
 

 1 

Damage Detection using Machine Learning for PHM  

in Gearbox Applications 

Lisa Binanzer, Tobias Schmid, Lukas Merkle and Martin Dazer 

Institute of Machine Components, University of Stuttgart, 70569 Stuttgart, Germany 

lisa.binanzer@ima.uni-stuttgart.de 

st157630@stud.uni-stuttgart.de 

lukas.merkle@ima.uni-stuttgart.de 

martin.dazer@ima.uni-stuttgart.de 

 
ABSTRACT 

Early damage detection in gearbox applications enables the 

implementation of Prognostics and Health Management 

(PHM). On the one hand, the earliest possible damage detec-

tion provides a precise in-sight into the state of health of a 

gearbox. In addition, early damage detection offers the pos-

sibility to slow down the damage progress and extend the re-

maining useful life (RUL) by intervening in the operating 

state at an early damage stage. The main contribution of this 

work is that existing Machine Learning tools are applied to 

the challenge of very early damage detection in gearboxes. 

Thus, the need for complex physically based data evaluation 

is avoided. The aim of this investigation is a comparison of 

two different machine learning approaches. To investigate 

the detection possibilities test bench experiments were con-

ducted with a single stage spur gearbox. For a comprehensive 

investigation, i.e. to detect damage under different operating 

conditions, the test runs are carried out at different damage 

sizes, speeds and torques. Based on the recorded vibration 

data, the damage detection is examined. Two machine learn-

ing approaches of anomaly detection are considered: An en-

coding approach and a loss approach. The same sparse auto-

encoder is developed for both approaches Both machine 

learning approaches are able to detect even the smallest dam-

age of about 0.5 % in most operating states. The loss ap-

proach allows the different damage stages to be recognized 

much more clearly than the encoding approach. The compar-

ison of the different approaches provides valuable insights for 

the further development of robust damage detection algo-

rithms. 

1. INTRODUCTION 

In many mobile and stationary applications, gearboxes are es-

sential for adjusting speed and torque. The greater the power 

that needs to be transmitted, the larger and more expensive 

the corresponding gear units are. In gearboxes one of the most 

common types of damage on a tooth flank is pitting. As soon 

as a pitting exceeds a size of 4 % in relation to the size of the 

tooth flank, the gear is considered as failed according to the 

2016 International Organization for Standardization [ISO] re-

port. Damaged tooth flanks are one of the leading reasons of 

downtime and each failure can be associated with high repair 

costs and time-consuming repair work. This particularly ap-

plies to large gearboxes and applications in remote locations, 

such as offshore wind power drives. For this reason, gear-

boxes in critical industrial applications are often equipped 

with condition monitoring systems (CMS) based on vibration 

sensors. They continuously monitor the current state of health 

of the gearbox. If the CMS detects damage, depending on the 

damage extent, a complete shutdown or a load reduction can 

be initiated. Expensive subsequent damage can be prevented 

and, in case of a reduced load, the remaining useful life 

(RUL) of the gearbox can be extended until it is repaired or 

replaced. However, the CMS’s are only developing their full 

potential if damage can be detected at a very early stage. 

The earliest possible damage detection in gearboxes enables 

comprehensive Prognostics and Health Management (PHM) 

to be implemented in gearbox applications. According to 

Goebel, Celaya, Sankararaman, Roychoudhury, Daigle and 

Abhinav (2017), a PHM approach consists of the 5 sub-areas 

of the system: data, diagnosis, prognosis, optimization and 

the system itself. The earliest possible damage detection af-

fects all of these areas. 

First of all, the health of a system, which according to the 

2017 Institute of Electrical and Electronics Engineers [IEEE] 

committee standards include all information regarding the 

functionality of a system, can be diagnosed much more pre-

cisely using the data of the system. The time gained by early 

damage detection can be used to acquire more data for a pos-

sible RUL prediction. Finally, health management of the sys-

tem can be realized. Health management describes the con-

trol of damage according to the aim of the PHM solution 
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(Bertsche & Dazer, 2023). A potential goal is the optimal uti-

lization of the RUL without unexpected failure until sched-

uled maintenance. For instance, this can be achieved by 

avoiding particularly damaging operating points. Another op-

tion is to implement an adaptive operating strategy that ena-

bles the extension of the RUL without any loss of perfor-

mance (Gretzinger, Lucan, Stoll & Bertsche, 2020). Due to 

the application of the operating strategy, the load on the pre-

damaged tooth is significantly reduced. This results in a slow-

down of the damage progress. The other teeth on the circum-

ference of the gear, which can still withstand the designated 

load, are being slightly overloaded. Thus, the load reduction 

is compensated without any overall power reduction. Control 

of the plant is carried out by a corresponding optimization 

algorithm. 

Overall, comprehensive PHM in gearbox applications offers 

numerous benefits. However, damage detection at a very 

early stage is a prerequisite. The aim of this study is to inves-

tigate the earliest possible damage detection in gearboxes 

with the help of machine learning. Experiments were con-

ducted on a test gearbox, vibration data was recorded and 

evaluated using an Autoencoder (AE). 

2. EXPERIMENTS AND MACHINE LEARNING APPROACHES 

Following, the test bench experiments for the earliest possi-

ble damage detection are described first. Subsequently, the 

developed autoencoder is presented. Finally, the two machine 

learning approaches (encoding and loss), which are based on 

the developed autoencoder, are discussed in more detail. 

2.1. Test Bench Experiments 

The test gearbox is designed as a single stage spur gear unit. 

Figure 1 illustrates the design of the test gearbox. The gear 

ratio is 𝑖 = 25/36 = 0.69 . More information on the test 

gears in (Binanzer, Merkle, Dazer & Nicola, 2023). 

The test bench is set up as an inline concept (2 motor con-

cept). The electric drive motor loads the transmission input 

side and the second electric motor loads the transmission out-

put side. Torque measuring shafts and incremental encoders 

for speed and angular position measurement are mounted be-

tween the electric motors and the test gearbox. Further infor-

mation on the test bench setup can be found in (Binanzer et 

al., 2023). The mounted test gearbox on the test bench is 

shown in figure 2. 

 

Figure 1. Design of the test gearbox. 

 

For lubricating the tooth contact, FVA reference oil no. 3 (see 

the 1985 Research Association for Drive Technology [FVA] 

report) is used. This is a mineral oil without additives with a 

viscosity corresponding to ISO 3448 (see the report (ISO, 

2010)). To ensure constant test conditions, the oil is precon-

ditioned in an external fluid tempering device to 29.54 °C. A 

gear pump supplies the oil to the tooth contact. A Pt100 tem-

perature sensor in the oil supply measures the oil temperature 

during the test runs. 

 

Figure 2. Test gearbox mounted. 

 

The test gearbox is equipped with a Sonotec T20 sensor. This 

ultrasonic accelerometer is located between the bearings and 

measures in the y-direction. The maximum measuring fre-

quency of the Sonotec T20 sensor is 100 kHz. However, the 

sampling rate of the Sonotec T20 sensor is limited to 96 kHz 

due to the maximum sampling rate of the data acquisition sys-

tem that is used (PAK MK2). Thus, according to the Nyquist-
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Shannon sampling theorem, maximum frequencies of 48 kHz 

can be measured with the system. 

Since the earliest possible damage detection using machine 

learning algorithms is to be investigated as part of this work, 

damage well below the 4 % criterion is examined. Artificially 

generated pitting serves as representative gear damage. Fol-

lowing a test series without damage, a total of three damage 

sizes are tested - small (S), medium (M) and large (L). The 

tests without damage serve as a reference and thus as a train-

ing data set for the machine learning algorithms. The pitting 

damage is applied using a numerically controlled milling ma-

chine. This ensures that the pitting can be easily and repro-

ducibly manufactured on the tooth flanks. A suitable radius 

milling cutter with a head diameter of 2 mm is used. Due to 

the higher number of load cycles, pitting damage usually oc-

curs on the pinion. Consequently, the artificial damage is ap-

plied on the pinion. The gear wheel remains undamaged. The 

pitting is located in the center of a tooth flank below the pitch 

circle. Figure 3 shows the pinion with the manufactured pit-

ting damage. 

 

Figure 3. Pinion of second gear pair with manufactured pit-

ting damage size L (1.72 %). 

 

For a comprehensive investigation, i.e. to detect damage un-

der different operating conditions, the test runs are carried out 

not only at different damage sizes, but also at different speeds 

and torques. In each of the four test series (no damage, S, M, 

L), six operating conditions are tested. These six operating 

states result from a combination of two speed levels (72 rpm, 

636 rpm) and three torque levels (18 Nm, 24 Nm, 30 Nm). 

Within a test series, the six operating states are varied ran-

domly in their sequence. The measurement duration for each 

test run is 100 s. Between the test series, the damage on the 

pinion is then artificially applied and milled larger. In this 

way, increasing damage on the pinion can be tested and the 

different damage sizes can be directly compared with each 

other. In order to achieve a more meaningful result, the tests 

are carried out with a total of three pairs of gears. The pinion 

and gear are always tested in the same pairs. This ensures that 

the algorithms do not detect any anomalies caused by manu-

facturing tolerances or material deviations of different pinion 

- gear combinations. The only difference between the test 

series of a gear pair is the increasing damage on the pinion. 

The surface area of each pitting is measured after the milling 

process using a digital microscope (see table 1). 

 

2.2. Autoencoder 

A test run duration of 100 s and a sample rate of 96 kHz result 

in 9,600,000 data points per test (acceleration over time). 

These data points are then converted into the frequency spec-

trum. For this purpose, Fast Fourier Transforms (FFT) of 

10,000 data points each are performed, thus 960 FFT's per 

test. Each FFT results in 5,001 frequency points. The two ro-

tational speeds of the tests result in the following: At a speed 

of 72 rpm, approximately 11.6 FFTs are conducted for each 

revolution of the pinion. At a speed of 636 rpm, approxi-

mately 1.3 FFTs are generated for each revolution of the pin-

ion. 

The AE developed in this study emerged from literature re-

search and empirical hyperparameter tuning. It is a multilayer 

AE, which consists of three joined AEs, each with a hidden 

layer, see figure 4. The number of units in layer 𝑙 is defined 

as 𝑠𝑙. The input of the first AE used in this study contains 

𝑠1 = 5,001 units corresponding to the number of frequency 

points per FFT. Accordingly, layer 3 and 5 have 𝑠3 = 𝑠5 =
5,001 units. The first hidden layer (layer 2) has 𝑠2 = 560 

units, the second hidden layer (layer 4) has 𝑠4 = 200 units. 

Finally, the third hidden layer (layer 6) learns a compressed 

representation of the frequency spectrum with 𝑠6 = 50 fea-

tures. The output after the last decoding process again has 

𝑠7 = 5,001 frequency points. The aim of the AE is to ensure 

that the output �̂� is the most accurate possible reproduction 

of the input 𝑥. For this purpose, the AE has to learn a function 

ℎ𝑊,𝑏(𝑥) with the parameters 𝑊 and 𝑏, for which the follow-

ing is valid: 

 ℎ𝑊,𝑏(𝑥)  ≈ 𝑥 (1) 

Table 1. Pitting surface areas. 

 

Gear 

pair 

Pitting 

level 

Pitting 

surface in 

mm2 

Relative 

surface 

area in % 

1 S 0.48 0.61 

1 M 0.97 1.23 

1 L 1.40 1.77 

2 S 0.40 0.51 

2 M 0.92 1.16 

2 L 1.36 1.72 

3 S 0.62 0.78 

3 M 1.01 1.28 

3 L 1.40 1.77 
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Since the AE in this paper has a total of 7 layers, layer 1 cor-

responds to the input and layer 7 to the output: 

 𝑥 = 𝑥(1) (2) 

 �̂� = ℎ𝑊,𝑏(𝑥) = 𝑥(7) (3) 

 

Figure 4. Structure of the Autoencoder. 

 

For parameter 𝑊, the notation 𝑊𝑖,𝑗
(𝑙)

 is used and this is asso-

ciated with the weighting of the connection between unit 𝑗 in 

layer 𝑙 and unit 𝑖 in layer 𝑙 + 1 (Ng, 2011). Parameter 𝑏𝑖
(𝑙)

 is 

the bias associated with unit 𝑖  in layer 𝑙 + 1  (Ng, 2011). 

Eq. (4) and (5) are valid to the layers of the AE. For this, 𝑎𝑠𝑙

(𝑙)
 

corresponds to the output of the hidden unit 𝑠𝑙 in layer 𝑙 =

2, 4, 6 and 𝑥𝑠𝑙

(𝑙)
 corresponds to the output of unit 𝑠𝑙  in layer 

𝑙 = 3, 5, 7. 

 𝑎𝑠𝑙

(𝑙)
= 𝑓 (∑ 𝑊𝑠𝑙,𝑖

(𝑙−1)
𝑥𝑖

(𝑙−1)

𝑠𝑙−1

𝑖=1

+ 𝑏𝑠𝑙

(𝑙−1)
) (4) 

 𝑥𝑠𝑙

(𝑙)
= 𝑓 (∑ 𝑊𝑠𝑙,𝑖

(𝑙−1)
𝑎𝑖

(𝑙−1)

𝑠𝑙−1

𝑖=1

+ 𝑏𝑠𝑙

(𝑙−1)
) (5) 

The function 𝑓(𝑧) with 𝑓: ℝ → ℝ is called activation func-

tion. The sigmoid function (Eq. (6)) is chosen as the activa-

tion function in this study. This function can assume values 

between 0 and 1, see figure 5. 

 𝑓(𝑧) =
1

1 + 𝑒𝑥𝑝 (−𝑧)
 (6) 

 

Figure 5. Sigmoid function. 

 

The AE requires training with a training data set with 𝑚 

training examples. The data from the tests without damage 

serves as the training data set. Thus, the training data set con-

sists of 960 FFTs each (𝑚 = 960). If training data set number 

𝑚 is used as input, then 𝑥(𝑙),(𝑚) results in layer 𝑙. The three 

AEs are trained one after the other. The corresponding loss 

function 𝐽𝐴𝐸(𝑊, 𝑏) with 𝐴𝐸 = 1, 2, 3 is defined for training 

the AE for both approaches (encoding and loss) and consists 

of three terms: 

 

𝐽𝐴𝐸(𝑊, 𝑏)

= [
1

𝑚
∑ (‖𝑥(𝑙+2),(𝑖) − 𝑥(𝑙),(𝑖)‖

2
)

𝑚

𝑖=1

]

+  𝜆 ∑ ∑ ∑(𝑊𝑗𝑖
(𝑙)

)
2

𝑠𝑙+1

𝑗=1

𝑠𝑙

𝑖=1

𝑙+1

𝑙

+ 𝛽 ∑ 𝐾𝐿(𝜌‖�̂�𝑗)

𝑠𝑙

𝑗=1

 

(7) 

 

𝑤𝑖𝑡ℎ  

𝑙 = 1 𝑓𝑜𝑟 𝐴𝐸 = 1;  

𝑙 = 3 𝑓𝑜𝑟 𝐴𝐸 = 2;  

𝑙 = 5 𝑓𝑜𝑟 𝐴𝐸 = 3 

 

The first term of the loss function is the average sum-of-

squares error term (Ng, 2011). It describes the deviation of �̂� 

from 𝑥 and can therefore also be described as a reconstruc-

tion error. The second term is the regularization term, also 

known as the weight decay term, which tends to reduce the 

size of the weights 𝑊 and helps to prevent overfitting (Ng, 

2011). It therefore ensures that the network does not simply 

memorize the data, but learns the underlying structure. The 

weight decay parameter 𝜆 determines the relative importance 

of the second term. 𝜆 = 0.001 is selected. 

Additionally, a sparsity constraint is imposed on the hidden 

units of layer 2, 4 and 6. Therefore a sparse AE is obtained 

and the third term of the loss function is the sparsity penalty 

term. With 𝛽 = 1, the weighting of the term corresponds to a 

single weighting compared to the first term. A sparsity con-

straint permits the AE to learn the underlying structure in the 

data even with a large number of hidden units. For this 
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purpose, the average activation of unit j in the hidden layer 𝑙 
is calculated: 

 �̂�𝑗 =  
1

𝑚
 ∑[𝑎𝑗

(𝑙)
(𝑥(𝑖))]

𝑚

𝑖=1

 (8) 

This average activation of the neuron should match the se-

lected sparsity constraint 𝜌: 

 �̂�𝑗 =  𝜌 = 0.3 (9) 

The sparsity penalty term penalized if �̂�𝑗  deviates signifi-

cantly from 𝜌. The penalty term is based on the Kullback-

Leibler (KL) divergence: 

 

∑ 𝐾𝐿(𝜌‖�̂�𝑗)

𝑠𝑙

𝑗=1

=  ∑ 𝜌 𝑙𝑜𝑔
𝜌

�̂�𝑗

+ (1 − 𝜌) 𝑙𝑜𝑔
1 − 𝜌

1 − �̂�𝑗

𝑠𝑙

𝑗=1

 

(10) 

The aim of training the AE is to minimize the function 

𝐽(𝑊, 𝑏) as much as possible. 𝐽(𝑊, 𝑏) becomes as small as 

possible when an optimal combination of the parameters 𝑊 

and 𝑏 is found. First, these parameters are randomly initial-

ized, then backpropagation is applied. During backpropaga-

tion, the connections of the AE's units are either strengthened 

or weakened via the weightings to further minimize the loss 

between input and output. Each AE is trained for 100 itera-

tions. 

2.3. First evaluation approach: Encoding 

After training the AE on the basis of the vibration data of a 

test without damage, the trained AE is used to evaluate all 

data of an individual operating condition of this gear pair. For 

this purpose, the recorded vibration data of the test without 

damage and the three tests with damage sizes S, M and L are 

appended to each other and an FFT is generated from 10,000 

data points each. This results in a total of 3,840 FFTs. These 

are each encoded to 50 features using the trained AE. A Prin-

cipal Component Analysis (PCA) is then used to determine a 

one-dimensional real number from these 50 features. Accord-

ing to the number of FFTs, 3,840 real numbers are obtained. 

The first 960 one-dimensional representations of the fre-

quency spectrum are those of the test without damage. The 

data points are normalized between 1 and 2. 

The data points of the test without damage are transformed 

using a Box Cox transformation. The aim is to modify the 

data in such a way that it is closer to a normal distribution. 

This provides a standardized baseline for the comparison 

with the untransformed data from the tests with damage. For 

the comparison, the arithmetic mean 𝜇 and the standard devi-

ation 𝜎  are determined from the transformed data without 

damage. Three intervals are defined based on the standard de-

viation: 

 1st interval: 𝜇 ± 𝜎 (11) 

 2nd interval: 𝜇 ± 2𝜎 (12) 

 3rd interval: 𝜇 ± 3𝜎 (13) 

In case of an optimal normal distribution, 68.27 % of the data 

are in the first interval, 95.45 % in the second interval and 

99.73 % in the third interval, see figure 6. 

 

Figure 6. Normal distribution. 

 

Based on the determined intervals, it is calculated how many 

of the 960 data points each of the tests with damage size S, 

M and L are outside the intervals. Since the limits of the in-

tervals are further apart as the interval increases, the propor-

tion of data points of the tests with damage that are outside 

the limits decreases. The first interval will therefore always 

show a greater deviation between tests without and with dam-

age than intervals 2 and 3. 

However, the different machine learning approaches (encod-

ing and loss) can be compared with each other on the basis of 

the interval method, as it is used in both approaches. If a de-

viation between the test without and with damage can still be 

detected with the second or third interval in one approach, the 

damage is more clearly detectable and the approach is there-

fore more suitable. The approaches can therefore also be 

compared in terms of how much the detectability decreases 

with increasing interval. The less influence the used interval 

of an approach has on the detectability, the more suitable the 

approach is. 

In the context of this paper, no fixed threshold for the data 

proportion outside the limits is to be defined with which dam-

age can be detected. Instead, the two approaches (encoding 

and loss) are to be evaluated and compared with each other 

based on the predefined intervals. 

2.4. Second evaluation approach: Loss 

In the second evaluation approach, the AE is also trained on 

the basis of the vibration data from a test without damage. All 

vibration data from the test without damage and the three 

damage variables S, M and L of the individual operating state 
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are then appended to each other. After 3840 FFTs have been 

generated from 10,000 data points each, these are encoded 

and decoded using the trained AE. The FFTs produced by the 

AE are then compared to the original FFTs by calculating the 

mean squared error (first term of the loss function, see Eq. 7). 

The loss approach, such as the encoding approach, provides 

960 real numbers per test without damage, damage size S, M 

and L. Based on this, a Box Cox transformation can be per-

formed again on the data without damage and the three inter-

vals can be determined (see Eq. (11), (12) and (13)). Subse-

quently, the proportion of data points outside the intervals is 

calculated for each of the tests with damage. 

3. RESULTS 

The results of the encoding and the loss approach are pre-

sented below. 

3.1. Encoding approach 

Figures 7 to 12 show the results of the encoding approach of 

the first gear pair for each operating condition. The lower and 

upper limits of the first interval are determined on the data 

without damage (see Eq. (11)). The upper and lower limits 

are marked with a red line. All blue data points are within this 

interval, all orange ones outside. For the damage sizes S, M 

and L, the proportion of data points inside and outside the 

interval is calculated. 

For all operating conditions, it can be seen that the plotted 

data points per damage size scatter significantly. Overall, this 

applies even more to the higher speed level of 636 rpm than 

to the lower speed level of 72 rpm. The most difficult pitting 

to detect using the encoding approach for the first gear pair is 

pitting M at 72 rpm and 24 Nm (see figure 8). Here, only 

20.2 % of the data points lie outside the first interval. The 

difference is therefore not as significant as with the other pit-

ting sizes or operating conditions, for which at least 33.5 % 

of the data points always lie outside the interval. 

 

Figure 7. Encoding approach, 1st gear pair, 72 rpm, 18 Nm, 

1st interval. 

 

Figure 8. Encoding approach, 1st gear pair, 72 rpm, 24 Nm, 

1st interval. 

 

 

Figure 9. Encoding approach, 1st gear pair, 72 rpm, 30 Nm, 

1st interval. 

 

 

Figure 10. Encoding approach, 1st gear pair, 636 rpm, 

18 Nm, 1st interval. 

Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN – 978-1-936263-40-0

Page 279



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024 

7 

 

Figure 11. Encoding approach, 1st gear pair, 636 rpm, 

24 Nm, 1st interval. 

 

 

Figure 12. Encoding approach, 1st gear pair, 636 rpm, 

30 Nm, 1st interval. 

 

In addition to the encoding evaluation of the first gear pair 

using the first interval, the second and third intervals are also 

determined (see Eq. (12) and (13)). As mentioned, this is only 

used for comparison with the loss approach, as the detecta-

bility decreases as the interval increases. However, the aim is 

to evaluate how much the detectability decreases. For the op-

erating condition 72 rpm and 18 Nm, this results in figure 13 

(second interval) and figure 14 (third interval). 

While for the first interval only 61.2 % of the data points 

without damage are within the limits (see figure 7), in the sec-

ond interval 99.1 % (see figure 13) and in the third interval 

all data points (see figure 14) are within the limits. As the 

limits therefore have a greater distance, it is more difficult to 

detect a difference to the data points of the experiments with 

damage. Even in the evaluation with the second interval, only 

1.7 % of the data points for pitting size S are outside the in-

terval (see figure 13). If the third interval is used for the 

evaluation, no difference is recognizable, as all data points of 

pitting S are within the interval (see figure 14). Pitting sizes 

M and L are also more difficult to detect as the interval in-

creases. 

 

Figure 13. Encoding approach, 1st gear pair, 72 rpm, 18 Nm, 

2nd interval. 

 

 

Figure 14. Encoding approach, 1st gear pair, 72 rpm, 18 Nm, 

3rd interval. 

 

Figure 15 presents the evaluation of the encoding approach 

for all operating conditions of the first gear pair. The propor-

tion of data points for damage sizes S, M and L that are out-

side the respective interval is shown. 

When using the second interval, some pitting can no longer 

be detected (pitting S at 72 rpm and 18 Nm, pitting M at 

72 rpm and 24 Nm, pitting S and L at 636 rpm and 30 Nm) 

or less clearly (13.4 % for pitting M at 72 rpm and 30 Nm). 

For all other pitting and operating conditions, at least 40.8 % 

of the data points are always outside the limits of the second 

interval. If the third interval is used for detection, the detect-

ability of the pitting decreases significantly. 
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Figure 15. Encoding approach, 1st gear pair. 

 

Figures 16 and 17 present the results of the encoding ap-

proach for the second and third gear pair in all operating con-

ditions. 

Considering the second and third gear pair, it is noticeable 

that the global tendency of the encoding approach corre-

sponds to that of the first gear pair. When using the first in-

terval, at least 39.8 % of the data for the second gear pair is 

always outside the limits, with one exception (28.6 % at 

72 rpm and 30 Nm). For the third gear pair, a minimum of 

44.9 % of the data is always outside the limits when using the 

first interval. If the second and third intervals are considered, 

the proportion of data points outside the limits decreases sig-

nificantly for certain operating conditions. Especially with 

the third interval, some damage can no longer be detected. 

 

Figure 16. Encoding approach, 2nd gear pair. 

 

 

Figure 17. Encoding approach, 3rd gear pair. 

 

3.2. Loss approach 

The results of the loss approach of the first gear pair for each 

operating condition are given in figures 18 to 23. Again, the 

lower and upper limits of the first interval are determined us-

ing the data without damage (see Eq. (11)) and marked with 

a red line. The proportion of data points within and outside 

this interval is identified. 

Overall, the results of the loss approach at the low speed level 

of 72 rpm have a low scatter of the data points. At the higher 

speed level of 636 rpm, larger scatter is recognizable. In all 

operating conditions, the data points of all pitting sizes are at 

least 96.8 % outside the limits – except for pitting L at oper-

ating condition 636 rpm and 18 Nm (77.0 %, see figure 21) 

and operating condition 636 rpm and 30 Nm (52.7 %, see fig-

ure 23). Overall, all pitting of the first gear pair can therefore 

be detected using the first interval of the loss approach. 

 

Figure 18. Loss approach, 1st gear pair, 72 rpm, 18 Nm, 1st 

interval. 
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Figure 19. Loss approach, 1st gear pair, 72 rpm, 24 Nm, 1st 

interval. 

 

 

Figure 20. Loss approach, 1st gear pair, 72 rpm, 30 Nm, 1st 

interval. 

 

 

Figure 21. Loss approach, 1st gear pair, 636 rpm, 18 Nm, 1st 

interval. 

 

Figure 22. Loss approach, 1st gear pair, 636 rpm, 24 Nm, 1st 

interval. 

 

 

Figure 23. Loss approach, 1st gear pair, 636 rpm, 30 Nm, 1st 

interval. 

 

In addition to the first interval, the second and third intervals 

are also determined for the loss approach (see Eq. (12) and 

(13)). The evaluation of all operating conditions of the first 

gear pair is illustrated in figure 24. The proportion of data 

points for damage sizes S, M and L that are outside the re-

spective interval is shown. 

When using the second interval, pitting L at operating condi-

tion 636 rpm and 30 Nm is the worst detectable pitting with 

only 16.4 % of the data outside the interval. Otherwise, at 

least 51,3 % of the data is always outside the limits. Using 

the third interval, pitting L is not detectable at operating con-

dition 636 rpm and 30 Nm. Here, only 0.3 % of the data is 

outside the limits. Overall, pitting is more difficult to detect 

when using the third interval, especially at the higher speed 

level of 636 rpm. 
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Figure 24. Loss approach, 1st gear pair. 

 

Figures 25 and 26 present the results of the loss approach of 

the second and third gear pairs for all operating conditions. 

When using the first interval, at least 89.7 % of the data for 

the second gear pair is always outside the limits. For the third 

gear pair, a minimum of 57.7 % of the data is always outside 

the limits when using the first interval. If the second interval 

is calculated, 52.2 % of the data for the second gear pair is 

always outside the limits and 13.7 % for the third gear pair. 

When using the third interval, a decrease in the proportion of 

data points outside the limits for individual operating states 

and pitting sizes can be seen, similar to the first gear pair. 

 

Figure 25. Loss approach, 2nd gear pair. 

 

 

Figure 26. Loss approach, 3rd gear pair. 

 

4. DISCUSSION 

Overall, the comparison of the encoding and loss approach 

shows that the data points scatter considerably more in the 

encoding approach. As a result, the upper and lower limits of 

the first interval are significantly further apart in the encoding 

approach than in the loss approach. When using the second 

and third intervals, this results in greater differences with the 

encoding approach because the limits are then frequently so 

far apart that pitting detection is no longer possible. 

However, if the first interval is used for pitting detection with 

the encoding approach, a minimum of 20.2 % of the data 

points are always outside the limits for the first gear pair, 

39.8 % for the second gear pair and 44.9 % for the third gear 

pair. 

In total, the loss approach shows significantly better pitting 

detection than the encoding approach. When using the first 

interval, a minimum of 52.7 % of the data points are always 

outside the limits for the first gear pair, 89.7 % for the second 

gear pair and 57.7 % for the third gear pair. 

A total of 18 cases are examined with the two approaches (3 

pitting sizes in 6 operating states). In order to be able to com-

pare the approaches even better, it is considered in how many 

of the 18 cases there is a significant deviation - i.e. at least 

50 % of the data points outside the limits. The result can be 

found in figure 27. 

For the first interval of the encoding approach, between 14 

and 16 cases have a deviation greater than 50 %, depending 

on the gear pair. With the first interval of the loss approach, 

all damage sizes in all operating states of all gear pairs have 

a minimum deviation of 50 %. With the second interval of 

the encoding approach, the 50 % criterion only applies to 10 

to 13 cases, depending on the gear pair. With the loss ap-

proach, it still applies to a minimum of 17 cases. When using 

the third interval, the number of cases in which at least 50 % 
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of the data points lie outside the interval is reduced for the 

encoding approach to between 5 and 12 cases. Large differ-

ences within the gear pairs can therefore also be seen here. In 

contrast, the loss approach shows 13 to 15 cases. 

 

Figure 27. Number of cases with at least 50 % of the data 

outside the interval, per approach and gear pair (g.p.). 

 

Overall, the loss approach is much better suitable for recog-

nizing a clear difference between the tests without and with 

damage. In the second interval of the loss approach, a mini-

mum of 50 % of the data points are still outside the limits in 

at least 17 cases. The encoding approach does not even 

achieve this for the first interval. In addition, the loss ap-

proach is not only less sensitive to different damage sizes and 

operating conditions, but also to different gear pairs. How-

ever, this paper does not consider how well false positives 

can be excluded with the two approaches. 

Regardless of the comparison of the two approaches, even the 

smallest investigated pitting with a size of 0.61 % (1st gear 

pair), 0.51 % (2nd gear pair) and 0.78 % (3rd gear pair) could 

be detected in the context of this study. In contrast to the ap-

proach presented in (Binanzer et al., 2023), in which an AE 

was combined with a Long Short Term Memory (LSTM) net-

work, detection is also possible with a purely unsupervised 

algorithm. This offers the advantage for the application that 

no labeled training data is required. Only data from a test 

without damage is required for training. 

The detectable pitting sizes in the scope of this work are a 

significant improvement on other investigations. There are 

various approaches for pitting detection in gearboxes using 

vibration sensors. The approaches differ on the one hand in 

the investigated pitting size and in the methods of sensor data 

evaluation. 

Qu, M. He, Deutsch and D. He (2017) investigated one row 

of pitting damage along the tooth width of one tooth. A 

stacked autoencoder network was used to perform the dic-

tionary learning in sparse coding and automatically extract 

features from the raw vibration data. With these features a 

backpropagation neural network was trained to identify the 

damage. 

Fan, Zhou, Wu and Guo (2017) developed a gear damage de-

tection and localization approach by analyzing the vibration 

signal of an individual tooth and Support Vector Machines 

(SVM). The dispersion degree and vibration accelerations of 

the waveform of an individual gear tooth were studied to in-

vestigate the characteristics of gear tooth under normal, small 

failure (< 5 % damaged tooth area) and serious failure (> 5 % 

damaged tooth area) conditions. 

An unsupervised feature extraction method called disentan-

gled tone mining was presented by Qu, Zhang, M. He, D. He, 

Jiao and Zhou (2019). This method was able to identify the 

fault level directly from the frequency spectrum of the meas-

ured vibration data. Pitting sizes between 4.33 % and 

24.91 % were investigated in a single stage spur gearbox. 

Medina, Cerrada, Cabrera, Sanchez, Li and Oliveira (2019) 

used a LSTM network for classifying nine levels of pitting. 

The smallest investigated pitting had a size of 4.16 %. 

Pitting sizes of less than 1 % were detected by Grzeszkowski, 

Nowoisky, S., Scholzen, Kappmeyer, Gühmann, Brimmers 

and Brecher (2020) using a SVM classifier. A disadvantage 

of the SVM classifier is that it is a supervised algorithm and 

therefore requires labeled training data. 

Damage detection with purely physically based data evalua-

tion, with pitting sizes between 6.3 % and 41.7 %, was pre-

sented by Sowana und Chandrasekaran (2020). In each case, 

the root mean square (RMS) value of the structure-borne 

noise data in the time domain of the undamaged and damaged 

gear was compared. 

Sarvestani, Rezaeizadeh, Jomehzadeh and Bigani (2020) also 

examined the detection of naturally occurring pitting dam-

ages with a size of 30 %, 60 % and 90 % using purely physi-

cally based methods. The frequency spectrum of the struc-

ture-borne noise data was divided into six ranges. The dam-

age was best detected in the second gear mesh harmonic 

range. 

Häderle, Merkle and Dazer (2024) presented another physi-

cally based data analysis approach. It is shown that the great-

est percentage difference between undamaged and damaged 

gears can be determined for the harmonics of the gear mesh 

frequency (GMF) and the sidebands between 24,000 Hz and 

40,300 Hz. Thus, it was possible to detect very small pitting 

sizes between 0.42 % and 1.83 %. 

5. CONCLUSION 

In order to increase the service life of gearboxes, avoid unex-

pected failures and thus reduce overall operating, mainte-

nance and labor costs, comprehensive PHM has to be imple-

mented in gearbox applications. Adaptive operating strate-

gies can even extend the RUL without any loss of perfor-

mance. In order for the PHM of gearboxes to achieve its full 

Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN – 978-1-936263-40-0

Page 284



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024 

12 

potential, damage detection at the earliest possible stage is 

essential. 

In this study, two unsupervised machine learning approaches 

(encoding and loss approach) were developed and the detec-

tion of artificially manufactured damage on the tooth flank of 

a test gearbox was investigated. 

In particular, the loss approach is more capable of identifying 

a difference between no damage and damage than the coding 

approach, regardless of the size of the pits and operating con-

ditions. The loss approach is also less sensitive to different 

gear pairs, which have slightly different properties due to ma-

terial and manufacturing tolerances. 

Overall, it can be stated that the main contribution of this 

work is that existing Machine Learning tools have been ap-

plied to the challenge of a very early damage detection in 

gearboxes. Without the need of complex physically based 

evaluation methods of the vibration data, the smallest pitting 

of about 0.5 % could be detected regardless of the operating 

condition. The use of the sparse AE was described in detail 

and two evaluation methods were compared. 
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