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ABSTRACT 

In this paper, we develop a model for detecting defects in 

fabric products based on an object segmentation algorithm, 

including a novel image data augmentation method to 

enhance the robustness. First, a vision-based inspection 

system is established to collect image data of the fabric 

products. The three types of fabric defects, such as a hole, a 

stain, and a dyeing defect, are considered. To enhance defect 

detection accuracy and robustness, a novel image data 

augmentation method, referred to as the defect-area cut-mix, 

is proposed. In this method, the shapes that are the same as 

each defect are extracted using the masks, and then they are 

added to non-defective fabric images. Second, an ensemble 

process is implemented by combining the results of two 

models, one with high sensitivity in defect diagnosis and the 

other with lower sensitivity. The results demonstrated that the 

model trained on the augmented dataset exhibits improved 

metrics such as intersection over union and classification 

accuracy in defect detection on the test dataset.  

1. INTRODUCTION 

Recently, there has been a surge in demand for automation in 

the product manufacturing and inspection processes across 

various sectors within the manufacturing industry. However, 

due to the considerable time and cost, product inspection by 

small and medium manufacturers is usually done manually 

with the human eye. Meanwhile, human inspections can lead 

to inconsistent test results based on the examiner's skill level 

and fatigue. Recently, thanks to artificial intelligence (AI) 

technology, manufacturing companies have actively applied 

automated inspection processes that can be adapted to 

different types of products (Jung et al., 2021). In order to 

conduct automated inspections of products with diverse 

geometries, it is necessary to develop a robust image-based 

inspection algorithm and an imaging system that is robust to 

external factors, including lighting conditions.  

Research on image-based product inspection algorithms can 

be divided into many approaches: statistical approach, AI 

model-based approach and hybrid approach (Hanbay et al., 

2016). Among various approaches, the statistical approach 

involves using image processing techniques (such as 

frequency decomposition or filtering) to extract features from 

images, while the hybrid approach combines statistical 

methods and modeling techniques to leverage the strengths 

of both. Therefore, these can be recategorized as follows: 

those based on combined image processing and those based 

on deep learning models such as convolutional neural 

networks (CNN) (Bhatt et al., 2021). For combined image 

processing algorithms that involve a mix of image processing 

steps, it is possible to achieve high inspection accuracy only 

for specific products with the same geometries. However, this 

approach has a drawback: if the product type or capturing 

environment changes, we must adjust the algorithm's 

parameters or create a new algorithm from scratch. On the 

other hand, algorithms based on deep learning models can 

respond to various products and environments depending on 

the training dataset and can achieve high inspection accuracy. 

However, since the performance of the inspection model 

greatly depends on the quality of the dataset (number of data 

points, diversity, etc.), developing a robust model requires 

investing time and effort to collect a large number of images 

of defective products (Russakovsky et al., 2015).  

Combined image processing algorithms are primarily used 

when the shooting environment is consistent and the variety 

of inspected products is limited. Tong et al. (2016) presented 

an optimal Gabor filter for inspecting woven fabrics. Zhou 

(2019) focused on inspecting defects in semiconductor 

wafers. They applied a median denoising process to images 

to extract favorable features for defect detection and 

proposed algorithms using machine learning techniques such 

as KNN and SVM to classify images. Deep learning model-

based algorithms require significant computing resources and 

longer processing times compared to combined image 

processing algorithms. However, they offer the advantage of 

creating robust models that are resilient to variations in 
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shooting environments and product types, depending on the 

quality of the training dataset. Tabernik et al. (2020) 

presented a novel segmentation network and decision 

network trained on the Kolektor Surface-Defect-Dataset 

(KolektorSDD), containing product surface defects, to infer 

surface defects with higher accuracy. Ho et al. (2021) 

proposed a step-by-step algorithm where an object detection 

model locates defects, and an instance segmentation model 

infers the shape of defects in woven fabrics. Deep learning 

model-based algorithms are generally evaluated to have 

higher robustness compared to combined image processing 

algorithms. 

However, if the feature distribution of the images in the 

training dataset (such as brightness, types of products, defects, 

etc.) is not sufficiently diverse, the model may only 

accurately infer data within the feature distribution of the 

training data. For instance, assuming a specific defect in the 

training dataset has a radius of 0.1~0.2mm and appears darker 

than its surroundings, the detection may become challenging 

if the defect is larger than 0.2mm in radius or if the product's 

color is darker than the training images. This is due to the new 

data displaying features not seen in the training. To address 

this issue, collecting more data would be one solution. 

However, as mentioned earlier, for small and medium-sized 

enterprises, investing significant time and resources without 

immediate productivity gains can be challenging. Therefore, 

there is a need to generate unseen data using observed feature 

distributions within the dataset. 

Therefore, in this work, we present a novel defect data 

augmentation method, referred to as the defect-area cut-mix, 

to improve the accuracy and robustness of deep learning-

based fabric defect detection models from the perspective of 

dataset quality. In addition, an ensemble process is applied by 

combining high and low sensitivity models in the fabric 

defect diagnosis. Figure 1 shows the schematic diagram 

depicting the research methodology in this paper.  

2. MODEL CONSTRUCTION AND DATA AUGMENTATION 

2.1 Image Data Collection and Model Construction 

In this section, the research methodology for image collection 

and defect detection model construction is explained. There 

are three steps, as follows: 

Step 1. Collection of fabric defect image data using vision 

cameras in the fabric inspection machine.  

To collect the fabric defect image data, two single-channel 

machine vision cameras were installed on the fabric 

inspection machine, as shown in Figure 2. The fabric 

inspection machine was designed to inspect the fabric rolls 

while they were continuously rotating. The three fabric types 

were black denim, blue denim, and light blue fleece. All 

images were collected while moving the fabric at a speed of 

approximately 30 cm per second, like in the actual fabric 

inspection environment. 

 

Figure 1. Schematic overview of the research methodology 

 

 

Figure 2. Image data collection using fabric inspection 

machine 
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Step 2. Construction of the original datasets and defect-

augmented datasets through image patching and masking of 

defect areas. (Masking and labeling are conducted using 

CVAT, which is a well-known open-source annotation tool.) 

(OpenCV et al. n.d.)  

The collected original images have dimensions of 3000 pixels 

in height and 4080 pixels in width. Due to their large size, it 

is inefficient for deep learning models to process them 

directly, necessitating resizing or patching. When resizing the 

original images directly, as shown in Figure 3, small defect 

areas may become significantly reduced and thus may not be 

detected. To avoid this issue, we performed patching in a grid 

of 3 (vertical) by 4 (horizontal) patches and resized each 

patch to 320x320 pixels. Subsequently, masking was applied 

to all patches containing defects to construct the dataset.  

 

Figure 3. Image patching and resizing 

Step 3. Design and construction of the defect detection model 

architecture for training. 

This dataset was then divided into training, validation, and 

testing sets, as shown in Table 1. Both the training and 

validation datasets were composed entirely of patches 

containing defects. For the testing dataset, we included both 

patches with defects and patches without defects to assess the 

tendency for false positives in detecting defects on normal 

(non-defective) patches. 

Table 1. The number of images of original patched dataset 

Defect type 
Without 

defect 
Hole Stain Dyeing Total 

Training 0 468 109 71 648 

Validation 0 465 95 95 655 

Testing 6312 80 45 3 6440 

 

Deep learning-based defect inspection commonly uses object 

detection and instance or semantic segmentation models. In 

this study, we selected a semantic segmentation model to 

reflect the characteristic of quantitatively calculating the area 

of defects during the quality assessment of fabric products. 

We designed our own Unet++ architecture, which has 

recently demonstrated strong segmentation performance in 

the biomedical field, to build the model as depicted in Figure 

4. The model specifically takes an image input size (320,320) 

and outputs masks (320,320,4) corresponding to non-

defective regions and each defect. Additionally, the input 

image undergoes four rounds of down-sampling and up-

sampling, with skip connections applied between all feature 

maps (Zhou et al. 2019). To ensure performance in both 

pixelwise classification and defect classification during 

model training, we employed the BCE Dice loss function, 

calculated as Eq. (1).  

By using both BCE (Binary Cross-Entropy) and DICE loss 

functions, it is possible to accommodate diversity in loss 

calculations while leveraging the stability provided by BCE. 

In semantic segmentation tasks, 𝑥𝑛  and 𝑦𝑛  are both binary 

images (masks), representing the ground truth and the 

predicted mask, respectively. 

Figure 4. Architecture of fabric defect detection model. 
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BCE Dice Loss = BCE loss + 0.5 × Dice loss  

BCE Loss = 

− ∑(yn log σ(xn) + (1 − yn) log(1 − σ(xn)))  

Dice loss = ∑ (1 −
2×yn×xn

xn
2 +yn

2 +10−5)  

(1) 

 

2.2 Defect Data Augmentation 

The number of images within a dataset to ensure the basic 

performance of CNN-based deep learning models can vary 

depending on several factors (Luo et al., 2018; Israel et al., 

2021). However, models used in industrial applications often 

face limitations on the available data within their own 

manufacturing environments. Thus, transfer learning using 

pre-trained weights on custom datasets is a commonly used 

strategy to ensure robustness (Redmon et al. 2016). However, 

even in such cases, it is generally recommended to have at 

least 1000 images per class (Cho et al., 2015). Therefore, it is 

necessary to apply a proper data augmentation approach to 

ensure enhanced performance of the defect detection model. 

In the dataset created by patching the collected original 

images in this study, the numbers of defect instances are 

highly imbalanced, as shown in Table 1. Additionally, the 

absolute number of images is insufficient. The most 

frequently observed defect in both the training and validation 

datasets is "hole," occurring more than four times as 

frequently as "stain" and "dyeing" defects combined. Even 

when combining the training and validation datasets, the total 

number of images does not exceed 1500. Therefore, image 

data augmentation is essential, and it is necessary to reflect 

the characteristics of each defect in the augmentation process. 

Stain defects exhibit various shapes and intensities within the 

defect areas, while dyeing defects primarily appear as broad 

horizontal stripes. Hole defects typically manifest as long, 

uniformly shaped vertical openings. Figure 5 shows 

examples of images depicting each type of defect. 

Commonly used methods for image augmentation include 

geometric transformations (such as flipping, rotating, and 

affine/perspective transformations) and brightness 

adjustment (such as histogram equalization). These methods 

are advantageous because the operations applied to the 

Figure 5. Example images of each type of defects. 
Figure 6. Comparison of conventional cut-mix and 

defect-area cut-mix. 
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images are simple, allowing for the rapid generation of new 

images. However, these methods alter the shape and 

brightness information of defects along with the surrounding 

background area, making it challenging to reflect cases where 

the model inputs unseen shapes of defects. 

Therefore, in this study, to overcome the limitations of such 

data transformations, the cut-mix augmentation technique 

was applied specifically to defect areas. The cut-mix 

augmentation is a technique proposed to improve the 

generalization performance of image classification models by 

encouraging the model to better learn the local features of 

each class (Yun et al., 2019). Figure 6 illustrates the 

difference between the conventional cut-mix augmentation 

method and the approach used in this study, referred to as 

"defect-area cut-mix." While the original cut-mix 

augmentation mixes rectangular regions of different class 

images directly, in this study, only the defect areas were cut 

out and overlaid onto images without defects to create new 

images with defects. This approach allows for the assumption 

of situations where the shape and location of defects may 

change from the dataset's perspective. 

– Extract defect areas using defect masks and images. 

– Select images without defects and overlay defect areas 

directly or randomly, depending on the characteristics of 

the defects. Here, the characteristics of the defects refer to 

the area or shape of the defect areas. 

Specifically, for hole defects (see Figure 7), where the defect 

size is relatively small, the defect areas can be randomly 

overlaid in portions of the fabric that are not occupied by the 

fabric. However, manual overlay position selection is 

required for stain and dyeing defects, where the defect 

regions' forms and areas vary considerably and may occupy 

a significant portion of the image.  

After applying the defect-area cut-mix as described above, 

geometric and brightness adjustments were applied to the 

dataset. The following three image processing techniques 

were independently applied with a certain probability: 

brightness adjustment to reflect changes in external lighting 

conditions during image capture (random alpha values within 

the range of 0.5 to 1.5 multiplied by the entire image), 

horizontal flip, and vertical flip. Figure 8 illustrates examples 

of data augmentation.  

To assess the performance difference caused by 

augmentation, the composition of the final datasets 

constructed by applying augmentations to the original 

patched dataset in Table 1 is presented in Table 2 and Table 

3 (datasets B and C). To validate the effectiveness of defect-

area cut-mix augmentation, augmentations depicted in Figure 

7 without defect-area cut-mix were applied to dataset B. On 

the other hand, every augmentation containing geometric 

transformation, brightness adjustment, and defect-area cut-

mix was applied to dataset C. All augmentations were applied 

only to the training dataset. However, for stain defects, it was 

empirically confirmed that applying the defect-area cut-mix 

technique was not effective due to the diverse shapes of the 

defects. Therefore, this augmentation was applied to the hole 

and dyeing defect only. Additionally, to avoid misdiagnosing 

defects on images without defects, images without defects 

and with temporary wrinkles (which are not considered 

defects) were added to the training and validation datasets. 

Compared to the original patched dataset, the augmented 

datasets partially alleviated the class imbalance between 

defect types.  

 

Table 2. Composition of the augmented dataset B 

Defect type 
Without 

defect 
Hole Stain Dyeing Total 

Training 930 549 491 186 2156 

Validation 7200 465 95 95 7855 

Testing 6312 80 45 3 6440 

 

Table 3. Composition of the augmented dataset C 

Defect type 
Without 

defect 
Hole Stain Dyeing Total 

Training 930 702 907 314 2853 

Validation 7200 465 95 95 7855 

Testing 6312 80 45 3 6440 

 

 

Figure 7. Example of data augmentation by 

 defect-area cut-mix. 

Figure 8. Example of data augmentation by geometric 

transformation and brightness adjustment. 
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3. PERFORMANCE EVALUATION 

Through a series of steps, three datasets were constructed 

before and after augmentation (naturally, the original patched 

dataset is a subset of the augmented dataset). Each of the 

three different datasets was trained on our self-designed 

architecture of the Unet++ model, as depicted in Figure 3. For 

convenience in description, the model trained on the pre-

augmented data will be referred to as Model A, the model 

trained on the augmented dataset without defect-area cut-mix 

will be referred to as Model B, and the one trained on the 

augmented dataset containing defect-area cut-mix will be 

referred to as Model C. By training a strict model and a less 

strict model independently, and then using an ensemble 

method, we were able to avoid incorrectly classifying defect-

free fabric data as defective in Model B and Model C. To 

produce the segmentation results, the ensemble applied to 

Model B and Model C used soft voting on the pixel-wise 

classification probabilities of two distinct models. 

The identical testing dataset was used to test Models A, B, 

and C. Masks for the defect and non-defective areas were 

inferred by the models. The mean Intersection over Union 

(IOU) score for each patch of each image was used to assess 

the performance metrics for defect identification, with a 0.7 

threshold. This measure evaluates each model's ability to 

identify defects and distinguish defective regions from non-

defective ones. 

Furthermore, the confusion matrix depicted in Figure 8 was 

used to calculate the models' precision, recall, accuracy, and 

F1 score in order to assess their performance in defect 

identification. Note that false positives represent instances 

where non-defective regions were incorrectly predicted as 

defective, while false negatives represent instances where 

defects were present but not detected. These metrics provide 

insights into the classification performance of the models in 

both non-defective and defective regions. Classification 

among different types of defects showed a 100% accuracy for 

all models. This high accuracy can be attributed to the clear 

characteristics of each type of defect, as described earlier. 

Overall performance metrics for Model A, B and C are 

presented in Table 4. Model C, trained on the augmented 

dataset with defect-area cut-mix, demonstrated superior 

performance across all metrics compared to Model A and 

Model B. Among the performance metrics for defect 

detection, Recall exhibited the smallest change, indicating 

that both models excelled at detecting actual defects with 

minimal variation.  

The effects of geometric transformation and brightness 

adjustment augmentation, as well as additional training on 

defect-free images, were evident in the difference between 

models A and B. Comparing the confusion matrix of Model 

B with that of Model A shows that all metrics improved. 

Notably, the total number of false positives decreased 

significantly from 1252 to 181. This indicates a substantial Figure 8. Confusion matrices of Model A, B and C 
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reduction in the model's tendency to incorrectly classify 

normal regions as defects. Moreover, the Mean IOU 

improved significantly from 0.375 to 0.704. 

In the case of Model C, trained on a dataset where defect-area 

cut-mix was applied, the number of false positives decreased 

significantly compared to the other two models, with only 7 

false positives in the Stain defect category. (It is interesting 

to note that the cut-mix was not applied to the Stain defect.) 

Furthermore, Model C achieved a more robust test result, 

with a mean IoU of 0.902, compared to the other two models. 

In summary, the augmentation proposed in this study and 

ensemble techniques led to a significant improvement in 

defect detection performance compared to model without 

these enhancements. This demonstrates that the proposed 

defect-area cut-mix technique can enhance the robustness of 

deep learning models in image-based defect detection tasks. 

Table 4. Metrics comparison of model A, B and C 

Model A B C 

Mean IOU 0.375 0.704 0.902 

Precision 0.086 0.401 0.946 

Recall 0.938 0.945 0.953 

F1 score 0.160 0.281 0.950 

Accuracy 0.804 0.971 0.998 

 

4. CONCLUSION 

This study proposed the novel image data augmentation 

method, referred to as the defect-area cut-mix, for enhancing 

defect detection accuracy and robustness of the deep 

learning-based fabric inspection system. In the defect-area 

cut-mix method, the defect shapes that are the same as actual 

fabric defects (hole, stain and dyeing defect) were extracted 

using the masks, and they were added to the non-defective 

fabric images for an augmentation. To demonstrate the 

effectiveness of the proposed defect-area cut-mix 

augmentation method, three data sets were prepared, such as 

the original dataset with augmentation (dataset A), that with 

conventional geometrical augmentation and brightness 

adjustments (dataset B), and that with defect-area cut-mix, 

geometrical augmentation, and brightness adjustments 

(dataset C). Then, the ensemble approach combining the 

deep-learning models with high and low sensitivity was 

applied to datasets B and C. Finally, it was found that the 

fabric defect diagnosis model with the dataset C and 

ensemble approach showed the best performance in terms of 

mean IOU, precision, recall, F1 score, and accuracy. 
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