to current transfer learn-
ing based fault detection methods with application to the de-
tection of the LOCA condition. The model design process
was guided by system experts in order to construct data ‘fea-
tures’ that well represent the NPP behaviour in both nominal
and LOCA conditions. Results show how domain adapta-
tion is able to retain the fault detection performance that is
achievable for the labelled training data when it is applied to
the surrogate models data domain.

2. PROBLEM FORMULATION
2.1. Domain adaptation overview

Consider data sampled from two distinct domains, Source (.5)
and Target (71"). The data from each domain (zg and zr, re-
spectively) posses different distributions. Additionally, sup-
pose that class labels for the data sampled from the Target
domain, yr, are unavailable. Given the data is drawn from
disparate distributions, conventional supervised methods can-
not infer knowledge about the Target domain using data from

the Source domain.

Domain adaptation provides methods for prediction of target
domain labels yr from target domain data z7 using the in-
formation present in source domain data and labels zg and
ys. In this work, we will describe a feature extractor as an
encoder: a network designed to construct a feature space Z
using the distributions of g and x7. The aim of the encoder
is to provide a transformation through which the distributions
of zg and z appear similar to each other in the feature space
Z.

The generalised feature space Z is used to aid classification
for samples from the target domain, since the encoded rep-
resentations of xg and x are similar, and we have access
to class labels for the source domain data, yg. There exist
many well documented methods by which the encoder can
construct Z, with two of the most commonly used domain-
adaptation specific measures being Mutual Information (MI)
and Maximum Mean Discrepancy (MMD).

2.1.1. Mutual Information

Ml is a statistical quantity that describes how much informa-
tion one variable conveys about another. If we consider these
variables in terms of the feature space representations of the
input domain data, i.e: zg and zr (obtained from passing
xg and x7 respectively into the transformative encoder), then
maximising the MI between the Target domain feature space
representation (z7) and the entire feature space (Z) will en-
courage the encoder to generate features that are generalised
between the two input domains.

The MI between these specific variables can be expressed as
a linear combination of the Shannon Entropy of each feature
space representation (Chen et al., 2021). The Shannon En-
tropy for a distribution A is given by

H(A)=-)_P(a)InP(a). (1)

acA

If we state that Zg and Zp are the distributions of the feature
space representations zg and zp respectively, then the MI be-
comes

MI(Zr; Z) = — Y Plzs)InP(z5)— Y P(zr)InP(27).

25€Zs zr€ZT

2)
Maximising this quantity during training promotes the gen-
eration of features that convey the largest amount of shared
information between the Target domain samples and the en-
tire set of observed samples from each domain.
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2.1.2. Maximum Mean Discrepancy

A brief description of the intended function of the MMD term
will be sufficient for understanding its relevance to this work.
The key principal that underpins MMD metrics is the idea that
if two distributions are equal, then their statistical properties
should also be equal. By using MMD, it is possible to per-
form a hypothesis test upon the functions that transform the
input domain distributions into their encoded feature repre-
sentations. These functions are embedded as a Hilbert space,
a convenient mathematical construct which allows linear al-
gebra to be applied to infinite-dimensional vectors.

Formally, the MMD between two distributions A and B on
the sets X and Y can be calculated as

MMD(4, B) = |[Ex~a[¢(X)] — Ey~plo(Y)]l|n
=supsey(Ex~alf(X)] = Ey~p[f(Y)]), )

where f is a function in the Hilbert space H and ¢ is the
transformation from the input set to the Hilbert space. The
supremum means this is equivalent to taking the maximum of
the mean difference between the distributions A and B.

In practice, the mean of the feature-space distributions is not
known, so the MMD between the two feature-space distribu-
tions must be empirically estimated by

MMD(ZS, ZT) = m Z Z QZ/)(ZS“ ZSJ)

— 2%;;¢(ZS7,ZT7)

1 A
! mzzd’(%%)» )

i jFEe

where, m and n are the number of samples drawn from Zg
and Zr, and ¢ is a Gaussian kernel representing the feature
mapping transformation. A minimisation of MMD ensures
that the distributions Zg and Zp are similar across each sta-
tistical moment, which aids in making predictions about the
unlabelled Target domain.

2.1.3. Domain adaptation-oriented loss function

The Negative Log Likelihood, NLL, cost is used to penalise
incorrect classification predictions made by the model and is
given by

k
NLL(0) = = > (i In(go;) + (1 — 5:) In(1 — §o;)), ()

i=1
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Figure 1. An example of an unsupervised domain adaptation
approach. An encoder and classifier are trained simultane-
ously to generate both a representative feature space and ac-
curate class predictions.

where, 6 is a set of probabilities attributed to each class pre-
diction, k is the number of predictions made, y is the true
class of each sample and g is the predicted class.

To perform domain adaptation the following loss function is
used:

Lpa =NLL(0) + MMD(Zs, Zr) — MI(Z1, Z).  (6)

This is a common form for a loss function seen in an unsu-
pervised domain adaptation setting, visualised in Figure 1.

For comparison, this work will also use a simplified version
of this loss function, £g = NLL(#), to represent a loss func-
tion used by a conventional supervised learning approach.

3. METHODOLOGY
3.1. Data generation

In light of the lack of labelled relevant NPP accident data,
RELAPS, a nuclear reactor modelling and simulation tool,
was used to generate the data used in this work. Rather than
perform domain adaptation between model generated data
and real data collected from a plant, a high-fidelity physics
models is used under three different configurations that repre-
sent data domains with varying levels of divergence between
them. The model configurations represent 1) A large four-
loop 3600MW civil nuclear plant with nominal historical us-
age, 2) A similar large plant with a greater historical power
usage and 3) A small two-loop 50MW with nominal histori-
cal usage.

3.1.1. Model modifications

To replicate the full range of operating conditions of a civil
nuclear plant, and for a machine learning framework in this
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setting to be trained robustly, data containing examples of dy-
namic events are provided. These events come not only from
the presence of LOCA/faults, but also reflect dynamism in the
normal operation of a plant, such as reactivity insertion.

The specification of a general table used to define the core re-
activity or power (depending upon the reactor kinetics model
used by the script) proved sufficient for providing the kind of
input-derived transient events required. Typically, these input
demands have magnitude between 1-10% of the input reac-
tivity/steam off-take of that observed at the reactor’s steady
state rated power output level.

A small degree of Gaussian noise was added to the input re-
activity demand profile to simulate process noise. The scale
of the input noise was less than 10% of the magnitude of the
changes in input demands. Set-points and thresholds that de-
fine variable and logical trips for control systems in the model
were perturbed to emulate differing operator characteristics
on each run.

Each simulation was performed with or without the presence
of a LOCA (hence being classed as ’Normal’ or "Faulty”’).

Breaks were inserted into the primary circuit of the reactor
coolant system to simulate a LOCA. Breaks are simulated at
the inlet and outlet of the hot and cold legs of the primary
circuit, as well as at the outlet of the steam generator in the
secondary circuit. All breaks used the counter-current flow
model, with standard choking flow. The full abrupt change
model was used meaning that all breaks occurred instanta-
neously, rather than develop throughout the course of one
sample of time-series data. The breaks are modelled as a
valve with given cross-sectional area. The cross-sectional
area of the break-valve is adjusted to define the size of the
break relative to the cross-sectional area of the pipe to which
the break-valve is located. The break sizes are uniformly
sampled in the range [0.02%, 0.2%] of the area of the pipe
for the 3600MW plant, and the range [0.1%, 1%)] of the area
of the pipe for the small 50MW plant, representing very small
breaks. Each simulation is run for 1000 seconds.

A summary of the numerical changes to the high-fidelity physics

models is as follows:

» Transient operating power provided by control of reac-
tor rod position or steam off-take at the steam generator.
Operating power level varied between +-10% of the rated
capacity of each plant.

* Gaussian process noise inserted with transient input sig-
nals, scaled to +- 1% of the rated capacity of each plant.

e Control system thresholds shifted by -2%, +2% or un-
changed for each simulation.

¢ Breaks inserted with magnitudes in the range [0.02%, 0.2%)

and [0.1%, 1%] of the cross-sectional area of the pipe in

which they are located for the 3600MW and 50MW plant
respectively.

¢ Each simulation is run for 1000 seconds.

3.1.2. Differences between models (domain divergence)

This work focuses on exploring the implication of an increas-
ing divergence between data domains. In this context, this
requires multiple high fidelity physics models from which to
gather data. The first of the template models used describes a
large Four-loop 3600MW PWR with characteristics designed
to be a ’fictitious approximation’ of values present in a West-
inghouse plant.

To provide an example of a relatively small domain diver-
gence, the 3600MW PWR model is used to provide data rep-
resentative of the same plant at different stages in its operating
cycle. To achieve this, different model initialisation applied
that define different average operating power output for the
first year of operation. An ’Underworked’ version of this
Four-loop plant was defined to have operated at 2400MW
(significantly less than the 3600MW rated capacity) for its
first year of operation. This model was used as the ’Source’
domain model. A ’Typically worked’ version of the same

plant is defined to have operated at its rated capacity of 3600MW

for the first year of it’s operation. Additionally, pump speeds
throughout the primary and secondary circuits are increased,
allowing for different dynamics to manifest in this version of
the plant. The model generated data used for the ’Target 1’
domain.

A second, smaller Two-loop 50MW PWR plant was chosen
to represent a more drastic domain change. This plant is sim-
ulated with the same relative changes in input reactivity and
trip set-point attitudes, but possessing disparate dynamics and
steady state behaviour owing to the different physical proper-
ties of the smaller plant. Data generated from this model is
used for the ’Target 2’ domain.

A quick understanding of the degrees of divergence between
these domains can be gained by observing the first principal
component of a principal component analysis performed on
each domain, shown in Figure 2. The distribution of the first
principal component differs greatly depending upon which
domain the data comes from, although the difference between
the Source and Target 2 domains is much larger than that
between the Source and Target 1 domains. This domain di-
vergence would cause a conventional supervised learning ap-
proach to suffer, due to the difficulty in transferring knowl-
edge between disparate domains. Additionally, note the large
degree of overlap that exists between ’Normal’ and ’Faulty’
classes of data in each domain. This implies that, since princi-
pal components analysis is a linear technique, a linear classi-
fier would struggle to separate samples of data from different
classes.
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file (the power demand) and the reactor output power were
supplied as part of the data vector provided to the domain
adaptation network. Each batch of data the encoder receives
is made of samples derived from both the Source and Tar-
get domains. At the encoder, these samples are unlabelled.
Each sample x is an N x T vector representing T time-steps
of N sensor readings. The input dimension of the encoder is
Bx N xT, where B is the number of samples used per batch.

Table 1. A list of the measured values used in this work.

0.57

Target 2 model data

Value specification

ID Description Units
0 Cold-leg Coolant Pressure P
1 Cold-leg Inlet Coolant Temperature °C
2 Cold-leg Outlet Coolant Temperature °C
3 Hot-leg Coolant Pressure P
4 Hot-leg Inlet Coolant Temperature °C
5 Hot-leg Outlet Coolant Temperature °C
6 Pressuriser Relief Valve State -
7 Main Steam Isolation Valve State -
8 SG Feedwater Regulating Valve State -
9 Cold-leg Coolant Mass Flow-rate kg/s
10 Hot-leg Coolant Mass Flow-rate kg/s
11 | Reactor Coolant Pump Mass Flow-rate | kg/s
12 SG Feedwater Inlet Mass Flow-rate kg/s
13 Pressurizer Inlet Mass Flow-rate kg/s
14 Charging Pump Mass Flow-rate kg/s

gritrrrrrrna

.

0.0
10 20 30
PCA1

20 10

Figure 2. The distributions of the first principal components
of the data from each of the three domains. Note the larger
difference in distributions between the Source and Target 2
domains.

3.1.3. Processed data structure

Observations of the plants were made by simulating sensors
in locations throughout both the primary and secondary cir-
cuits, listed in Table 1. In total, 15 data streams were ex-
tracted from each simulation, representing pressures, temper-
atures, mass-flow rates and valve states, with locations shown
in Figure 3.

In addition to these measured values, the input reactivity pro-

Pressurizer

~ Steam Generator
[~
Reactor
Vessel .
Primary
.. Circuit

Reactor
Coolant

\ ¥ {9 'frimary
Circuit
Cold-leg

Figure 3. A simplified view of the primary coolant circuit of
a PWR. The measured sensor values used in this work have
their sensed locations numbered.
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3.2. Model architecture

The network described in this work consists of an encoder,
tasked with extracting generalised feature maps from the raw
input vector data, and a classifier aimed at detecting the pres-
ence of 'Faulty’ data. Different model architectures were
were trialed and they are described in detail below.

3.2.1. Encoder variations

To investigate the impact that the internal structure of the
feature-generation stage of the network has in the context of
NPP time-series data, several forms of encoder were consid-
ered, with increasing degrees of ’connectivity’ between dif-
ferent input sensor readings, visualised in Figure 4.

Baseline Encoder: Separate 1D convolutions

Two kernels per input sensor channel, with kernel grouping
number set equal to the input dimension at each point in the
encoder. This has the effect of training kernels without com-
bining information from multiple sensor channels simultane-
ously. Kernels act along the time dimension of each sensor
reading.

Aggregate Encoder: Summed 1D convolutions

Grouping number for convolutional layers set to 1, meaning
kernels are passed along a single time-series sensor reading,
before being combined in a weighted sum to generate a con-
volution which contains information from each sensor mea-
surement simultaneously.

Recurrent, Fully-Connected Encoder: Gated Dense 1D
convolutions

The summed 1D convolutions have been performed as above
followed by a fully-connected layers Additionally, a gated re-
current unit (GRU) layer is used before the second set of con-
volutions.

These modifications attempt to allow the encoder to efficiently
consider long-term dynamics that may be important to fault
detection in this context.

3.2.2. Classifier & loss function

The classifier is shared by each of the different encoder vari-
ations described above. The classifier consisted of a series of
fully connected layers followed by batch normalisation lay-
ers, shown in Figure 5. A dropout layer is included to en-
courage regularisation and avoid over-fitting.

4. EXPERIMENTAL VALIDATION

The loss function used by each model varies depending upon
whether domain adaptation is used. When a model is ap-

plied without domain adaptation, the loss Lg is used. The
loss Lp4 is used when domain adaptation is required. The
’Baseline’ model was tested in each data domain twice, once
using L and once using Lp 4. The Aggregate Encoder and
Recurrent Fully-Connected Encoder were tested on all data
domains using the loss £p 4.

4.1. Hyper-parameter tuning result

The model hyper-parameters were tuned heuristically for each
model variant. Hyper-parameters were chosen as

Baseline Model:

e Learning rate: 8¢ — 4

Baseline Encoder

Conv1D: Two Conv1D: Two
kernels per Batch kernels per Batch
N sensor input data ot input data  Normalisation
channels Normalisation
stream +RelLu stream +Relu
Ecas— L
. L L

=

; Kernel size =2 Kernel size = 2
[Sensor N }—— el Stride =2 o Stride = 2
Groups =N Groups = 2xN
Kernel size = 2 Kernel size = 4
Stride = 1 Stride = 1
Padding = 1 Padding = 2

Aggregate Encoder

Conv1D: 32 ConviD: 64
N sensor 'Kemﬁlds t Batch Kemels using  Batch

using all data o ch
channels streams Normalisation all pooled Normalisation

v
2

e
.

+Relu information *Relu

Average

Average %
Pooling

Pooling

=

Kernel size = 2 Kernel size = 2

Stride = 2

Groups = 1 Stride =2 KG"OlIJP_S =1 )
Kernel size = 4 ernel size =
ide = Stride =1
Stride =1 Podtine =
Padding = 1 adding =

Fully-Connected Encoder

Conv1D: 128
Conv1D: 128 Batch Kernels using Batch
Kernels Normalisation all gated Normalisation
N sensor ysing all data + Gelu information + Relu
channels streams  Dense Dense
Layer Average GRU == Layer Average
Pooling Pooling
Kernel Kernelz
64 size =2 size =

output Stride = 2 128 Groups =1 32 Stride =2

Groups =1
Kernel size =g NeUrons
Stride = 1
Padding = 1

output Kernel size = 4
neurons  Stride = 1

output

Padding=2 "oWTO"S

Figure 4. Architectures of three different encoders used in
this work, with increasing degrees of connectivity between
the input sensor readings.
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» Dropout percentage for classifier input: 7.0 %

* Scaling factor for MMD term in loss function: 0.5
Aggregate Encoder Model:

* Learning rate: 9e — 4
» Dropout percentage for classifier input: 4.1 %

* Scaling factor for MMD term in loss function: 0.5
Fully-Connected Encoder Model:

* Learning rate: 6e — 4
« Dropout percentage for classifier input: 5.6 %

* Scaling factor for MMD term in loss function: 0.5

4.2. LOCA detection

This section, detailing the results from this work, is divided
into three parts covering, binary LOCA classification perfor-
mance, detection performance by break size and detection
performance by break location.

4.2.1. Binary classification performance

When tested on the the Source domain, each model performed
similarly in classification accuracy, with over 93% of the sam-
ples observed being correctly classified as either "Normal® or
’Faulty’ for each model variant, as shown in Table 2. Without
the necessity for domain adaptation in this case, each model
was able to create a robust feature map of the distribution of
data observed in the Source domain. The increased complex-
ity of the Aggregate and Fully-Connected Encoders offered
little to no benefit in this conventional supervised setting, with
the training and testing sets being drawn from the same do-
main.

Disparities in model performance start to appear when the
testing set is drawn from the Target 1 data domain. This
testing set represents a slight shift in data distribution from
the Source domain training set, which reveals the importance
of the inclusion of model architectures specifically designed

Classifier
Encoded Dropout Batch
Feature Layer pg.so ~ Batch Normalisation Batch
Space Layer Normalisation +Relu  Normalisation ~ Batch
.D L +ReLu Dense +ReLu  Normalisation
Layer Dense + Relu
Layer Dense
Layer
AN Dﬁﬂ i
2 output
L output
1000 64 neurons
output output
neurons

neurons

Figure 5. Architecture of the classifier used in this work.

to aid in domain adaptation. The models utilising the more
sophisticated domain adaptation-oriented loss function retain
the majority of their classification performance when com-
pared to test results from the Source domain, whilst the Base-
line supervised model, using Lg, suffers a sizeable reduction
in classification accuracy.

This difference in performance is owed to the fact that the
domain adaptation-oriented loss function contains terms that
inform the encoder about the statistical properties of the gen-
eralised feature space that it is tasked with creating. Con-
sideration of the MI between the entire feature space and the
encoded representation of the Target 1 domain data helps to
reduce the likelihood of encountering unlabelled Target 1 do-
main samples during testing that do not possess some infor-
mation that the model has previously observed during train-
ing. Prompting this overlap in shared information increases
that chances that the model will hold some ’relevant’ feature
space representation for these "unique’ unseen phenomena,
which is crucial due to the high variability of the generated
data. Additionally, minimisation of the MMD at the encoder
aids the classifier with inferring class labels belonging to the
unlabelled Target 1 domain data. This is explained by the
fact that a reduction in MMD between the encoded repre-
sentations of the Source and Target 1 domains implies that
samples belonging to one class (for example, ’Faulty’) that
exist in one region within the encoded Source domain fea-
ture space, should exist in a similar ‘relative’ location within
the encoded Target domain feature space. It is through this
knowledge transfer that Source domain information can be
leveraged to support Target domain class predictions.

The final domain shift, between training on Source domain
model data and testing on the Target 2 domain data represents
a more severe divergence between domains. As is evident
from the average test accuracies, the conventional supervised
model fails to bridge this gap between differing data distribu-
tions and records a poor performance of less than 50% classi-
fication accuracy. Itis at this magnitude of domain divergence
that the increased complexity of the Aggregate and Fully-

Table 2. Average test accuracies (%) of each model type on
each domain set, after being trained on the Source data do-
main.

Source Target 1 Target 2
Model Type Domain Domain Domain
Baseline
Supervised 93.41 78.02 45.57
(No DA)
Baseline
With DA - 91.24 81.46
Aggregate 93.96 91.02 89.85
Encoder
Fully-
Connected 93.22 91.27 89.57
Encoder
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Connected Encoders demonstrate value. Although the DA-
focused loss function is enough to restore the majority of the
lost performance for the baseline model, the less-connected
Encoder lacks the ability to consider the more disparate dy-
namics evident in the Target 2 domain.

In the context of this work, allowing the encoder to combine
input sensor channels at the first convolutional layer before
performing the convolution (such as in the Aggregate and
Fully-Connected encoders), may allow the models to exploit
class-specific relationships between sensed quantities. For
example, in the presence of a LOCA, a brief divergence of
primary circuit hot-leg temperature and pressure may occur.
If these sensed values were provided to the same convolu-
tional kernel at the input layer of the encoder, then the kernel
could utilize this relative disparity to generate a recognisable
identifier of a LOCA class sample. This improvement in per-
formance compared to the ’Baseline With DA’ model sug-
gests that there is more information available with respect to
the problem of LOCA detection if the sensed values are pro-
cessed relative to each other, rather than processed in parallel.

Although the nature of LOCA simulated in this work vary
drastically in magnitude and location within the modelled
plants, there exists the possibility for other fault cases to tran-
spire in an NPP. Without explicit knowledge of the existence
of these faults (other than LOCA), the accurate classification
of these samples as *Faulty’ would depend upon the similarity
of these encoded samples to the "Normal’ encoded data. The
performance of the models in this work on LOCA-specific
fault detection is good, meaning the classifier used can dif-
ferentiate between 'Normal’ data, and all other LOCA data.
If another fault case, previously unseen by the models de-
scribed, manifested in a similar fashion to a LOCA, it is likely
it would be identified as ’Faulty’. However, as can be ob-
served in later analysis on model performance by break loca-
tion, there can be large difference in classification accuracy
for a single model across faults from multiple locations, so it
would not be reliable to depend upon these methods as part
of generic "anomaly detection’ techniques.

An understanding of the impact of the encoder in this work
can be understood if the distributions of the encoded data
from each domain are observed, shown in Figure 6. The
data used in this figure are drawn from the Fully-Connected
encoder. Viewing the first principal component of the post-
encoder data from each domain reveals that the three domains
appear much more similar to each other once expressed in the
generalised feature space the encoder provides. As observed
previously, the encoded distributions still share a large de-
gree of overlap between 'Normal’ and "Faulty’ data. Since
principal components analysis is a linear transformation, this
suggests that a linear classifier would struggle to reliably pre-
dict the class of unlabelled samples, and that the models used
in this work which perform well must consider nonlinearities
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Figure 6. The distributions of the first principal components
of the encoded data from each of the three domains. Note
the more similar distributions compared to the first principal
component of the input space.

in the data.

4.2.2. LOCA detection by break size

An interesting perspective by which to consider the perfor-
mance of these models in the context of NPP fault detec-
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tion is to observe only the primary circuit breaks and identify
the thresholds above which each model can always identify
a LOCA. LOCA detection by break size results are shown in
Figure 7.

In the Source domain setting, each model could reliably cate-
gorise fault data with break size above 0.1% of the pipe cross-
sectional area as ’Faulty’.

The performance is retained when the models are tested on
the Target 1 domain set, however the rate at which the base-
line model without domain adaptation can successfully cate-
gorise samples below 0.1% is substantially lower than in the
source domain.

The performance loss is exaggerated as the gap between do-
mains increases further still: without considering domain adap-
tation, there is no size of primary circuit break that the base-
line model can always categorize correctly as *Faulty’. With
the only alteration being the inclusion of domain-adaptation
focused terms in the loss function, the Baseline model (With
DA) can, on average, identify 20% more faults successfully.

The other models retain a substantial proportion of their abil-
ity to successfully categorize all break sizes, even in this most
extreme domain divergence example.

4.2.3. LOCA detection by break location

The *Faulty’ samples in this work were not only drawn from
a range of possible sizes, but also placed at varied locations
throughout the primary and secondary circuit of each PWR.
Primary circuit breaks occur at either the inlet or outlet of the
hot or cold legs. Secondary circuit breaks were inserted at the
outlet of the steam generator for the respective loop. LOCA
detection by break location results are shown in Figure 8.

When tested in the native Source domain setting, both the
Baseline Supervised and Aggregate Encoder models correctly
classify all nominal operation data, along with a consistently
high successful classification rate of primary circuit breaks
as "Faulty’. The Fully-Connected Encoder sacrifices the suc-
cessful classification of a small number of "Normal® samples
in order to correctly identify each primary circuit break ob-
served in this testing environment as ’Faulty’.

Classification of breaks located at the steam generation out-
let was comparatively poor. This is perhaps due to the lower
number of observed examples of secondary circuit breaks dur-
ing training, or the potential for secondary circuit breaks to
be harder to identify under the lower-fidelity of the secondary
circuit physical model in comparison to the primary circuit.
Only the Fully-Connected Encoder model is able to correctly
classify any of these samples as ’Faulty’, which suggests that
secondary circuit breaks appear more similar to ’Normal’ op-
erational data from the perspective of these classifiers.

In the Target 1 domain, representing a slight shift in domain
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Figure 7. Successful classification rate by fault break size for
each model combination, when tested on each domain.

distribution from the source domain, the Baseline Supervised
model retained its ability to identify ’Normal’ operational
data, whilst *Faulty’ sample classification accuracy degraded.
As in the Source domain, the Baseline Supervised and Aggre-
gate Encoder models were not able to correctly identify any
secondary circuit breaks as 'Faulty’. The Baseline With DA
model (using £p4) gives some improvement in primary cir-
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Figure 8. Successful classification rate by fault location for
each model combination, when tested on each domain.

cuit break identification, but remains unable to recognise the
"Faulty’ class of secondary circuit break samples. As in the
previous testing domain, the Fully-Connected Encoder is the
only model capable of correctly classifying any steam gen-
erator outlet samples, albeit a very small proportion of the
samples it observed.

In the most extreme example of domain divergence between
the Source domain and the Target 2 domain, the classification
ability of the Baseline Supervised model, using Lg, deteri-
orates. In this unfamiliar domain, the Supervised model is
barely able to correctly classify any "Normal’ data. The Base-
line model using £p 4 restores some classification ability of
’Normal’ samples, and improves the detection of ’Faulty’ sam-
ples in all locations except the secondary circuit. Once again,
the Fully-Connected Encoder displays the best detection per-
formance for secondary circuit breaks. This indicates the im-
portance of combining the sensor channels at the Encoder
level in order to generate generalised features which can re-
main relevant between disparate training and testing domains.

5. CONCLUSION

The results detailed in this work highlight the value in in-
corporating domain adaptation techniques in scenarios where
discrepancies exist between the training and testing data do-
mains. Even when the scale of these discrepancies can be-
come large, fundamental DA concepts provide a significant
improvement in performance when compared to a conven-
tional supervised learning approach. Additionally, the results
draw attention to the importance of combining input sensor
channels in this context. Models which consider informa-
tion from multiple sensed sources simultaneously during their
construction of each encoded feature map retained a much
greater proportion of their classification ability seen in the
Source domain classificaiton performance.
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