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ABSTRACT

Historical condition monitoring data from technical systems
can be utilized to develop data-driven models for predicting
the remaining useful life (RUL) of similar systems, whereas
the Health Index (HI) often is a crucial component. The de-
velopment of robust and accurate models requires meaning-
ful features that reflect the system’s degradation process, en-
abling an accurate prediction of the system’s HI. Tradition-
ally, the identification of those is supported by one of various
feature ranking methods. In literature, feature interdependen-
cies and their transferability across various similar systems
are not sufficiently considered in feature selection, exacer-
bating the challenge of HI prediction posed by the scarcity
of data and system diversity in real-world applications. This
work addresses this gaps by demonstrating how filter-based
feature selection, incorporating failure thresholds and cross
correlations, enhances feature selection leading to improved
HI prediction. The proposed methodology is applied to a
novel dataset* obtained from run-to-failure experiments on
geared motors conducted as part of this study, which presents
the aforementioned challenges. It is revealed that classical
feature selection, consisting of feature ranking only, leaves
potential untapped, which is utilized by the proposed selec-
tion methodology. It is shown that the proposed feature se-
lection methodology leads to the best result with a RMSE of
0.14 in predicting the HI of a constructive different gearbox,
while the features, determined by classical feature selection,
lead to a RMSE of 0.19 at best.

Alexander Loewen et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

* The dataset called Lenze-GD is accessible via:
https://doi.org/10.5281/zenodo.11162448.

1. INTRODUCTION

Early fault detection of mechanical systems like gears and
motors is an important topic for industrial production, helping
companies to predict equipment failures, reduce downtime
and to ensure the reliability and safety of industrial systems.
The analysis of data from time series sensors like acoustic, vi-
bration, position, or current is of great interest to monitor the
health condition of machines and to predict failure in the me-
chanical systems life-cycle. The prognostics of the remain-
ing useful lifetime (RUL) aims to predict operating time of
a typical operational lifespan that a mechanical system has
already passed and estimate the amount of the remaining use-
ful life. In particular, vibration signals have been widely used
for RUL-prognostics. However, the usage of signals acquired
from inverts like the motor current reduces costs of installa-
tion and maintaining external sensors. Under the limitation of
a drive system including an induction motor and an inverter
with a sufficient data interface, the motor becomes the sensor.

A major challenge in developing accurate and robust RUL-
prognostics is the limitation of data, especially in scenarios
where abnormal observations are rare or difficult to obtain,
referred to as data scarcity. In this study geared motors are fo-
cused, which are combinations of toothed-wheel-based gear-
boxes and of electric induction motors. To match the diverse
requirements of customers, the geared motors can be config-
ured and scaled individually. These customized geared mo-
tors can be used in a variety of different machine types, which
also may be customized. In many real-world problems it is re-
alistic that only a few or none run-to-failure data-collections
are available and thus often only data from the healthy motor
can be used for model training.

The work is structured as follows. Section 2 presents a com-
prehensive feature engineering methodology with focus on
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feature selection to overcome data scarcity and address sys-
tem differences. A multi-stage feature selection methodology
is described followed by the machine learning (ML) models
used and trained based on the selected features. ML algo-
rithms employed are Gaussian Process Regression (GP), Lin-
ear Regression (LR), Multi-Layer-Perceptron (MLP), Ran-
dom Forest (RF) and Support Vector Machine (SVM). Next, a
novel dataset from run-to-failure experiments on geared mo-
tors including gear-mesh and bearing failures is introduced
in section 3. The experimental setup and the recorded data,
which are obtained from a frequency inverter, are described.
In section 4, the proposed feature engineering methodology
is applied on the new data. In section 5 the advantages over
the classical feature selection, consisting of feature ranking
only, is shown resulting in the best root mean squared error
(RMSE) of 0.14, in contrast to the classical selection’s best
RMSE of 0.19 in predicting the health index (HI).

2. METHODOLOGY

In this paper, a broadly used workflow for diagnostics and
prognostics of technical systems is utilized, which comprises
the elements data preprocessing, feature extraction and diag-
nostics or prognostics algorithm (Goyal, Mongia, & Sehgal,
2021; Ly, Tom, Byington, Patrick, & Vachtsevanos, 2009).
Depending on the application, these elements are generally
adapted and optimized to suit the circumstances of any given
application. The methodology employed prioritizes a more
generalized process. To address this limitation, feature en-
gineering is focused wherein a wide range of features are
computed, adapted and a multi-stage feature selection process
is adopted to select subsequently the most relevant features.
Data-driven algorithms are then trained with the selected fea-
tures within a cross-validation process that includes hyperpa-
rameter optimization to predict the HI of the system. These
steps are parameterized by means of the systems used for
training and then applied to the system used for testing. The
whole process is shown in Fig. 1 comprising feature extrac-
tion, feature processing, feature selection and model training
including hyperparameter optimization, with particular focus
on feature selection, whereas Fig. 2 shows the steps from fea-
ture processing to correlation analysis with more detail. The
steps are described in the following.

2.1. Feature Extraction

Feature extraction is applied to each measurement and chan-
nel to extract information regarding system’s degradation over
time. To address a variety of a system’s characteristics, a mul-
titude of features are computed, aiming to encompass a wide
range of potential applications where any given feature may
capture the system’s degradation process. To extract features
from time series data, the publicly available Python pack-
age tsfresh is used (Christ, Braun, Neuffer, & Kempa-Liehr,
2018). tsfresh is utilized for an automatic extraction of time

Training
data

Feature
extraction
Feature *
processing Thresho.ld
preselection
Feature Feature
selection ranking

Correlation
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Final feature

ranking

Model training
& optimization
Trained
model

Figure 1. Overview of the applied training process.

series features which comprises features from the time, fre-
quency, and time-frequency domains.

In the review of (Goyal et al., 2021), several use cases re-
garding rotating mechanical systems are consolidated, high-
lighting the frequent utilization of the fast Fourier transform
(FFT) for analysis. This underlines the capacity of FFT to
extract information from data, particularly from systems with
rotating components, to infer health-related insights. There-
fore, additional frequency-dependent features are calculated
by dividing the frequency spectrum into sections defined by
a constant percentage bandwidth (CPB). Maximum and av-
erage FFT coefficients are extracted from the corresponding
sections to capture amplitude changes in smaller frequency
spectrums. A CPB analysis has been utilized, among other
fields, in the field of acoustics (Gram-Hansen, 1991), provid-
ing the opportunity to efficiently consider the entire frequency
spectrum within comprehensive feature extraction.

2.2. Feature Processing

Feature processing encompasses feature smoothing and fea-
ture scaling. Feature smoothing is utilized to reduce noise
and variability from the feature data, making underlying pat-
terns and trends more apparent. The moving average is of-
ten applied for this purpose. Feature scaling involves scaling
the computed features based on the median value of their ini-
tial feature data points as shown in Eq. (1). Here, f; ; repre-
sents feature ¢ of system j, f; j ini¢ contains the initial feature
points, and f;, denotes the scaled feature data. This pro-
cess aims to eliminate unwanted influences and facilitate bet-
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Figure 2. Overview and illustration of the feature processing
and selection process.
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2.3. Feature Selection

Feature selection can be divided into filter, wrapper, embed-
ded and hybrid methods (Hoque, Bhattacharyya, & Kalita,
2014) and is necessary for information concentration. This
paper focuses on filter methods, as they are less computa-
tional intensive in general (Hoque et al., 2014). Feature selec-
tion utilized comprises the steps threshold preselection, fea-
ture ranking and correlation analysis. Threshold-based prese-
lection retains features with similar failure thresholds and dis-
cards those without. It is followed by feature ranking and cor-
relation analyses to remove highly correlated features. The
steps are described in the following.

Threshold preselection: Subsequently on feature process-
ing, a preliminary selection is conducted based on a common
threshold value for each feature across the systems. Thresh-
olds for system failure are often determined using a prede-
fined HI, often as linear, e.g. in (Yang et al., 2016), or con-
structed based on selected features, e.g. in (Thoppil, Vasu,
& Rao, 2021). In more rare cases, only one feature is di-
rectly used if it is sufficient to reflect the degradation process,
provided that it can be used to define a system-wide failure
threshold, e.g. in (Li, Huang, Gao, Zhao, & Li, 2023; Bender
& Sextro, 2021). With limited data, it is difficult to evaluate

Table 1. Metrics considered to determine feature ranking.

Source [ Mon. | Trend. [ Rob. | Name
(Carino et al., 2015) | X Spearman
(Nie et al., 2022) X X Cori-Score
(Chen et al., 2019) X X X MTRc
(Zhang et al., 2016) | X X X MTR;

an individual feature for use as a reliable HI, as well as to
construct a HI with respect to a failure threshold. Specific,
multiple features that indicate a common threshold across the
systems are often not explicitly sought out. To do this, a cri-
terion based on the thresholds for each feature and system is
introduced. Firstly, a threshold 7; regarding Eq. (2) is calcu-
lated for each feature 7 with respect to the systems denoted
by j. Here, fvl* jend denotes the median value of the scaled
feature points within the final portion, defined by «, of the
RUL. The thresholds are reached at different points in the
lifetime of each system. If the minimum reached lifetime,
as determined by the specified threshold, is below (3 of the
total lifetime of one of the systems, the feature is discarded.
An example is given in Fig. 2, where a feature is marked with
a cross, signifying that the systems 2 reaches the threshold
prematurely, leading to the exclusion of this specific feature.

Injin(f;j,end) if f;:j,end 2 1
7—' = ~ ~
T\ (P ) P <1

,j5,end

2

Feature ranking: Feature ranking is crucial in predictive
analysis as it allows to identify the most relevant and infor-
mative features. Evaluation metrics employed typically en-
compass assessment of monotonicity and trendability anal-
ysis (Carino, Zurita, Delgado, Ortega, & Romero-Troncoso,
2015; Nie, Zhang, Xu, Cai, & Yang, 2022). Moreover, these
metrics can be combined with a metric to consider the ro-
bustness (Chen, Xu, Wang, & Li, 2019; Zhang, Zhang, & Xu,
2016). A short overview of considered metrics by source to
perform feature ranking is given in Tab. 1 and described in
the following.

In (Carino et al., 2015) the monotonicity is calculated using
the Spearman correlation coefficient, while monotonicity in
(Nie et al., 2022; Chen et al., 2019; Zhang et al., 2016) is as-
sessed through the counts of positive and negative derivatives.
Trendability is assessed usually through calculating the Pear-
son correlation coefficient (Chen et al., 2019; Nie et al., 2022;
Zhang et al., 2016). Here, (Zhang et al., 2016) used smoothed
feature values to encompass monotonicity and trendability,
while all others evaluate the original feature data set. The ro-
bustness of a feature is assessed through comparison the raw
feature values with their smoothed values (Chen et al., 2019;
Zhang et al., 2016). The evaluation across multiple consid-
ered metrics is conducted using either the average score or
the equally weighted sum. In this paper, all of the named fea-
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Table 2. Fictional correlation matrix of the best 3 ranked fea-
tures.

Feature | T [ 2
T . .
2 0.955 ] -
3 0.892 | 0.851

ture ranking methodologies are considered to get insight into
the potential of the proposed feature selection methodology.

Correlation analysis: Correlation analyses, specifically the
Pearson correlation, are often used, besides for feature selec-
tion, for similarity analyses (Guo, Li, Jia, Lei, & Lin, 2017;
Nie et al., 2022). In this paper, the Pearson correlation is used
to determine the similarity between features. Based on the
similarity, highly similar features are classified as redundant
and discarded, while the best-ranked features are retained.
Tab. 2 provides a fictional example showing a correlation ma-
trix for the ranked features 1, 2 and 3. Feature 2 correlates
with a coefficient of 0.955 with feature 1. Feature 3 shows
correlations of 0.892 and 0.851 with feature 1 and 2 respec-
tively. A parameter can be used to specify which correlation
is acceptable. Features that exceed this parameter across all
systems are discarded, ensuring that only unique and infor-
mative features are retained. If the parameter in the example
shown is set to 0.95, feature 2 is discarded, as it exceeds the
parameter for feature 1.

2.4. Model training and test

Different ML algorithms are applied and optimized with re-
gard to their hyperparameters applying a Bayesian optimizing
algorithm provided by the scikit-optimize library (Head, Ku-
mar, Nahrstaedt, Louppe, & Shcherbatyi, 2021). This tech-
nique is based on probabilistic modeling to explore the hy-
perparameter landscape and find the best parameter combi-
nations (Garnett, 2023). The main goal is not to compare
ML algorithms against each other. Instead, the focus lies
on assessing the effectiveness and obtaining the best possi-
ble prediction result based on the introduced feature selec-
tion method. The ML algorithms employed include GP, LR,
MLP with one hidden layer consisting of 100 neurons, RF and
SVM from the sklearn library (Pedregosa et al., 2011). These
algorithms are trained on processed and selected features and
are optimized within a cross-validation process to predict a
linear HI. The hyperparameter ranges used for optimization
are given in the appendix, with standard values employed if a
hyperparameter is unspecified.

The predictions are constrained between 0 and 1, where 0
denotes system failure. Evaluation of the models is based on
the RMSE as calculated in Eq. (3). Here, y,y¢,; denotes the
true and Ypredicted,i the predicted HI for each observation ¢ of
n total observations.

Device

Figure 3. Experimental setup. On the left side, the counter
part is shown, which is a helical geared motor. The geared
motor on the right side is the device under test, which is a
bevel gear.

Table 3. Overview of the gearboxes and their nominal values.

Name [ Type [ Usage | Torque | Gear ratio
HT10 | Helical | Counter part IT0 Nm [ 28,738
B45 Bevel Device under test | 45 Nm 25,051
H45 Helical | Device under test | 35 Nm 10,033

n

1
RMSE = E Z(ytrue,i -
i=1

(ypredicted,i)2 (3)

3. CASE-STUDY

To facilitate the presented studies, a run-to-failure experiment
for geared motors is introduced. A geared motor is installed
in healthy condition and operated until it fails. Throughout
the experiment, a data acquisition system is active to monitor
the signals of all degradation states. In order to complete the
experiment in limited time, the geared motors nominal torque
is exceeded. The experiment is conducted three times in total
and each with multiple operation states during measurement.

3.1. Experimental Setup

The mechanical part of the setup consist of a first geared mo-
tor, the device under test, and a second geared motor, the
counter part, shown in Fig. 3. All gearboxes consist of two
gear stages with in sum four toothed wheels. The function of
the counter part is to create a load for the device under test.
An overview of the nominal values of the gears is given in
Tab. 3. Thereby the counter part has significant higher nomi-
nal torque, to make sure, that the device under test will cause
failure, while the counter part stays in healthy condition. The
actual torque is selected to lie in the mid of the finite life fa-
tigue of the Woehler characteristic of the second and last gear
stage of the device under test to accelerate degradation. Dur-
ing the experiment, the device under test runs with nominal
speed.
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Figure 4. Failure of gearbox B45. Shown are the gears from
left to right Z1 with moderate wear, Z2 with minor wear, Z3
with destructive wear and Z4 with moderate wear. As well as
the destroyed bearings’ inner ring next to Z3 and outer ring
next to Z4.

=N Inner ring [ -

Figure 5. Failure of gearbox H45. Shown are the gears from
left to right Z1 and Z2 with minor wear, Z3 with moderate
wear and Z4 along with the gearbox full of the deteriorated
oil. As well as the destroyed bearings inner ring next to Z3.

In sum, three run-to-failure experiments were conducted, one
with B45 gearbox and two with H45 gearbox. In the follow-
ing, one of the H45 gearboxes will be referred to as H451 and
the other as H45II, if they are considered separately. A run-
to-failure experiment ends when the gearbox failed, which
means its transmission is interrupted. Here, gearbox failure
occurred after around 200 hours (H45II) to 790 hours (B45).
Subsequently, the gearboxes are opened to evaluate the fail-
ures. In the following, the gears are named beginning from
the motor-shaft with Z1 transmitting over Z2 to the middle-
shaft with Z3 transmitting to the output-shaft over Z4.

The B45 gearbox shows a destructive wear at the Z3, while
Z1 and Z4 also show moderate wear, but they stay functional.
Z2 only shows minor wear. All of which is shown in Fig. 4.
This observation can be explained by the higher torque trans-
mitted by Z3 and Z4 than the first gear stage with Z1 and Z2
and the higher rotation speed of Z1 and Z3 resulting in sum
to the high wear of Z3. In addition, the bearing of the middle
shaft most close to Z3 is destroyed.

The failure of the runs with H45 shows only minor wear at the
gears, except Z3 which shows moderate wear, see Fig. 5. The
failures are caused by destroyed bearings next to Z3. Over-
all, both gear wearing and a destroyed bearing in all cases is
observed.

3.2. Data Acquisition

Once per hour, the steady operation of the experiment is inter-
rupted to gather signal measurement of four operation states.
These four states are aligned with the nominal values of the
induction motor for star connection of the device under test.
The states are the combinations of positive or negative nomi-

Table 4. Overview of the channels acquired by the inverter.

Channel | Type

Direct current
Quadrature current
Effective current
Effective voltage
Quadrature voltage
Phase current U
Phase current V
Phase current W

0| | O\ W B LI 1 —|

Channel 1 Channel 2 Channel 6

Signal value

004 000 002 004 000 002 004

Time /s

0.00 0.02

Figure 6. Overview of different derivatives of the current sig-
nal. Channel 1: direct current, Channel 2: quadrature current
and Channel 6: phase current. All signals are in an internal
normalization and thus unit free.

nal speed with nominal or idle torque. Each observation takes
measurement with constant sampling rate of 8 kHz and for
215 sampling points, which defines a time period of about
4 s. During this time period, 8 channels are stored in parallel,
which are shown in Tab. 4.

In contrast to vibration and acoustic signals, the original three
phase currents are alternating, which may negatively influ-
ence some fault detection approaches. Further, the signals
of at least two phases would be needed to cover all neces-
sary information. To counter this, also the current in D-Q-
coordinates as well as the effective current, calculated by the
inverter, are stored, which is briefly shown in Fig. 6. Note that
the direct current is related to the magnetic field, while the
quadrature current is related to the motors torque. In addition,
also the effective and quadrature target voltage are stored,
however which are highly quantized and therefore may be of
limited relevance.

4. APPLICATION

In this section, the presented methodology outlined in sec-
tion 2 is applied on the gearbox data.

Firstly, only the data recorded at nominal speed in the load-
ing direction with idle torque is considered. Additionally, the
running-in process is discarded from the data. A running-
in process is particularly well known for gears and causes
volatile system behavior in the data shortly after machine
commissioning. This can be caused by deforming or break-
age of the highest asperities on the tooth surfaces (Feng et al.,

Page 959



Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN — 978-1-936263-40-0

Table 5. Numbered overview of considered feature ranking
methods.
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2019). A running-in process is estimated at 50 hours. There-
fore, the initial 50 feature data points, approximately two days
of measurements, are rejected. Subsequently, 20,296 fea-
tures are computed from the 8 channels of each gearbox data.
The feature data set is then divided into a training and a test
dataset, using the data from the H45 gearboxes for training
and the B045 for testing. The target is to select meaningful
features using the data from the H45 gearboxes to train ML
algorithms, as discussed in section 2.4, and to apply them on
the data from the B45 gearbox to finally predict its HI. In the
following, the application of the proposed feature processing
and selection methodology presented in sections 2.2 and 2.3
is described.

Within feature processing, the feature data undergoes smooth-
ing, where a window size of 15 points seems appropriate.
This window size is also used to determine the initial feature
data points f; ; inst to scale the data. For threshold preselec-
tion, o is set to 1 % and 3 to 85 %. A small value for o
can be selected as the running-in process has been removed.
The value for 3 is chosen to consider the strong and varying
increase of feature values towards the end of life. Threshold
preselection leads to the exclusion of 19,572 features.

To rank the features, the feature ranking methods discussed in
section 2.3 are employed. Due to the positive experience with
the Spearman correlation specifically regarding capturing the
HI of a system in (Aimiyekagbon, Bender, & Sextro, 2021),
an additional version is employed, where the Spearman cor-
relation is used for evaluating the monotonicity. An overview
of the feature ranking methods is given by Tab. 5, where the
additional versions are marked as modified. In the following,
the numbers assigned in Tab. 5 are used as representatives for
the mentioned ranking methods.

Lastly, for the correlation analysis to reject highly correlated
features, the threshold value for the correlation coefficient is
set to 0.98. A high value is chosen to remove strongly cor-
related features, thereby leave room for selection based on
feature ranking. The selected threshold leads to the exclu-
sion of 273 of 724 features. Subsequently, the top 5 ranked
features are selected from the remaining 451 features, stan-
dardized and utilized for training and testing. A shuffle split
with 5 splits is employed for cross-validation, as only two
systems are given for training. To ensure the reproducibility

Table 6. Minimum, maximum and mean value of the aver-
age RMSE for prediction on the training dataset within cross-
validation across all feature selection variations.

Algorithm [ Minimum | Maximum [ Mean

GP 1.2e-9 9.8e-9 4.6e-9
LR 0.0956 0.2178 0.1458
MLP 0.0345 0.1220 0.0529
RF 0.0114 0.0314 0.0167
SVM 0.0571 0.0991 0.0662

of the results, the random seed is fixed. For optimization, 200
iterations are set.

For comparison purposes, additionally, the proposed feature
selection methodology is replaced by feature ranking only.
Feature selection consisting of feature ranking only repre-
sents the classical feature selection process, which is pre-
dominantly followed in the literature such as in (Carino et
al., 2015; Nie et al., 2022). That means that out of the total
of 20,296 features the top 5 ranked ones are used for train-
ing allowing a direct comparison with the proposed feature
selection methodology.

5. RESULTS

The selected features, results and insights gained from further
analysis are discussed in more detail in the following.

When inspecting the selected features, the channels 1, 2 and
3 show a significant higher relevance as they are selected 19,
24 and 10 times of 60 in sum respectively through feature se-
lection. This observation leads to the conclusion that the cur-
rent in D-Q-coordinates is particularly suitable for predicting
the system’s condition in contrast to the phase current. As
assumed, the effective and quadrature voltage is of minor im-
portance. Further, it can be observed that abrupt changes, re-
versed direction of feature progression and large differences
in the endpoints between same features of the train and the
test set cause confusion in prediction.

The minimal, maximal and mean RMSE of the predictions on
the training data within cross validation is shown in Tab. 6 and
Fig. 7 presents the prediction errors from predicting the HI of
the gearbox B045. Primarily, all algorithms show low error
values on the training dataset, which in combination with the
results in Fig. 7 indicates, that some algorithms generalize
better (RF) than other (MLP). MLP and SVM generate the
highest RMSE, probably increased by the small amount of
training data. SVM performs better evaluating the selected
features from feature ranking only, although the predictions
get particularly worse towards the end of life. The full poten-
tial of the MLP may not be exploited, as the iterations during
its training and optimization are both limited to 200. In ad-
dition, the layer size and depth is not varied during optimiza-
tion.
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Figure 7. Results based on the estimation of the HI of gear-
box B45, which provides the test data. The results are marked
with an asterisk “*”” when classical feature selection is applied
and without when the proposed feature selection methodol-
ogy is utilized.

The best performing algorithms are GP and above all RF. Es-
pecially noticeable is that the proposed selection method per-
forms most effectively in combination with Spearman corre-
lation for ranking the features as can be seen in rows 2, 4, and
6. To summarize, the best RMSE is reduced from 0.19 to 0.14
by around 26 % when the proposed feature selection method
is utilized. The worst RMSE is reduced from 0.58 to 0.56 by
around 3 %, whereby results with an RMSE of 0.5 and higher
occur 6 versus 2 times and an RMSE of 0.4 and higher occurs
12 versus 7 times. Results with an RMSE of 0.2 and lower
appear 2 versus 7 times. This indicates a higher robustness
capabality using the proposed selection method.

The RF achieves the best result with an RMSE of 0.14 in row
6, where feature ranking within the proposed feature selec-
tion methodology is applied by assessing the Spearman cor-
relation. The hyperparameters of the RF set by the hyper-
parameter optimization are given in Tab. 7 including a brief
description. The selected features are shown in Fig. 8 where
the feature values are plotted over the HI. The features are
briefly described in Tab. 8. For detailed information on fea-
ture calculations, reference is made to the official documenta-
tion of tsfresh (Christ, Maximilian and Braun, Nils and Neuf-
fer, Julius, 2016).

The prediction of the HI for the B45 gearbox data, generated
by the RF trained on the presented features, is visualized in
Fig. 9. The horizontal axis represents the actual HI values,

Table 7. Hyperparameter values and descriptions for the RF
model set by the optimization algorithm.

Hyperparameter [ Value | Description

n_estimators 149 Number of decision trees in the
ensemble.

Maximum number of features
used to determine the best split.
Here it is the square root of the
number of features.

Maximum depth of a single deci-
sion tree.

Minimum number of observa-
tions required to split a node in
the decision trees. This number
is defined by a fraction of the to-
tal number of observations.
Minimum number of observa-
tions required to form a leaf node.
This number is defined by a frac-
tion of the total number of obser-
vations.

max_features sqrt

max_depth 27

min_samples_split | Te-6

min_samples_leaf | Te-6

while the vertical axis represents the predicted HI values. The
diagonal line running from (1,1) to (0,0) represents the ideal
prediction. The prediction of the test system shows a certain
variance of the points, especially in the ranges 0.9 to 0.5 and
0.3t0 0.1 of the actual HI. The underestimated HI in the range
0.9 to 0.5 can be explained by the stronger gradient observed
for the features 1 and 5. The overestimated HI in the range
0.3 to 0.1 is possibly caused by feature 2.

Despite the observed variability, the prediction is deemed sat-
isfactory considering the limited availability of training data
and the structural differences between the systems for training
and testing. The results presented underscore the ability of
the proposed feature selection methodology in capturing the
differences between the systems, especially in combination
with the RF. Although certain challenges persist and continue
to impact the overall results, the better results tend to align
with the utilization of the proposed feature selection method-
ology, particularly shown in the upper half of the color map
in Fig. 7.

6. CONCLUSION AND FUTURE WORK

The effective use of available data is crucial, especially in
scenarios characterized by data scarcity. The optimal use
of available information is essential to improve the accuracy
and reliability of prognostics and ensure efficient decision-
making and resource allocation in the industry.

To tackle this challenge, comprehensive feature engineering
with focus on feature selection is adopted, wherein the fea-
tures are adapted to their initial values by scaling and fea-
ture selection is performed involving several successive steps.
These steps encompass threshold-based preselection, feature
ranking and cross-correlation analysis. Subsequently, train-
ing of ML-based models is conducted to predict the HI of the

Page 961



Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN — 978-1-936263-40-0

Table 8. Description of the selected features obtained through the proposed feature selection methodology, wherein Spearman

correlation was utilized for feature ranking.

Feature | Description

1 Value of the evaluated partial autocorrelation function at lag 6 of the quadrature current signal.

2 The highest order coefficient of a polynomial function the order 3 derived from the deterministic dynamics of the Langevin
model, where 30 quantiles are used for averaging, based on the direct current data.

3 Complexity calculated by the Lempel-Ziv compression algorithm in the direct current data divided into 100 bins.

4 Custom feature explained in section 2.1, where direct current data is used. Bin 78 represents a frequency range from 26.12 to

26.86 Hz, where the FFT coefficients were aggregated by the mean.

5 The feature quantifies the maximum standard error of the linear trend over sections of length 5 in the direct current data.
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Figure 8. Best 5 features assessed by the proposed feature
selection methodology based on the feature data from the H45
gearboxes, wherein the Spearman correlation was utilized for
feature ranking. The boxes added indicate zoomed-in views
of the features. The range is marked on the right edge. The
feature values are unit free as they have been scaled.
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Figure 9. Test results generated by estimating the HI of the
gearboxes H451, H451I and B45, with the H45 gearboxes pro-
viding the training data and B45 gearbox the test data.

systems.

In order to evaluate the proposed methodology, a new dataset
is introduced and utilized, which contains current, voltage
and phase current data from run-to-failure experiments of
gearboxes. The dataset is notable for considering two struc-
turally different gearboxes and for addressing the challenge
of data scarcity, as it is sourced from only three systems. The
aim is to use the data from the two similar gearboxes to esti-
mate and select features to infer the HI of the dissimilar gear-
box over its entire operating time based on a ML algorithm.
By publishing the novel dataset, other researchers are inspired
to contribute to this specific problem setting.

It is observed that, the classical feature selection is able to se-
lect features capturing the degradation of the systems in some
cases leading to an RMSE of 0.19 in the best case. However,
the proposed feature selection methodology apparently sup-
ports overcoming system differences especially in combina-
tion with the RF by selecting appropriate features better lead-
ing to the best result overall with an RMSE of 0.14. There-
fore, a great potential in applying the proposed methodology
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to further problems in the field RUL-estimation is seen. It
can enable more effective training based on ML training, as
features are selected not only based on capturing the degra-
dation of individual systems separately but also considering a
common threshold for failure while avoiding redundancies.

The next research steps will include validation of the pro-
posed methodology using further data or different test con-
ditions to check the limitations, reliability and robustness of
the results. The exploration of alternative methods, such as
mutual information, should also be considered at the last step
of the proposed feature selection process to replace the Pear-
son correlation analysis. These methods have the potential to
enhance the methodology. Furthermore, the applicability of
the proposed method to different types of gearboxes or even
to other technical systems should be explored. This would
contribute to demonstrating the scope and versatility of the
proposed approach.
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APPENDIX

In Tabs. 9 to 12 the hyperparameter ranges are listed which
where utilized for hyperparameter optimization of the regard-
ing algorithm. For detailed information on hyperparameters,
reference is made to the official documentation of scikit-learn
(Pedregosa et al., 2011).

Table 11. Hyperparameter ranges for optimizing RF

Hyperparameter | Range | Distribution
n_estimators [T, 200] uniform
max_features None, sqrt, Tog2

max_depth [T, 32] uniform
min_samples_split | [le-6, 1] uniform
min_samples_leaf | [le-6, 1] uniform

Table 12. Hyperparameter ranges for optimizing SVM

Hyperparameter | Range | Distribution

C [Te-2, Te+3] log-uniform
gamma [Te-4, Te+1] log-uniform
kernel linear, rbf
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