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ABSTRACT

A critical task for system operators is the precise identifica-
tion of the root causes underlying an error situation. This
identification is fundamental in deciding optimal maintenance
actions, such as replacing a component versus calibrating it.
However, the actual causes of an error are often neither mea-
sured nor unique. The measured quantities are the result of
complex interactions between different error causes and sys-
tem variables. Root cause identification in this context be-
comes a matter of inferring hidden causes from their measur-
able effects. This challenge is notably pronounced in cyber-
physical systems comprising control loops. Control mecha-
nisms, integral to maintaining system performance, introduce
a layer of complexity in diagnostics and ultimately compli-
cate the isolation of the underlying causes of errors. To ad-
dress this challenge, we introduce a two-step approach to de-
rive the hidden causes as a statistical inference task. First,
we develop a generative model leveraging existing control
software and expert-based insights into the mechanisms of
errors, i.e., a simulator of synthetic data given some hidden
error causes. Then, we transform the generative model into
a probabilistic program on which statistical inference can be
executed within a probabilistic programming language frame-
work. This inference effectively estimates the hidden causes
given some measured data from the system. Being intrin-
sically a statistical approach, these inferences come with a
confidence interval. We applied this methodology to an in-
dustrial printer’s sheet transport belt, operating in a closed-
loop configuration. Our approach successfully discerned the
contributions of three distinct hidden causes to the belt’s de-
viation from its intended position. This paper highlights the
efficacy of generative modeling followed by a probabilistic
programming approach in unraveling complex interactions
within cyber-physical systems for optimal maintenance.

Alvaro Piedrafita et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

1. INTRODUCTION

In order to match the increasing market demands on overall
equipment effectiveness, industrial manufacturers of cyber-
physical systems need efficient methods to diagnose system
malfunctions. In practice, finding the root cause of such mal-
functions is challenging for several reasons, ranging from tech-
nological to human and organizational ones.

On the technological side, the high demands on performance
lead to increasingly complex systems with many intertwined
control mechanisms that obscure the path from a root cause
to its measurable effects (Borth & Barbini, 2019). The lack of
direct observability for each cause of malfunctions forces the
diagnostic to infer the many root causes from their effects on
the few measured observables. Moreover, these observables
are often not measured for diagnostic purposes but rather for
control and performance ones, i.e. are indirect.

On the human and organizational side, the knowledge needed
to solve difficult diagnostic cases is within the design and
engineering departments, while the responsibility of offering
diagnostic support lies on the service department (van Ger-
wen, Barbini, & Nägele, 2022). The transfer of the necessary
knowledge is thus a difficult process that relies on expensive
escalation-based approaches, i.e. design and engineering de-
partments are called in by service to support the diagnostic
reasoning. Finally, the struggle to timely train the service
personnel capable of executing the needed diagnostic reason-
ing is a growing concern in the face of relentlessly increasing
system complexity.

To tackle the points above we propose a method that focuses
on two pillars. First, capture in models the knowledge of the
system behavior, e.g. control loops, together with its failures.
This should be done iteratively within the design and engi-
neering departments, by incrementally incorporating knowl-
edge on failures occurring in the field. Second, support the
diagnostic reasoning process by performing statistical infer-
ence on the above models together with data from an error
situation in the field, inferring the hidden causes of errors in
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a Bayesian way. This is the contribution of this methodology
to the service department.

The rationale behind the proposed approach is that humans
have the knowledge and the inclination to reason forward,
i.e. in a simulation-like manner from the causes of a failure
towards the resulting effects. Many such simulation models
are readily available in industrial companies. Conversely, it
is more challenging for humans to perform inverse diagnos-
tic reasoning from the effects towards the causes: they need
computational support to do so. In this paper we leverage
the available system expertise and modeling capabilities of
humans, with statistical inference tools to achieve diagnostic
reasoning support.

The remainder of the paper is organized as follows: below
we give an overview of the relevant literature. In Section 3
we introduce the details of our approach. In Section 4 we
first apply our methodology to synthetic data and then to real
data from an industrial system, finally we conclude our paper
and give directions for future research in Section 5.

2. LITERATURE REVIEW

The proposed method has its foundations in model-based di-
agnostics (De Kleer & Kurien, 2003) and specifically in its
probabilistic implementation with Bayesian networks (Lucas,
2001; Srinivas, 1995). In this context, Bayesian networks, a
type of probabilistic graphical model, are used to infer the
likelihood of causes based on observed data via Bayes’ theo-
rem. The quantity of interest for the diagnosis is the posterior
probability of cause C given observations O, computed as
P (C|O) = P (O|C) · P (C)/P (O).

The present paper extends the previous work in two direc-
tions. First, we model and reason with continuous random
variables, rather than discrete. This is fundamental when
tackling performance issues, i.e. scenarios where the sys-
tem’s components are not described by a neat dichotomy of
states, such as normal or abnormal, but rather sit in a con-
tinuous spectrum of states. Second, we model and reason on
dynamic processes rather than on static ones. This is needed
when diagnosing systems with feedback control loops and
when the cause of failures shows a time-dependent behav-
ior. In the literature, such systems are often modeled with
dynamic Bayesian networks (Bartram & Mahadevan, 2015),
but this is cumbersome and very quickly results in very large
models, so we propose a different approach.

In this paper, we perform statistical inference on dynamic
models with continuous random variables by using a prob-
abilistic programming paradigm (van de Meent, Paige, Yang,
& Wood, 2018). The proposed probabilistic programming
approach can be seen as a generalization of Bayesian filtering
and smoothing methods (Särkkä & Svensson, 2023) such as
Kalman filters and particle filters. Several methods have been

introduced in the probabilistic programming literature to per-
form such statistical inference, sampling-based methods like
Markov chain Monte Carlo (van de Meent et al., 2018), gradi-
ent based methods (Kucukelbir, Tran, Ranganath, Gelman, &
Blei, 2017) and analytic methods like message passing (Cox,
van de Laar, & de Vries, 2019), or combinations thereof (Cox
et al., 2019). In this paper we rely on Markov chain Monte
Carlo using the Python library Numpyro (Phan, Pradhan, &
Jankowiak, 2019). The proposed methodology makes use of
simulation models to generate synthetic data for validation
and fine-tuning of the inference models. The use of synthetic
data has been explored before in other fields, see (Tremblay
et al., 2018) on the use of synthetic data in deep learning, and
(Cranmer, Brehmer, & Louppe, 2020) for a discussion on the
use of simulation for inference.

3. METHODOLOGY

Our methodology is schematically represented in Figure 1. It
uses two models, simulation and inference, and develops in
three phases, creation, validation and usage phases. These
are represented with different colors in the figure; orange,
blue and green, respectively.

In the creation phase, we first compile a simulation model
using knowledge of the system, thus re-using already avail-
able control models, and augmenting these with (conjectured)
models of failure mechanisms. The latter heavily relies on ex-
pert knowledge based on historical failures. The simulation
model outputs synthetic data given a single or a combination
of failure mechanisms. The simulation model is then trans-
formed into an inference model. This transformation is not
computational, i.e. it requires additional modeling. For ex-
ample, some aspects of the simulation might be deemed irrel-
evant or negligible and dropped from the inference. Further,
one could decide to decompose a single simulation model into
multiple inference models. We will return to this in Section
4.2.

Figure 1. Schematic representation of the proposed method-
ology

In the validation phase, the goal is to verify that the con-
structed inference model indeed provides an inverse to the
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data generation process. We do so by testing whether the
model can correctly infer the hidden causes of failures in syn-
thetic data generated in simulation models. We repeat this for
different types and combinations of failures.

Finally, in the usage phase, we use the inference model on
the real data coming from a system in the field to infer the
hidden causes of failures. The optimal service action, e.g.
part replacement versus cleaning, is then decided based on
these inferred causes.

4. APPLICATION

We apply the proposed methodology to a subsystem of a Canon
Production Printing (CPP) industrial printer. This subsystem
contains a conveyor belt that rests horizontally on two cylin-
ders. The cylinders rotate at a variable speed and transmit
this movement to the belt. For this subsystem, it is required
that the belt is at the center of both cylinders, perpendicular
to the directions of its movement. To fulfill this requirement,
one of the cylinders can be tilted by raising or lowering it.
The mechanism responsible for this tilting is driven by a mo-
tor. In the remainder of this paper, we will refer to it as the
Z-position motor. This tilting causes the belt to slide up or
down the cylinder each revolution by an amount proportional
to the Z-motor position. Every few revolutions the position of
the belt is measured and a correction is computed by a Pro-
portional Integral (PI) controller, resulting in an adjustment
of the Z-motor position. This steering action is necessary to
counter the various causes that make the belt drift away from
its intended position.

Our goal here is to discern the unknown causes of this drift
and to infer their strength, given the available data on the belt
and motor positions over time. This is crucial from a main-
tenance perspective, to define the best service action in those
cases in which, despite the control mechanism, the belt goes
out of its intended position. Following our methodology, we
first make a model relating the known, i.e. measured, and the
unknown variables of this system. Then we conjecture the
functional form of the unknown variables to create a complete
simulation model. In the next Section, we use the equations
of the PI-controller for the former and expert knowledge for
the latter.

4.1. Simulation model

Every step of the PI-controller begins with a measurement
of the belt position. This belt position must be a function
of the previous belt position, the previous motor correction,
and the drift incurred between the current measurement and
the previous one. Based on the current positions of both the
belt and Z-motor, the position of the latter is updated by a PI
controller with the goal of returning the belt to its intended

position. The equations modeling this behavior are:




beltk = beltk−1 − α ·motork−1 + driftk

integralk = cint(beltk + beltk−1) + integralk−1

motork = cpropbeltk + integralk

(1)

Where α, cint, and cprop are known proportionality constants
and subscripts (·)k corresponds to the value at sample k. All
three quantities are measured. Notice that in Equation (1) the
last 2 equations are taken directly from the implementation of
the controller.

Not contained in these equations is the condition that the
steering motor stays within a bounded range. If the neces-
sary correction is outside these bounds, the motor will stay at
the limit of its range, causing the belt to drift outside of its
desired position. Throughout this paper, we assume that the
motor and the belt position sensor never fail. This assumption
can be relaxed, if necessary, and the proposed methodology
can still be applied.

In Equation (1) the drift can be computed at all times since it
is a function of the belt and motor positions, both measured.
What remains unknown are the different error mechanisms
and how they add up to the total drift. For this, we use expert
knowledge.

We conjecture that the drift results from the linear combina-
tion of five causes:

• Calibration: the belt might not be completely horizon-
tal when the Z-motor is at position 0. This results in a
constant calibration error c.

• Misalignment: the belt might not be well aligned with
the previous component of the printer, which results in
pages coming into the belt with a lateral velocity relative
to the direction of motion of the belt, causing drag to one
side. This results in a constant misalignment errorm that
is present only when the machine is printing.

• Degradation: the belt material might wear out and de-
form over time, resulting in a time-dependent drift Dk.
We conjecture this degradation to be exponential and with
an unknown deformation direction.

• Sheets: when the pages make contact with the belt, they
might cause a perturbation to its position, depending on
the properties of the pages. This would result in a train
of pulses Pk with varying amplitude and width, present
only when the machine is printing.

• Noise: we finally conjecture that all other sources of er-
ror add up to a Gaussian term εk ∼ N (0, σ) with un-
known variance and zero mean.

These causes are described by the following equations:

driftk = c+ printk(m+ Pk) +Dk + εk (2)
Dk = s(4δk − 1) (3)
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Figure 2. Example synthetic data produced with the simulation model. Observe how the motor displacement follows the sum
of the three hidden contributors to the belt drift. See main text for a detailed explanation.

In equations (2,3) we can see the decomposition of the drift
into its different terms, with the conjectured form of the degra-
dation as being an exponential with exponent parameter δ ≥
0 and sign s ∈ {−1, 1}. printk is the variable that represents
whether the machine is printing and takes values in {0, 1}.
The variables c, m, Dk and Pk in Equation (2) are unknown,
while printk and driftk are known quantities. In the interest
of brevity, we have not included here the detailed equations
of the perturbation term Pk.

Considered together, equations (1,2,3) describe a model of
the system. The model has been implemented in Python, al-
lowing us to compute simulations such as the one shown in
Figure 2. The first author can provide the code if needed to
an interested reader.

In the top plot of the figure, we represent the observable time
series beltk and motork from Equation (1) in a double-axis,
left for the belt and right for the Z-motor. Observe the differ-
ent units for each time series. We can see that the (simulated)
PI-controller is capable of keeping the system controlled in
the presence of the Drift causes, shown in the plot below, as
evidenced by the belt position remaining stable around 0. It
does this by adjusting the Z-motor position. Eventually, the
Z-motor will hit its limit, after which the position of the belt
quickly drifts away from its intended position (not shown in
the plot). In the bottom plot, we show the different contribu-
tors to the drift of the belt, for simplicity of visualization we
have combined calibration and misalignment in a single one.

4.2. Inference model

The next step in our methodology is to translate the sim-
ulation model into a probabilistic model suitable for infer-
ence. In such a model, one describes the unknown variables

of the simulation as hidden, i.e. unobserved, random vari-
ables. Then one describes the known, i.e. observable, vari-
ables as functions of the unknown variables, therefore ran-
dom variables themselves, but which are observed. These
functions relating observable and hidden variables can be:
probabilistic (e.g. perturbation), or deterministic (e.g. degra-
dation as a function of s and δ), and need not be invertible.
The task of these models is to infer the probability distribu-
tions of the hidden random variables that best explain the
observations. We use the framework of probabilistic pro-
gramming to instantiate these models and perform inference.
Numpyro, see (Phan et al., 2019), is the probabilistic pro-
gramming language of choice for this work.

Considering the temporal nature of our data and the con-
trolled step-wise nature of the system, we propose a Bayesian
state-space model as the probabilistic description. A Bayesian
state-space model is a dynamical system of equations relating
random variables. The system is determined by the observ-
ability and update equations. The observability equation (4)
connects the vector of observed variables y⃗k at time k to the
vector of hidden variables θ⃗k, external observable variables
x⃗k and noise term ε⃗k. The update equation (5) connects the
vector of hidden variables at time k with the vector of hidden
variables at time k−1 and the update noise η⃗k. Together, they
define the system:

y⃗k = Akθ⃗k +Bk · x⃗k + ε⃗k. (4)
θ⃗k = Gk · θ⃗k−1 + η⃗k, (5)

Where Ak and Bk are matrices, ε⃗k is the observation noise
vector at time t, Gk is often called the innovation or transi-
tion matrix at time k and η⃗k is the update noise. For this sys-
tem to be fully Bayesian, we can treat the matrices Ak, Bk,
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and Gk, or their coefficients, as random variables themselves
and give them Bayesian priors. The equations of a Bayesian
state space model describe the evolution of the hidden and
observed variables, but not the evolution of their probability
distributions. That is the task that the probabilistic program
computes in the background.

The translation from a simulation model like that described
by equations (1,2,3) into a Bayesian state-space model is not
unique and need not be 1-to-1. For instance, the modeler is
free to leave elements of the simulation model out of the in-
ference model, implicitly leaving them as contributions to the
noise term. They are also free to choose which unknown vari-
ables in the simulation model should be mapped to hidden
variables in the Bayesian state space model and which should
be expressed as coefficients of the matrices Ak, Bk, and Gk,
which are treated as static random variables.

For our conveyor belt, we have only one observed variable,
yk := driftk. The parameters of the model are defined as

A := [1, 0], B := [c,m], (6)

Gk :=

[
4δ s · 4δ − 1
0 1

]
. (7)

The external variables are x⃗k = [1, printk], the hidden vari-
ables are θ⃗k = [Dk, 1] and the noise terms are εk ∼ N (0, σ)
and ηk := 0.

For simplicity, we choose not to model perturbation Pk ex-
plicitly and let it be absorbed by the noise term εk. To make
this model fully Bayesian, we assign prior distributions to the
random variables c, m, δ, s, and σ. We choose uninforma-
tive uniform distributions in the interval [−80, 80] for c, m
(the whole range of the belt), a wide uniform distributions in
[0, 0.5] for δ, uniform 50% prior for each value of s, and a
half-normal distribution with width 1 for σ. The ranges of
these priors are chosen by domain experts to encompass all
plausible failure configurations.

Once we have expressed the model in this form, the prob-
abilistic programming language performs inference by ap-
proximating the joint probability distribution of the hidden
and observable variables given a particular observation, and
applying Bayes rule. Table 1 shows the result of perform-
ing inference on the synthetic dataset from Figure 2. Observe
how the inferred values for degradation, calibration and mis-
alignment match their real values.

We conclude that the different causes of drift can be inferred
from the synthetic data. This gives us reason to believe that,
as long as the data from the real system is sufficiently ap-
proximated by the simulation model, the inference can also
be performed on the real data. This will be shown in the next
section.

Table 1. Inferred values for the different sources of drift con-
sidered. Errors express a 2-σ confidence interval.

Parameter Real value Inferred value

c 15.00 15.02± 0.18

m -20.00 −20.02± 0.20

δ 8.00 e−4 8.00e−4 ± 7e−6

s 1.00 1.00± 0.00

4.3. Results

Given the long service life of the belts, we adapted the infer-
ence procedure to better fit the diagnostic needs in the field
by inferring the state of the belt at regular intervals. This
allows us to track the state of the machine over time. Algo-
rithm 1 outlines the procedure for this periodic computation
of degradation, calibration and misalignment given a stream
of field data that is split into periods. For each period, the in-
ference engine takes as input the estimated degradation at the
beginning of the period, infers the calibration, misalignment
and decay exponent, then computes the additional degrada-
tion corresponding to that period, and passes the latter to the
next iteration.

Algorithm 1 Iterative belt drift inference

Data← [period1, . . . , periodn]
params← []
prev D ← 0
for period in Data do

(c,m, δ, s)← InferParams(period, prev D)
D ← CompDegradation(period, δ, s, prev D)
prev D ← D
params.append([c,m, δ, s,D])

end for
return params

The probabilistic programming comes into play in this al-
gorithm when params[i] = [c(i),m(i), δ(i), D(i)], the in-
ferred parameters for period i, are treated as probability dis-
tributions, rather than point estimates. Inferring these dis-
tributions is done through the use of Markov Chain Monte
Carlo methods for approximating a total probability distribu-
tion. The posterior probability conditioned on the observed
data is computed via the Bayes-Laplace rule, rather than a
standard parameter fitting technique like minimum square er-
ror. This is all handled in the background by the probabilis-
tic programming library and implemented via the function
InferParams in the algorithm.

To compute the additional degradation in a given period we
modify our hypothesis for the degradation (see eq. (3)) to
allow for varying decay exponents over the different periods.
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Figure 3. Example of measured data where miscalibration (a), and degradation (b) are the main causes of a belt position error.
The Belt and Z-motor positions are measured, while the causes of belt drift in the bottom plots are inferred. The sources of drift
are shown here in the units of the Z-position motor rather than the belt for comparison with the former.

We assume that degradation in period i follows the equations:

D
(i)
k = s · 4δ(i)k + C(i), (8)

C(i) = prevD − s · 4δ
(i)ki−1 , (9)

where prevD = D(i−1) = D
(i−1)
ki−1

is the computed degrada-
tion at the end of period i− 1, ki−1 is the step that marks the
end of period i− 1, and δ(i) is the computed decay exponent
in period i output by InferParams. This condition ensures
that degradation grows exponentially and that degradation at
the beginning of one period is equal to degradation at the end
of the previous period, i.e. it ensures continuity. The com-
puted degradation at the end of period i is then D(i) := D

(i)
ki

.

In Figure 3 we apply the procedure to two typical examples
from the field of belts where excessive degradation or miscal-
ibration are the cause of a service action by a service engineer.

Although Figure 3 shows the average degradation, misalign-
ment and miscalibration for each period, we also compute
posterior distributions for each parameter, alongside a noise
parameter for each period, not shown in the plot. Observe
how the three different causes of drift are correctly discrim-
inated and tracked over time. Equipped with these results, a
service engineer would perform a replacement of the belt in
Figure 3-(b) and a re-calibration of the belt in Figure 3-(a), a
much less material and time-consuming action.

5. CONCLUSIONS

In this paper, we proposed a methodology for model-based
diagnostics of cyber-physical systems leveraging generative
and inference models. The generative model is compiled us-

ing already available knowledge on failure mechanisms, to-
gether with control models, and serves a dual function. On
the one hand, it helps validate the expert knowledge on fail-
ures, by comparing the results of simulations to data from
incidents in the field. On the other hand, it is used to vali-
date the inference models by providing us with a controlled
test bench in which to test the ability of the inference model
to distinguish the different causes of errors. The inference
model is derived from the generative model and is used with
field data from real incidents to perform root-cause diagnosis.

We then applied our methodology to the case of an industrial
conveyor belt in a closed control loop configuration, with sev-
eral hidden mechanisms driving the belt out of its desired po-
sition. With the proposed methodology we correctly identify
the different causes of drift of the belt, thus offering valuable
advice for the optimal maintenance action.

To the authors’ knowledge, this is the first time probabilistic
programming has been used for diagnostics of cyber-physical
systems. We believe the present paper proves its utility as
a tool for probabilistic modeling and inference in the prog-
nostic and health management domain, opening the door to
model-driven and physics-inspired diagnostics. In applying
the proposed methodology to the case of an industrial con-
veyor belt we have identified several aspects for future re-
search. The probabilistic programming framework has a pre-
diction functionality that could be used to make prognostic
forecasts of remaining useful life. In future research, we plan
on adding this aspect to our methodology. Further, the trans-
lation of generative models into inference models is a man-
ual process requiring a certain degree of familiarity with in-
ference and statistical modeling. How to automate, fully or
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partially, the translation from simulation to inference models
remains an open question. Finally, the proposed methodology
has been scoped and tested at a subsystem level, comprising a
belt, motor, and control mechanism. How to make such mod-
els composable and much larger for system-level diagnosis
remains a challenge to be addressed in future research.
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