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ABSTRACT

For complex systems, the number of residual candidates gen-
erated by Structural Analysis could be in the order of tens
of thousands, and implementing all candidates is infeasible.
This paper addresses the residual generator candidate selec-
tion problem from a state-observer perspective. First, the
most suitable candidates to derive state-observers are selected
based on two criteria related to the state-space form and a
low number of equations. Then, a novel algorithm finds the
minimal subset of residual generator candidates capable of
detecting and isolating all faults. A procedure is introduced
to compare the fault sensitivity of the selected candidates.
This residual selection method is applied to the multi-engine
propulsion cluster of a reusable launcher to illustrate its ben-
efits.

1. INTRODUCTION

A classical model-based approach for fault detection and iso-
lation usually comprises two main steps: the residual gener-
ation and the residual evaluation (Simani et al., 2003). The
first step relies on the mathematical model of the system to
generate signals, called residuals, that contain fault informa-
tion. Then, the presence of the faults is inferred by a residual
evaluation method. Structural Analysis (SA) has been proven
to be a powerful tool for developing model-based fault diag-
nosis systems (Escobet, Bregon, Pulido, & Puig, 2019). It is
a graph-based tool that uses the model equations to build a
structural model. From the structural model, efficient algo-
rithms (Krysander, Åslund, & Nyberg, 2007) can be applied
to find residual generator candidates automatically. However,
the number of candidates increases exponentially with the
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number of sensors. For large-scale systems, the number of
residual generator candidates can be in the order of tens of
thousands. This brings a new problem to be solved: the se-
lection of the best subset of residuals that meets both fault
detectability and isolability requirements.

The residual selection problem is addressed in (Svärd, Ny-
berg, & Frisk, 2013) where algorithms are proposed to find a
minimal subset of residuals to meet the isolability constraints.
In (Jung & Frisk, 2018), the residual selection problem is
solved using convex optimization. In this case, the optimiza-
tion problem depends on recorded data to find the minimal
and most effective subset of residuals. In (Jung & Sundström,
2017), the residual selection problem is addressed by com-
bining the fault sensitivity information of the residuals with
machine learning methods. However, in all of those works,
the fault isolability constraint used is very restrictive, leading
to sub-optimal solutions with more residuals than necessary
to isolate all faults.

Here, it is proposed to use a different fault isolability con-
straint based on the fault signature. This less restrictive con-
straint is able to lead to an optimal subset of residuals with
minimal cardinality. Such an isolability constraint based on
the fault signature has been used previously in (Zhang & Riz-
zoni, 2017) for residual selection. However, the objective
was to find a subset of residuals that would produce the most
”unique” fault signature for robustness purposes.

This paper proposes a new algorithm to find the minimal sub-
set of residual generators able to detect and isolate predefined
faults. The algorithm is adapted for an observer-based resid-
ual generation technique. State observers are more robust to
modeling errors and parameter uncertainty when compared
with other model-based residual generation techniques, such
as Sequential Residual Generation (Isermann, 2005). The
idea is to select the residual generator candidates based on
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two main criteria: the candidates that can be easily written
into the state-space form and the residual generators with the
lowest number of equations. The state-space form is required
to implement the majority of observers, such as the Kalman
filter (Kalman, 1960) or Luenberger observers (Luenberger,
1964). It is preferred to have fewer equations because each
one has a degree of uncertainty and modeling errors.

Depending on the number of residual generator candidates,
it is possible to find many subsets of residuals with minimal
cardinality. In order to choose the most suitable residuals in
terms of fault sensitivity, a procedure based on the equations
of the residual generator candidates is proposed. It quantifies
the impact that a fault will have on the measured variables.

The main contributions of this paper are as follows. First,
an algorithm to find the minimal subset of residuals to detect
and isolate all faults. Second, a procedure based on the equa-
tions of the residual generators is proposed to compare the
sensitivity of the residuals for one specific fault. The paper is
organized as follows. In Section 2, basic notions of model-
based diagnosis are recalled. In Section 3, the minimal resid-
ual selection problem is described and an algorithm to solve
this problem is proposed in Section 4. Section 5 describes the
procedure that uses the residual generator equations to com-
pare the sensitivity of two residual generator candidates for a
given fault. In Section 6, the proposed algorithm is applied
in a multi-engine propulsion cluster of a reusable launcher.
Conclusions are presented in Section 7.

2. PRELIMINARIES ON MODEL-BASED DIAGNOSIS

This section recalls some model-based diagnosis notions need-
ed to formulate the residual selection problem formally intro-
duced in (Svärd et al., 2013). Those notions are used to define
necessary conditions to meet detectability and isolability con-
straints. Consider a model defined as

M = (E,X,Z, F ) (1)

whereE is the vector of ne system equations,X the vector of
unknown variables in Rnx , Z the vector of known variables
in Rnz and F the vector of fault variables in Rnf . It is as-
sumed that each fault f ∈ F affects only one equation e ∈ E.
This basic assumption is not as limiting as it may initially ap-
pear, as the equation e affected by the fault can propagate its
effect through other equations. If a fault affects simultane-
ously more than one equation in the system, the system may
be poorly modeled. Given the model (1), an ideal residual
generator is defined as

Definition 2.1 (Ideal residual generator) Consider a model
M such as (1). A system R with input Z and output r is a
residual generator forM , and r is a residual if f = 0 implies
r = 0 for all f ∈ F .

In reality, residuals slightly deviate from zero even when no

fault is present in the system due to unmodeled dynamics such
as measurement noise and parameter uncertainty. One im-
portant property of residuals is their fault sensitivity, which
defines the subset of faults that will affect this residual:

Definition 2.2 (Fault sensitivity) Let Ri be a residual gen-
erator for model M . Then Ri is sensitive to fault f ∈ F if
f ̸= 0 implies ri ̸= 0.

With a set of residual generators R ⊇ Ri, i ∈ N, the fault
signature Sf of a fault f can be defined. The fault signature
describes the subset of residuals that are sensitive to this fault:

Definition 2.3 (Fault signature) For a set of residual gen-
erators R, the fault signature Sf of a fault f contains all the
residuals Rf ⊆ R sensitive to f .

Using the fault signature, the fault isolability can be defined.
If the fault has a unique signature, i.e., a unique subset of
residuals is sensitive to it, the fault can be isolated from the
others.

Definition 2.4 (Fault signature isolability) A fault f is iso-
lable using a set of residual generatorsR if its fault signature
Sf is unique when compared to the other fault signatures.

3. MINIMAL RESIDUAL SELECTION PROBLEM

The minimal residual selection problem is formally defined
as an optimization problem. Considering all residual gener-
ators available Rall to detect and isolate nf faults, the ob-
jective is to find a minimal subset of Rall that respects the
fault signature isolability property presented in def. 2.4, i.e.,
that generates unique fault signatures Si for each fault fi, i =
1, 2..., nf . The optimization problem is formulated as

min
R⊆Rall

|R|

s.t. S = {S1, S2, ..., Snf
}̸=

S ̸= 0

(2)

where |R| is the cardinality of the subset R. An equivalent
optimization problem, using the fault signature, is introduced
in (Zhang & Rizzoni, 2017), but a solution to this problem is
not addressed.

The fault signature isolability concept is a key notion of find-
ing the minimal subset of residuals to isolate all the faults.
In previous works, such as (Svärd et al., 2013) and (Jung &
Frisk, 2018), a different fault isolability definition was used.
For instance, a fault fi ∈ F is considered to be isolable from
another fault fj ∈ f if there exists a residual Rk ∈ R that is
sensitive to fi but not to fj . Due to the fact that the isolability
is defined by pair of two faults, to isolate nf faults, it is neces-
sary to meet nf !

(nf−2)! isolability requirements. This notion of
isolability is thus more restrictive compared to the proposed
definition 2.4.

The difference between the two notions of fault isolability
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is illustrated on the following simple example. Consider a
set of three residual generators and three faults with different
sensitivities defined in Tab. 1. The symbol ∗ indicates that a
given residual ri is sensitive to a fault fj .

Rall = {r1, r2, r3} F = {f1, f2, f3}. (3)

Table 1. Fault signature matrix.

r1 r2 r3
f1 0 ∗ ∗
f2 ∗ ∗ 0
f3 ∗ 0 ∗

To isolate all three faults using the fault isolability require-
ments employed in previous works, the set of residuals should
respect six different constraints:

c1 : f1 × f2 c2 : f1 × f3 c3 : f2 × f1
c4 : f2 × f3 c5 : f3 × f1 c6 : f3 × f2

(4)

where fi × fj denotes a constraint that requires a residual
sensitive to fi but not to fj .

Analysing the fault signature from Tab. 1, all three residuals
are thus required to meet the six fault isolability constraints.
However, it is possible to find smaller subsets of Rall capable
of detecting and isolating all faults (3) using the fault signa-
ture isolability concept. The number of isolability constraints
is then divided by two:

c1 : S1 ̸= S2 c2 : S1 ̸= S3 c3 : S2 ̸= S3. (5)

It can be checked that any pair of residuals generates a unique
fault signature for each fault, respecting the constraints 5, and
is, therefore, a solution to the optimization problem (2).

4. MINIMAL RESIDUAL SELECTION ALGORITHM

A new algorithm to solve the optimization problem (2) is pro-
posed. First, the minimal number of residuals needed to iso-
late nf faults is calculated. Assuming that each residual ri
has only two states: ri = 0 when Fi = 0 and ri ̸= 0
when Fi ̸= 0, where Fi is the vector of faults that affects
ri. The lowest number of residuals nmin necessary to isolate
nf faults must follow the inequality:

2nmin ≥ nf + 1. (6)

It must be highlighted that nmin represents the theoretical
lowest number of residuals necessary to generate nf different
fault signatures. The existence of such subset will depend on
the sensitivity of each residual.

For instance, to isolate the three faults from Eq. (3), at least
two residuals are required to generate three different fault sig-

natures, considering that the fault signature (0, 0) is excluded
because it is equivalent to the fault-free state. For compar-
ison, the solution proposed in (Jung & Frisk, 2018) based
on optimization finds a subset of six residuals to isolate four
faults.

The main idea behind the proposed algorithm consists in tak-
ing all possible combinations of nmin at a time of residual
generators in R and checking if this subset of R generates a
different fault signature for each residual. Assuming that the
total number of residual generators is nR, the number of all
possible combinations is defined as

nc =
nR!

(nR − nmin)!nmin!
(7)

From Eq. (7), if the number of residual generators is too big,
it would be impossible to test the isolability properties of all
possible subsets of R. For example, to isolate thirty faults
(nf = 30) using sixty residual generators (nR = 60), it is
necessary to have at least five residuals (nmin = 5), and there
are more than five million possible combinations of residuals
to be tested (nc > 5× 106).

To restrict the number of residual generators, two new con-
cepts are introduced:

• Detectability class: for each fault f ∈ F , list every
residual sensitive to this fault Rdf ∈ Rall;

• Undetectability class: for each fault f ∈ F , list every
residual that is not sensitive to this fault Ruf ∈ Rall.

The idea is to select the most suitable residual generator for
each detectability and undetectability class. The criterion for
selecting that residual generator will depend on the residual
generator method. In this work, the observer-based residual
generation method is used. Two criteria are defined to choose
the most suitable residual generator from a state-observer point
of view:

1. Choose the residual generators composed of Ordinary
Differential Equations (ODEs) or Differential Algebraic
system of Equations (DAE) of index 1.

2. Select the residual generators with minimal ”state cardi-
nality,” which means the residual with a minimal number
of equations, which is equivalent to the state dimension
of the corresponding observer.

The first criterion is related to the observer theory, which is
mostly based on ODE systems. DAE systems of index one
are also included because they can be easily transformed into
an ODE by taking the derivative of the algebraic equations
(Campbell, Linh, & Petzold, 2008).

The second criterion is related to model uncertainty. Each
equation has a level of uncertainty due to modeling errors. It
is thus suitable to choose the residuals with fewer equations
to minimize the combined level of uncertainty.
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Finally, the union of all residuals that meet both criteria for
each detectability and undetectability class is used to test all
possible combinations to verify the fault isolability require-
ments. The formal description of the process to find the mini-
mal subset of residual generators is described in Algorithm 1.
It can be divided into two main loops. The first loop takes the
set of residual generator R and filters it using the two criteria
defined above. The isolability properties of the filtered sub-
set of residuals Rf are inspected. If the isolability properties
are not met, a flag to relax the filtering constraints (rCons)
is activated. The second loop tests all possible subsets of Rf

based on the minimal number of residuals (nmin) needed. If
no subset of Rf containing nmin residuals is capable of de-
tecting and isolating the faults F , the minimum number of
residuals nmin is increased, and the search restarts. The pro-
cedure returns a list Rmin containing all subsets with nmin

residuals that can detect and isolate all faults. The other pro-
cedures used in Algorithm 1 are described below.

• DETECTABILITYCLASS(R,F ) for each fault f ∈ F ,
lists all residuals from R that are sensitive to this fault.
Returns nf subsets of residuals corresponding to each
fault.

• UNDETECTABILITYCLASS(R,F ) for each fault f ∈ F ,
lists all residuals from R that are not sensitive to this
fault. Returns nf subsets of residuals corresponding to
each fault.

• FILTERRESIDUALS(d, u, rCons) for each detectability
class d and undetectability class u, filter the residuals
considering cardinality and equations structure criteria.
If the flag rCons is activated, the cardinality criteria are
relaxed. Returns the list of residuals Rf that fits all fil-
tering criteria.

• CHECKISOLABILITY(R,F ) checks if a group of resid-
uals R generates unique fault signatures for each fault
f ∈ F . Returns 1 if true and 0 if false.

• COMPUTESUBSETS(R,nmin) compute all possible com-
binations of residuals from R separated into groups of
nmin residuals. Returns a list containing all possible
combinations.

5. RESIDUAL EVALUATION PROBLEM

The Algorithm 1 presented in Sec. 4 returns all possible
combinations of residuals with minimal cardinality capable
of isolating the predefined faults. In example (3), there are
three different pairs or residuals that could be used to iso-
late the faults. A method to compare the residual generators
is presented here. The objective is to quantitatively measure
whether one residual is more sensitive than another.

Assuming that state observers will generate the residual by
measuring the difference between the output estimated by the
state observer ŷ and the measured output y, the idea is to

Algorithm 1 Residual Selection Algorithm
Inputs: Set of residual generators R, List of faults F
Output: Subsets of R with minimal cardinality Rmin

procedure RESIDUALSELECTION(R,F )
d← DETECTABILITYCLASS(R,F )
u← UNDETECTABILITYCLASS(R,F )
rCons← 0
isol← 0
while isol = 0 do

Rf ← FILTERRESIDUALS(d, u, rCons)
if CHECKISOLABILITY(Rf ,F ) then

isol← 1
else

rCons← rCons+ 1
nmin ← COMPUTENUMMINRES(F )
while Rmin = Ø do

RS ← COMPUTESUBSETS(Rf ,nmin)
k ← 0
for all Ri ∈ RS do

if CHECKISOLABILITY(Ri, F ) then
Rmin(k)← Ri
k ← k + 1

if Rmin = Ø then
nmin ← nmin + 1

return Rmin

quantify the ”innovation” that the fault will have on the mea-
sured states of the residual generator. Taking ybf as the mea-
sured output before fault and yaf the measured output after
fault, the innovation is defined as

In = ybf − yaf . (8)

In theory, the innovation brought by the fault is important to
better the sensitivity of the residual generator to this fault.
This procedure is illustrated on the same simple example used
in (3). Consider a linear time-invariant system composed of a
chain of integrators:

e1 : ẋ1 = k1x2 e2 : ẋ2 = k2x3 e3 : ẋ3 = k3(u+ f3)

e4 : y1 = x1 + f1 e5 : y2 = x2 + f2 e6 : y3 = x3
(9)

where the unknown variables are x = {x1, x2, x3}T , the out-
puts are y = {y1, y2, y3}T , the input is u, the fault vector is
F = {f1, f2, f3}T , and ki, i ∈ [1, 3] are known constants.

Thee residual generators candidates can be extracted from (9)
using structural analysis, where three MSOs are computed
and taken as residual generators. They are composed of the
following equations

r1 = {e2, e3, e5} r2 = {e1, e4, e5, e6}
r3 = {e1, e3, e4, e6}

(10)

the fault signature of the residuals (10) are illustrated in Tab. 1.
It has been shown previously that any pair of (10) is enough
to isolate the three faults. However, the impact of the faults is
different for each residual.
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For instance, let us compare the sensitivity of r1 and r2 when
f2 is injected using the procedure described above. For r1,
the relation between the fault f2 and the output is direct be-
cause the output of r1 is y2. For r2, the measurement of y2
is first used to estimate ẋ1, which is then used to estimate the
output y1. The innovation brought by f2 in r1 and r2 can be
summarized as

Inr1,f2 = f2 Inr2,f2 = k1f2. (11)

If the known constant k1 is bigger than one, this empirical
analysis indicates that r2 will be more sensitive to r1 to de-
tect f2. Repeating this analysis to the other faults and residu-
als, an efficient subset of residual generators concerning fault
sensitivity can be found.

6. APPLICATION EXAMPLE

The algorithm presented in Section 4 is used to find a list
of minimal subsets of residuals capable of detecting and iso-
lating a predefined list of faults in a multi-engine propulsion
cluster of a reusable launcher.

6.1. Multi-Engine Propulsion Cluster Description

The propulsion cluster considered here is composed of three
main parts: propellant tanks, feeding lines, and liquid-propellant
rocket engines. The tanks are where the propellant is stored,
and the feeding lines connect the propellant tanks with the
rocket engines, where the thrust is generated. The propulsion
cluster considered is composed of three rocket engines. The
rocket engines use liquid oxygen (LOX) and liquid hydrogen
H2 as propellants (Pérez Roca, 2020). A simplified scheme
of the LOX part of the multi-engine cluster is illustrated in
Fig. 1. The feeding lines architecture with one main line
splitting into secondary lines is optimal for minimum mass
and pressure drop values (Miquel, 2020).

LOX tank

Feeding lines
1

2

3

Enginesfen Ren

f f LPull

PsT

qm

PC1

PC2

PC3

qos2

Ps2

Ps1

qos1

Ps3

qos3

Figure 1. Multi-engine propulsion cluster scheme

The cluster operation can be summarized as follows: the rocket
must follow a predefined trajectory. The trajectory is con-
verted into thrust reference (Ren) and then given to the en-

gines. Each engine has its control law that uses the control
valves to meet the references. The valve position defines how
much mass flow (qoi) is used by the engine and, therefore,
defines the mass flow that goes out of the tank through the
feeding lines. The outlet pressure of the feeding lines (Psi)
is imposed as the input pressure of the engines. Psi also de-
pends on the tank’s outlet pressure PsT . The tank’s outlet
pressure is defined by the tank’s ullage pressure (Pull) and
the rocket acceleration aL. The acceleration depends on the
thrust generated by each motor, which is directly related to
the engines’ combustion chamber pressure PCi. The index
.i ∈ {1, 2, 3} denotes the respective rocket engines.

The state vector is composed of the following variables

x ={PsT , Pm, Psi, qm, qsi, qGHi, qCHi, qTHi, qTOi,

PCi, PGi, PTHi, PTOi, ωHi, qGOi, qCOi, ωOi}T
(12)

where PsT is the output pressure of the LOX tank, Pm/qm
are the output pressure/mass flow of the main line, Psi/qsi
are the output pressure/mass flow of the i-th secondary line,
qGHi/qGOi are the gas generatorH2/LOX mass flow, qCHi/qCOi

are the combustion chamber H2/LOX mass flow, qTHi/qTOi

are the turbine H2/LOX mass flow, PCi/PGi are the com-
bustion chamber/gas generator pressure, PTHi/PTOi are the
H2/LOX turbine intake pressure, and ωHi/ωOi are theH2/LOX
pump rotating speed.

The vector of known variables z is composed of input vari-
ables u and output measurements y, z = {u, y}

u = {VGOi, VGHi, VCOi, VCHi, VZi}
y = {PH , Pull, Pm, Psi, PCi, PGi, ωHi, ωOi,

RMCi, RMGi}T
(13)

where V GHi/VGOi are the gas generator H2/LOX control
valves, VCHi/VCOi are the combustion chamberH2/LOX con-
trol valves, VZi is the valve that directs the gas generated by
the gas generator to the turbines, PH is the outlet pressure
of the H2 line, Pull is the ullage pressure at the LOX tank,
and RMCi/RMGi are the combustion chamber/gas genera-
tor mixture ratios.

The mixture ratios are the relation between the LOX and H2

mass flows:

RMCi =
qCOi

qCHi
RMGi =

qGOi

qGHi
. (14)

The fault vector f is composed of the following faults:

f ={fqCOi, fV CHi, fV GHi, fωHi, fRMCi}T (15)

where fqCOi is a external LOX leakage in the combustion
chamber, fV GHi is a blockage in VGHi, fV CHi is a blockage
in VCHi, and fωHi/fRMC are bias faults in the sensors of
ωHi/RMCi respectively.
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All the equations that describe the relations between states,
inputs, and faults are listed in Appendix 7.

Considering that each engine is identical, only the measure-
ments and faults from engine one are considered to simplify
the implementation of the algorithm and avoid unnecessary
computational. However, all results obtained for engine one
can be automatically extended to the other two engines.

The first step is to find all residual generator candidates R.
This step is performed using the Fault Diagnosis Toolbox
(Frisk, Krysander, & Jung, 2017). In total, considering the
equations and measurements of only engine one, the system
is composed of fifty-three equations, and the degree of redun-
dancy is eight. The residual generator candidates are obtained
by computing all the Minimally Structurally Overdetermined
(MSO) sets. Each MSO is a subsystem with a degree of re-
dundancy one, i.e. it has one more equation than the num-
ber of unknown variables. All MSOs can be solved indepen-
dently and are, therefore, residual generator candidates.

6.2. Algorithm implementation

The computation of all residual generators results in 24433
candidates that can possibly be used to detect and isolate five
faults. From (6), at least three residuals are used to detect and
isolate five faults.

The first loop of Algorithm 1 finds a subset of 16 residuals
that meet both cardinality and state-observer criteria.

Rf = {r166, r167, r170, r710, r711, r713, r1000, r1001,
r1006, r1085, r1320, r1321, r1326, r1408, r1593, r1838, }.

(16)

The fault sensitivity of the selected residuals is expressed in
Table 2. It shows that the selected residuals 16 are enough to
detect and isolate all faults considered.

The second loop of Algorithm 1 takes the selected residuals
Rf from equation (16) and tests all possible combinations us-
ing the minimum number of residuals and selects the combi-
nation that generates unique fault signatures for each fault. In
the first iteration of the loop, the minimum number of resid-
ual generators is three, and from (6), there are 560 possible
combinations to be tested. However, there are no subsets of
three residuals capable of isolating all faults. In the second
iteration, the minimum number of residuals is increased by
one, resulting in 1820 possible combinations of four residu-
als. The Algorithm 1 returns 40 combinations, each one con-
taining four residuals from (16) that can isolate all faults. For
comparison, the algorithm proposed in (Svärd et al., 2013)
returns a subset of at least seven residuals to isolate the same
five faults.

Two possible subsets of residuals are chosen for further anal-

Table 2. Fault signature matrix.

fV GH1 fV CH1 fqCOi fωHi fRMCi

r166 0 0 0 ∗ 0
r167 0 0 ∗ ∗ ∗
r170 0 0 ∗ ∗ ∗
r710 ∗ ∗ ∗ ∗ ∗
r711 ∗ ∗ 0 0 0
r713 ∗ ∗ 0 0 ∗
r1000 0 ∗ ∗ ∗ ∗
r1001 0 ∗ ∗ ∗ ∗
r1006 0 ∗ ∗ ∗ ∗
r1085 0 ∗ ∗ ∗ ∗
r1320 ∗ 0 ∗ ∗ ∗
r1321 ∗ 0 ∗ ∗ ∗
r1326 ∗ 0 ∗ ∗ ∗
r1408 ∗ ∗ ∗ ∗ ∗
r1593 ∗ 0 ∗ ∗ ∗
r1838 ∗ ∗ ∗ ∗ ∗

ysis:
R1 = {r166, r170, r713, r1001}
R2 = {r166, r170, r713, r1321}

(17)

both subsets in (17) have almost the same structure; the only
difference is the last residual generator. To compare those
residual generators, the empirical residual evaluation method
presented in Section 5 is used. The residuals are composed of
the following variables:

• r1001

x1001 = {qGO1, qCH1, ωH1}
z1001 = {Ps1, PH , PG1, PC1, RMC1, RMG1,

ωO1, ωH1, VCH1, , VGO1}
(18)

• r1321

x1321 = {qGH1, qCO1, ωH1}
z1321 = {Ps1, PH , PG1, PC1, RMC1, RMG1,

ωO1, ωH1, VCO1, , VGH1}
(19)

the residuals have a very similar structure, having three states
and the same output ωH . One difference is when the fault
fRMC1 is injected. In r1001,RMC1 is used to estimate qCO1,
on the other hand, in r1321, RMC1 is used to estimate qCH1.
When fault fRMC1 is injected, the estimation of the mass
flows will be given by

r1001 : qCO1 = (RMC1 + fRMC1)qCH1

r1321 : qHC1 =
qCO1

RMC1 + fRMC1
.

(20)

For residual r1321, the influence of fRMC1 is directly ob-
served in the output ωH1 because the evolution of ωH1 de-
pends on qHC1. Residual r1001 is not directly influenced be-
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cause qCO1 is not used to estimate ωH1. The fault fRMC1

will first impact the state qGO1 which then will influence the
estimation of qGH1 and affects ωH1. During those steps, the
fault magnitude fRMC1 is divided by a constant bigger than
one, attenuating the effect of the fault in the output. This
makes the residual r1321 more suitable to detect fRMC1. The
same analysis can be extended to faults fqCO1 and fωO1,
where the magnitude of the faults is attenuated before affect-
ing the output of residual r1001.

6.3. Simulation results

To test the performance of the residuals (17) in simulation,
an Unscented Kalman Filter (UKF) was calculated for each
residual. This state estimator can deal with any type of non-
linearities and gives accurate estimations up to the third order
of Taylor expansion (Wan & Van Der Merwe, 2000). The
unscented transformation parameters were set at the default
values, which gives an optimal solution for Gaussian distri-
butions, with α = 0.001, κ = 0, and B = 2. The multi-
engine cluster model was implemented using Simulink, and
measurement noise was added. It is a white noise with zero
mean, and the standard deviation varies according to the sen-
sor specifications. For the rotational frequency of the turbop-
umps ωOi, ωHi, the Standard Deviation (SD) is 0.1% the ro-
tational frequency when the engine at its nominal operating
point. For the low-pressure values (Psi, PH , Pull), the SD
is 0.1%, the nominal pressure value. For the high pressures
(PGi, PCi) the SD is 0.2% the nominal value. The mixture
ratios RMCi and RMGi have a standard deviation of 0.3%,
the nominal value. The measurement noise covariance ma-
trix R of the UKF was defined according to the standard
deviations. The model parameters are considered perfectly
modeled, so the process noise covariance matrix Q is pro-
portionally defined ten times smaller thanR. To simulate the
behavior of the system in closed-loop when a fault is injected,
three PIDs were designed for each engine using the classical
configuration (Pérez Roca, 2020). The PIDs use the valves
to control the outputs yPID = [RMCi, RMGi, PCi]. The
closed loop system has a settling time to the step response of
two seconds without overshooting.

Five faults are simulated in rocket engine 1, and each fault
stays active for two seconds. The fault injection time and
parameters are presented in Tab. 3.

The residuals generated by the UKFs are the difference be-
tween the output estimated by the state observer and the mea-
sured output, they are illustrated in Fig. 2. The UKF cal-
culated from residual generator r166 is denoted UKF166, etc.

From Fig. 2, the theoretical fault signature matrix of the
residuals defined in Table 2 is observed in simulation. The
exception is residual r1001 where the faults fqCO, fwO and
fRMC are attenuated by the residual’s equations, and the im-
pact of those faults cannot be seen when measurement noise

Table 3. Fault parameters

Fault Time Effect
fV GH1 12s-14s Blockage 50% VGH1

fV CH1 16s-18s Blockage 10% VCH1

fqC1 20s-22s LOX Leak. of 0.8% nominal qCO1

fwO1 24s-26s Bias of 1% nominal ωO1 value
fRMC1 28s-30s Bias of 5% nominal RMC1 value
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Figure 2. Residuals

is added. From simulation results, it is confirmed that the
subset R2 from (17) is more suitable for fault detection and
isolation due to the higher sensitivity of r1321 when compared
with r1001.

7. CONCLUSION

A novel algorithm to find all possible subsets of residual gen-
erator candidates capable of detecting and isolating all faults
with minimal cardinality has been presented. The minimal
cardinality is achieved using a less restrictive isolability con-
straint based on the fault signature. Since the algorithm can-
not be applied to a large number of residual generator candi-
dates due to combinatorial explosion, two criteria to decrease
the number of residual candidates were established. Those
criteria take into account the residual generator method based
on state observers, i.e. the reduced sensitivity to uncertainty
when the number of state equations is minimal per residual.
A procedure was presented to evaluate the selected residuals
and compare the subsets with minimal cardinality returned by
the algorithm. The proposed methods were applied in a model
of a multi-engine propulsion cluster where five different faults
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were considered. From 24433 residual generator candidates,
the algorithm found 40 subsets, each one containing four dif-
ferent residual generators, that were capable of detecting and
isolating the five faults. Two of those subsets of residual
generators were implemented using Unscented Kalman Fil-
ter. Simulation results showed that the subsets can be used to
detect and isolate all faults, and as a result the effectiveness of
the proposed selection algorithm and quantitative sensitivity
evaluation.
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Pérez Roca, S. (2020). Model-based robust transient control

of reusable liquid-propellant rocket engines (Theses).
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APPENDIX

The Liquid-Propellant Rocket Engine models are all derived
from (Pérez Roca, 2020). All variables used in the equations
that are not states (12), inputs and outputs (13) or faults (15)
are known constants. Only the equations of the oxygen side
are presented. The equations of the hydrogen side have the
same structure. The only difference is the index .O is replaced
by .H on the hydrogen side. The effect of the faults in the
dynamic equations of the cluster is highlighted in red.

The pressure at the output of the oxygen turbopump PpOi is
given using manufacturer data:

PpOi =

(
apO
ρO

+ROGC

)
(qCOi + qGOi)

2

+ bpO(qCOi + qGOi)ωOi + cpOρOω
2
Oi. (21)

The evolution of the oxygen mass flow that enters the com-
bustion chamber qCOi and the gas generator qGOi are derived
from conservation of the momentum equation:

q̇GOi =
1

IGO
[Psi + PpOi − PGi

−
(

1

2ρO(VGOi + fV GOi)2
+ROG +ROGC

)
q2GOi ]

(22)

qCOi has the same structure, where the subscript .G is re-
placed by .C .
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The hot gases mass flows are given by

q̇THi =
1

ITH
(PGi − PTHi)− kyTHRoutG

TG
PGi

q2THi (23)

q̇TOi =
1

ITO
(PGi − PTOi)− ZriRoutGG

TG
PGi

q2TOi (24)

where Zri is the equivalent resistive coefficient of the valve.
The combustion chamber pressure PCi evolution can be ap-
proximated by first order Taylor expansion

ṖCi = k1C(qCHi+qCOi−fqCOi)−k2C
√
TCPCi. (25)

The oxygen turbine pressure PTOi is defined as

ṖTOi = k1TOTGqTOi − k2TO

√
TGPTOi. (26)

Finally, the rotational speed’s evolution is given by manufac-
turer data

ω̇Oi =
1

JO
[TTOi −

acO
ρO

(qCOi + qGOi)
2

− bcO(qCOi + qGOi)ωOi − ccOρOω2
Oi] (27)

where the motor torque TTOi is given by TTOi = ST.Wi

with ST the specific torque and Wi the work provided by the
turbine pressure PTOi.

For the feeding lines model, the evolution of the mass flow
q and outlet pressure P in one rigid pipe, considering the
effects of the fluid inertia, dynamic compressibility and ne-
glecting the fluid thermal expansion, can be described by the
momentum and mass balance equations:

q̇ =
S

L

(
Pin − P −

frL

2ρS2D
q2
)

Ṗ =
α2

V
(q − qo)

(28)

this pair of equations must be repeated for each pipe to model
the feeding lines illustrated in Fig. 1.

The governing equations of pressurization of a propellant tank
are obtained from (Majumdar & Steadman, 2001). The out-
put pressure of the tank is defined as

PsT = Pull + ρO[aL + g cos(b)]Hd (29)

Considering that a cylinder can approximate the shape of the
tank, the gravitational head Hd is defined as

Hd =
VLOX

πr2
, VLOX = VLOX0 −

∫ t

0
qmdt

ρ0
(30)

The rocket’s acceleration aL can be approximated by a bivari-
ate quadratic function total thrust T generated by the engines
and the mass of the rocket mR:

aL = k1a + k2aT + k3amR + k4aTmR + k5am
2
R (31)

Finally, the mass of the rocket mR can be calculated as:

mR = mR0
− ∫ qmdt− ∫ qH dt (32)

where qH = qCH+qGH is the total hydrogen mass flow used
by the three engines, andmR0

is the initial mass of the rocket.
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