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ABSTRACT 

To effectively compete with other renewable energy 

sources, there remains a critical need to further decrease the 

Levelized Cost of Energy of Wind Farms (WFs). A 

promising way to achieve this objective is by minimizing 

the downtime of wind turbines (WTs) through effective 

Inspection and Maintenance (I&M) activities. 

Conventionally, I&M plans have predominantly relied on 

CM/SCADA data obtained from the physical components of 

turbines, with data analytics and machine learning (ML) 

techniques being employed to predict their performance and 

maintenance needs. However, statistics indicate that nearly 

40% of WT failures can be traced back to HFs. These 

include aspects such as skills, knowledge, communication, 

and even the broader organizational culture. This paper 

delves into the importance of integrating HFs in the I&M of 

WFs to optimize turbine performance, enhance safety, and 

reduce downtime. 

Firstly, we briefly discussed various Human Reliability 

Analysis (HRA) methods with special emphasis on 

Performance Shape Factors (PSFs). We then identify key 

human factors (HFs) that are vital for performing O&M 

tasks. For this, we have prepared a questionnaire to get 

qualitative input from technicians and also done a thorough 

literature review. E.g., some of the HFs that stand out 

include the ergonomics of tools and workspace designs 

tailored to technicians' needs, the cognitive load placed on 

operators during system monitoring and diagnostics, 

continuous training to handle evolving challenges, effective 

communication channels, and safety protocols designed 

with human behavior in mind. We then propose a novel 

framework for developing a computer vision-based 

recommendation system that can guide the technicians to 

perform the maintenance effectively thus minimizing the 

HE. 

1. INTRODUCTION 

The wind industry, driven by a commitment to green energy 

generation, is at the forefront of research, technological 

innovation, efficiency gains, and cost reductions. With 

turbine sizes and capacity factors having tripled, there has 

been a monumental shift in the wind energy sector. Since 

1990, generation costs have been reduced by 65% (KPMG, 

(2019)), underscoring the industry's dedication to 

developing sustainable and economical energy solutions for 

the future. For instance, breakthroughs in blade design and 

materials, backed by rigorous research, enable turbines to 

harness wind more proficiently, yielding higher energy 

outputs even in suboptimal wind conditions (Asim, T., 

Islam, S., Hemmati, A., & Khalid, M. (2022)). The adoption 

of various Prognostics and Health Management (PHM) 

technologies and predictive analytics has further improved 

the operation and maintenance (O&M) of (WFs), curtailing 

downtime and driving costs even lower (Haghshenas, A., 

Hasan, A., Osen, O., & Mikalsen, E. T. (2023)).  

Rinaldi et al. (Rinaldi, G., Thies, P. R., & Johanning, L. 

(2021)) performed an exhaustive survey of the latest 

strategies governing the O&M planning and CM of OWFs. 

Their review delves into the benefits and limitations of 

current practices and looks ahead to emerging trends in 

robotics, AI, and data analytics. Key opportunities 

highlighted include the integration of diverse data sources to 

refine O&M strategies, precise inventory management, 

detailed uncertainty modeling, the urgent need for 
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standardized open data frameworks, and the development of 

essential reference software. In a related study, McMorland 

et al. (McMorland, J., Flannigan, C., Carroll, J., Collu, M., 

McMillan, D., Leithead, W., & Coraddu, A. (2022)) 

highlighted the significance of various factors in O&M 

modeling for OWFs, including weather dynamics, failure, 

and degradation patterns, vessel logistics, cost estimation, 

and maintenance tactics. Besnard et al. (Besnard, F., 

Patriksson, M., Stromberg, A. B., Wojciechowski, A., & 

Bertling, L. (2009)) introduced the 'opportunistic 

maintenance' concept for OWFs, which entails the fusion of 

multiple planned corrective and preventive maintenance 

tasks, either within a similar timeframe or even during a 

single visit. By capitalizing on wind forecasts and 

synchronizing corrective maintenance with periods of low 

power generation or unexpected failures, this approach has 

proven to yield a 43% reduction in preventive maintenance 

expenses (Fast, S., Mabee, W., Baxter, J., Christidis, T., 

Driver, L., Hill, S., McMurtry, J., & Tomkow, M. (2016)) 

However, as currently practiced, the PHM approach uses 

only machine-related quantitative data available from 

CM/SCADA systems to predict and manage the 

performance and maintenance needs of WFs. The biggest 

drawback of the overreliance on machine-related (MR) data 

is its inability to capture the full spectrum of operating 

conditions under which WFs function. A frequently 

undervalued metric in this context is human-related data, 

which offers additional insights into the system environment 

(Kiassat, A.C., (2013)). 

Human technicians/operators are an essential part of the 

daily O&M activities of the WFs. It is highly probable that 

Human Error (HE), in one form or another, might infiltrate 

the design, manufacturing, operation, and maintenance 

phases of WFs. Morag et al. (Morag, I. et al. (2018)), 

identified the most common HE during a maintenance 

activity described in Table 1. 

The HE may go unnoticed due to various reasons and can 

result in catastrophic accidents leading to severe 

consequences for the environment, society, and business. 

Statistics indicate, HE as one of the major factors for 

accidents across various sectors as shown in Figure 1. For 

instance, the infamous disasters within the oil and gas sector 

namely, the Piper Alpha and the BP Deepwater Horizon 

blowout occurred due to human and operational flaws. 

Likewise, the accident investigations of multiple aircraft 

crashes (such as of a Boeing 707-321C in 1977; Boeing 

747-200, in 1992; and Airbus 380-842 Qantas Flight 32 in 

2010) also point towards technical failures, HFs, and 

regulatory shortcomings as failure causes (Mathavara, K., & 

Ramachandran, G. (2022)). These statistics serve as a 

reminder that, while the hardware aspect is undoubtedly 

important, the human dimension also has a significant 

influence on the overall health and performance of the 

system.  

Table 1. Most common causes of Human Errors  

(Morag, I. et al. (2018)) 

HE Type Description 

Communication Misunderstandings among technicians and 

operators, often stemming from inadequate 

leadership and management. 

Fatigue Tiredness due to overwork or working in 

enclosed environments.  

Tools and 

equipment 

Improper use of tools and equipment can 

augment risks and compromise worker safety. 

Additionally, the lack of proper tools may 

increase HE as workers resort to using 

unsuitable machinery for specific tasks. 

Skills and 

expertise 

The risk of HE increases in non-routine tasks 

that demand specific knowledge when 

workers assigned are unfamiliar with the 

activities. 

Bad procedures HE often arises from poor information and the 

lack of standardized procedures. 

Documentation Poor documentation handling can increase HE 

due to its impact on task performance and 

understanding of required work. 

Procedure’s 

usage 

Lengthy procedures often lead workers to 

adopt informal methods and rely on personal 

experience to complete tasks. 

Time pressures Overtime and overwork often lead to more 

mistakes by workers, as they resort to 

shortcuts and simpler work methods. 

Tool control 

and 

housekeeping 

It concerns tracking the equipment used or 

removed from machinery. 

 

 
Figure 1. Accident percentage due to HE across various 

sectors 
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In this paper, the authors have highlighted the importance of 

integrating HFs within O&M of WFs. Firstly, we have 

briefly discussed various Human Reliability Analysis 

(HRA) methods with special emphasis on Performance 

Shape Factors (PSFs). We then discuss two scenarios of 

performance maintenance in the yaw deck and the nacelle of 

a typical WT. Thereafter we propose a framework for 

developing a computer vision-based recommendation 

system that can guide the technicians to perform the 

maintenance effectively thus minimizing the HE. We also 

propose the use of an eye-tracking device to measure the 

stress level of technicians.  

2. HUMAN RELIABILITY ANALYSIS (HRA) 

2.1. General  

The origin of HRA is in probabilistic risk assessment 

(PRA), a discipline initially developed for understanding 

and quantifying the risks of serious accidents within the 

nuclear industry. HRA provides methods and tools for 

analyzing and assessing risks caused by operator's actions 

on a technical system, thus evaluating to operator's 

contribution to system reliability. The first fully developed 

HRA methods date back to the 1970s when systematic tools 

for analysis of the operator's contribution to risk were 

applied in the nuclear industry. There are now several HRA 

methods available for the nuclear sector, with some being 

adapted to other industries such as oil and gas, chemical, 

and aviation. Figure 2 illustrates the steps of a generic HRA 

process. 

 

Figure 2. Generic HRA Process  

 

2.2. HRA Methods 

It is common to distinguish between first and second-

generation HRA methods (Swain, A.D. (1990), Dougherty, 

E.M. (1990)). The list of first-generation methods is 

extensive and includes amongst others Technique for 

Human Error Rate Prediction (THERP) (Swain, A.D., 

Guttman, H.E. (1983)), the Human Cognitive Reliability 

method (HCR) (Hannaman, G.W., Spurgin, A.J., Lukic, 

Y.D. (1984)), the Human Error Assessment and Reduction 

Technique (HEART) (Williams, J.C. (1985)), Accident 

Sequence Evaluation Program (ASEP) (Swain, A.D. (1987), 

and Standardized Plant Analysis Risk – Human (SPAR-H) 

reliability analysis (Gertman, D., Blackan, H.S., Marble, J., 

Byers, J., Haney, L.N., Smith, C. (2005)). 

Hollnagel (Hollnagel, E. (1998)), and Kim (Kim, I.S. 

(2001)) provide the following list of notable characteristics 

of first-generation methods: 1) Assumption that human 

reliability is similarly describable as hardware reliability. 2) 

HRA being limited to only the human actions that are 

included in the PSA event trees. 3) Binary representation of 

human action as either success or failure to carry out a given 

task. 4) Dichotomy of errors of omission (failure to perform 

an action) and errors of commission (unintended or 

unplanned action). 5) Focus on phenomenological aspects of 

human actions. 6) Little concern about the cognitive aspects 

of human actions. 7) Emphasis on quantification of human 

errors. 8) Indirect treatment of context, as the way in which 

PSFs exert their effect on performance is not described.  

Second-generation HRA methods were developed based on 

cognitive architectures to unveil the causes of errors from a 

behavioral perspective; thus, solving the main deficiency of 

the first generation. Two basic requirements proposed by 

Hollnagel (Hollnagel, E. (1998)) are that second-generation 

approach "uses enhanced PSA event trees and that it extends 

the traditional description or error modes beyond the binary 

categorization of success-failure and omission-commission" 

(p.151). He further stresses the need for a more realistic type 

of operator model, as the approach must be explicit about 

the way in which performance conditions affect 

performance. Most authors critiquing first-generation HRA 

methods agree on the necessity of incorporating a cognitive 

model into HRA "that would enable a better understanding 

of human error mechanisms that were well described by 

Reason (Reason, J. (1990))". A Technique for Human Event 

Analysis (ATHEANA) (Cooper, S.E., Ramey-Smith, A.M., 

Wreathall, J., Parry, G.W. (1996)) and Cognitive Reliability 

and Error Analysis Method (CREAM) (Hollnagel, E. 

(1998)) are examples of well-known and widely utilized 

second-generation techniques. CREAM uses the contextual 

control model (COCOM) and provides a determination of 

the reliability of a person's performance based on an error 

taxonomy that contains both error modes and error causes. 

Although addressing the main issue of first-generation HRA 

methods, one of the highlighted weaknesses of second-

generation methods is that they do not provide sufficient 

consideration of the mutual influences between PSFs (De 

Ambroggi, M. (2011)). According to Griffith and 

Mahadevan (Griffith, C.D., Mahadevan, S. (2011)) the main 

sources of deficiencies in HRA methods include: "1) lack of 

empirical data for model development and validation, 2) 

lack of inclusion of human cognition (i.e., need for better 

human behavior modeling, 3) large variability in 

implementation (i.e., HRA parameters are different 

depending on the method used), and 4) heavy reliance on 

expert judgment in selecting PSFs, and use of these PSFs to 

obtain the HEP in human reliability analysis" (p. 1444). 

HRA experts have more recently begun to look at potential 

improvements to existing methods. As an example, the 
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HEART method has been used as a basis for domain-

specific approaches such as Nuclear Action Reliability 

Assessment (NARA) (Kirwan, B., Gibson, H., Kennedy, R., 

Edmunds, J., Cooksley, G., Umbers, I. (2004)), Controller 

Action Reliability Assessment (CARA) (Kirwan, B., 

Gibson, H. (2008)), Railway Action Reliability Assessment 

(RARA) (Gibson, W.H., Mills, A.M., Smith, S., Kirwan, 

B.K. (2013)) and Shipboard Operations Human Reliability 

(SOHRA) (Akyuz, E., Celik, M., Cebi, S. (2016)). Another 

example is a more recent article by He et al. (He, Y., Kuai, 

N.-S., Deng, L.-M., He, X-Y. (2021)), which builds on 

CREAM by adding Human Inherent Factors (HIFs) such as 

anti-fatigue ability, concentration ability, reaction ability, 

and personality traits. 

In 2006, NASA Office of Safety and Mission Assurance 

(OSMA) published a technical report evaluating 14 HRA 

methods against a list of 17 attributes to highlight methods 

that are considered suitable for use in risk and reliability 

studies of NASA space systems and missions. The 

evaluation resulted in the selection of four methods: 

THERP, CREAM, NARA, and SPAR-H. The list of 

attributes used to compare the methods included: 

Developmental Context, Screening, Task Decomposition, 

PSF List and Causal Model, Coverage, HEP Calculation 

Procedure, Error-Specific HEPs, Task Dependencies and 

Recovery, HEP Uncertainty Bounds, Level of Knowledge 

Required, Validation, Reproducibility, Sensitivity, 

Experience Base, Resource Requirements, Cost and 

Availability, as well as Suitability for NASA Applications 

(Chandler, F., Chang, Y., Mosleh, A., Marble, J., Boring, 

R., Gethman, D. (2006)). Consideration of several of these 

attributes is essential when evaluating existing HRA 

methods for use in the context of O&M of WFs. 

2.3. Human Factors 

Our definition of HFs is from IEA: "Human Factors is the 

scientific discipline concerned with the understanding of 

interactions among humans and other elements of a system, 

and the profession that applies theory, principles, data, and 

other methods to design to optimize human well-being and 

overall system performance". HFs can be used either in 

accident investigations, or they can be used to enhance the 

performance of the technicians. 

The aims of using HF in general and in accident 

investigations are to:  

(1) Improve safety (i.e., reducing the risk of injury and 

death);  

(2) Improve performance in safety-critical situations (i.e., 

increase quality, productivity, and efficiency);  

(3) Support satisfaction/usability (i.e., increasing 

acceptance, comfort, and well-being). 

The details of how to use HFs for accident investigation are 

well documented in the literature, however, in this paper, we 

shall focus more on the identification of the HFs (in 

particular PSFs) that can be managed such that the I&M 

activities are performed efficiently within given time with 

minimal HE. 

2.4. Performance Shape Factors (PSFs) for OWFs 

PSFs or Performance Influencing Factors (PIFs) are defined 

by the Health Safety and Executive (HSE) as 

“characteristics of the job (e.g. the working environment); 

the individual (physical capability to do the work), and the 

organization (e.g. time pressure) that influence human 

performance” (HSE RR01 (2002)) 

Relevant PSFs for OWFs include environmental conditions 

(e.g., high winds, rough seas, weather variability), 

ergonomic challenges (working at heights, confined spaces, 

awkward postures), organizational aspects (training, work 

culture, resource availability), technical and mechanical 

complexity, accessibility and logistics due to remote 

locations, communication and coordination for emergency 

response, and the use of specialized tools and predictive 

maintenance technologies. On a more personal level, 

psychological stressors such as time pressure and 

distractions, as well as physiological factors like fatigue and 

hunger, can impact inspection and maintenance quality and 

error rates, especially in confined spaces like nacelles and 

hubs.  

Acknowledging PSFs and their impact on operational 

outcomes is essential for ensuring the safety, efficiency, and 

reliability of OWF’s O&M. For instance, the performance 

of technicians can significantly drop on a wet and windy 

day compared to more favorable weather conditions, 

increasing the risk of human error and injuries. Similarly, an 

overloaded technician may overlook early signs of wear, 

potentially causing unforeseen equipment failures. 

Additionally, a company that prioritizes proactive 

maintenance is likely to emphasize regular training, which 

can lead to fewer operational errors. 

The I&M activities and corresponding PSFs differ 

depending on the location within the WTs. For example, 

tasks on the yaw deck, such as brake maintenance and 

friction pad replacement, present unique challenges. These 

include transporting items using the nacelle crane or 

manually from inside the tower. Operations in this area 

entail inspecting the deck, handling moving parts, setting up 

the workspace, conducting maintenance, and cleaning up 

(G+ Global Offshore Wind Health & Safety Organization, 

(2021)). Challenges specific to the yaw deck include 

difficult access, particularly through ladder hatches in older 

turbines, constrained working space, and the physical strain 

of maneuvering heavy items. These conditions require 

technicians to employ specialized tools and assume 

strenuous postures, which can adversely affect their well-

being (G+ Global Offshore Wind Health & Safety 

Organization, (2021)). 
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Most service and maintenance tasks in WTs, such as routine 

inspections and part replacements, are carried out in the 

confined spaces of the nacelle and blade hub. Although 

newer, larger wind turbines provide a bit more space and 

improved accessibility, the areas remain constrained, 

frequently cluttered, and occasionally slippery due to oil 

spills. These conditions make it difficult to move safely and 

operate tools efficiently (G+ Global Offshore Wind Health 

& Safety Organization, (2021)). In the hub, accessing 

components like blade root bolts forces technicians into 

uncomfortable positions, compounded by the presence of 

grease and cramped, angled spaces. This increases the 

likelihood of injuries, equipment mishandling, and errors. 

More details regarding PSFs for working on OWT can be 

found in (G+ Global Offshore Wind Health & Safety 

Organization, (2021)). 

A questionnaire was designed to collect feedback from 

technicians, the results of which are presented in Figure 3 

(in the Appendix). The questionnaire's link is provided in 

(Questionnaire, (2024)). The responses indicate a consensus 

among technicians on most questions. For instance, 

regarding ergonomic challenges highlighted in question 3, 

one technician mentioned, "Wind turbines are often not 

ergonomically designed, lacking laydown areas for bags 

and equipment, leading to obstacles and potential hazards. 

Restricted access, working in areas with significant grease 

or oil, and maintaining a clean environment pose 

substantial challenges." Another respondent highlighted the 

absence of adequate sanitary facilities for women on WTs.  

A detailed analysis of the survey results suggests that 

conducting I&M activities on WTs is an exceptionally 

challenging task, which significantly increases the 

likelihood of HE. Moreover, the lack of real-time 

supervision at inspection sites reduces the opportunities to 

correct such errors. Consequently, the following section 

introduces a novel framework for a Computer Vision 

supervisory agent designed to monitor technicians during 

inspections and capable of raising an alarm if there is a risk 

of HE 

3. COMPUTER VISION-BASED RECOMMENDATION AGENT 

The steps involved in the framework that integrates multi-

modal inputs like videos and images consist of the 

following steps: 

1. Data Collection: Using high-resolution cameras, we 

will gather a comprehensive dataset of videos and 

images capturing expert technicians performing WT 

inspections. 

2. Data Preprocessing: We will apply techniques like 

frame extraction, noise reduction, and image 

stabilization to the recorded videos and images to 

prepare the data for analysis. Next, we will manually 

annotate them with labels indicating correct and 

incorrect actions, focusing on key inspection points and 

common errors. Finally, we will augment the data using 

techniques such as rotation, scaling, and mirroring to 

increase the dataset's robustness against variations in 

real-world scenarios. 

3. Model Development: We will use convolutional neural 

networks (CNNs) to extract features from images and 

video frames, and employ Long Short-Term Memory 

(LSTM) networks to analyze temporal dependencies in 

video data. We will then implement a fusion technique 

to effectively integrate features from different 

modalities, capturing a comprehensive profile of 

inspection activities. Lastly, we will develop a 

classification system using machine learning to 

distinguish between correct and incorrect inspection 

behaviors based on the labeled data. 

4. Real-Time Monitoring System: We will install a 

monitoring device at strategic locations around the 

wind turbine. Each device will be equipped with a high-

resolution camera and a speaker system. The camera 

will continuously capture video of the technician’s 

activities, allowing the system to visually monitor the 

inspection process from multiple angles. We will use 

edge computing devices integrated within the 

monitoring systems to process the data in real-time, 

significantly reducing latency and ensuring that any 

deviations or anomalies are promptly detected. The 

speaker will provide immediate audio feedback and 

recommendations to the technician based on the real-

time analysis, including alerts about potential errors, 

reminders of inspection steps, or safety warnings. 

5. Feedback Loop: We will integrate a feedback system 

where the model learns from new inspection videos 

over time, adapting to new techniques and evolving 

standards in turbine maintenance. We will regularly 

evaluate the system’s accuracy and reliability in 

detecting deviations and making iterative improvements 

based on real-world performance and feedback from 

technicians and supervisors. Furthermore, the 

technicians will also be able to interact with the system 

using voice commands. They will be able to respond to 

the audio cues by confirming receipt of messages or 

asking for further clarification. They will also be able to 

report issues, fetch information, or even tag certain 

observations without having to stop their work or 

remove their gloves, which can be particularly useful in 

harsh weather conditions.  

The deployment of such a framework has the potential to 

lower the HE significantly within WT maintenance and it 

also aligns with the broader goals of the wind industry to 

reduce costs and improve the reliability and efficiency of 

green energy production. As the industry continues to 

evolve, the continuous refinement and adoption of such 

integrated frameworks will be essential for sustaining 
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growth and ensuring the safety and well-being of the human 

technicians at the heart of these operations. 

4. CONCLUSION 

This paper laid out the critical importance of integrating 

HFs into the O&M of WFs, with a particular focus on the 

potential to enhance safety and efficiency through advanced 

technologies and methodologies. We discussed various 

approaches that have been used in the past for performing 

HRA to estimate HEP.  The important PSFs for 

maintenance activity on WFs, include environmental 

conditions, ergonomic challenges, organizational aspects, 

accessibility and logistics due to remote locations, 

communication and coordination for emergency response, 

the use of specialized tools, and psychological stressors. A 

questionnaire was designed to collect feedback on PSFs 

from WT technicians. For example, all the technicians 

agreed that the awkward positions required for accessing 

components like blade root bolts not only increase the risk 

of injury but also elevate the likelihood of mishandling 

equipment and making errors. 

To address these issues, we proposed a computer vision-

based supervisory agent capable of real-time monitoring. 

This system, which utilizes multi-modal inputs from high-

resolution cameras and provides audio feedback, represents 

a significant leap forward in reducing HE. By continuously 

capturing and analyzing the technician's actions, the system 

offers corrective feedback and actionable recommendations, 

thereby ensuring adherence to best practices and enhancing 

overall safety. 
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Fig 3. Response of Questionnaire 
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