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ABSTRACT

Industrial automation has extended machines’ runtime, thereby
raising breakdown risks. Machine breakdowns not only have
economic and productivity consequences, but they can also
be fatal. Thus, the early detection of fault signs is essential
for the safe and uninterrupted operation of machinery and
its maintenance. In the last few years, machine learning has
been widely used in machine condition monitoring. Most
existing approaches rely on supervised learning techniques,
which face challenges in real-world scenarios due to the lack
of enough labelled fault data. Additionally, models trained
on historical fault data might struggle to detect new and un-
seen faults accurately in the future. Therefore, this research
uses semi-supervised Anomaly Detection (AD) techniques to
detect abnormal patterns in machines’ vibration signals. As
semi-supervised techniques are trained on normal data only,
they do not require faulty samples and abnormal patterns are
detected based on their deviations from the learned normal
pattern. We compared the effectiveness of seven state-of-the-
art AD methods, ranging from traditional approaches such as
isolation forest and local outlier factor to more recent Deep
Learning (DL) approaches based on autoencoders. We evalu-
ated the effectiveness of different feature types extracted from
the raw vibration signals, including simple statistical features
like kurtosis, mean, peak-to-peak, and more complex repre-
sentations like the scalogram images. Our study on three pub-
lic datasets, with unique challenges, shows that the traditional
methods based on simple statistical analysis have shown com-
parable and sometimes superior performance to more com-
plex DL approaches. The use of traditional approaches offers
simplicity and lower computational needs. Thus, our study
recommends that future researchers start with the traditional
approaches first and then jump to DL methods if necessary.

Dhiraj Neupane et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.
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1. INTRODUCTION

Rotating machinery is a fundamental component of modern
industry and has a wide range of applications in practical en-
gineering, including electric machines, trains, turbines, aero-
engines, and so on (Jiao, Zhao, Lin, & Liang, 2019). The
ubiquitous presence of these devices, from simple mechan-
ical systems to complex nuclear power plants, reflects their
critical role in modern industrial processes (Zhong, Zhang, &
Ban, 2023). With the advancement of technology and produc-
tive growth in modern industry, there has been an increased
reliance on machinery, making them frequently operated un-
der adverse and challenging conditions and increased risks
of failures. If unattended timely and accurately, these fail-
ures can have significant consequences, including decreased
production efficiency, financial losses, and, in extreme cases,
the potential loss of human lives (Neupane & Seok, 2020).
Common failures in electric motors include bearings, stators,
rotors, and gearboxes. Figure 1 shows the failure rates of these
machinery components. These components are vital for effi-
cient power transmission and operation of machinery. How-
ever, continuous use can result in wear, cracks, and defects
of these components that can lead to machine breakdowns.
Therefore, prompt and accurate fault detection and diagnosis
are essential. Thus, timely maintenance of these components
is critical to the machine’s safe and reliable operation.

Fault diagnosis and maintenance are crucial for improving
production efficiency and reducing accident rates in mechan-
ical systems. Both the academic and industrial communities
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Figure 2. ML techniques used for MFD

have acknowledged the significance of Machinery Fault Di-
agnosis (MFD), leading to the development of various diag-
nostic methods for practical applications (Li, Zhang, Qin, &
Estupinan, 2020). MFD has become an essential aspect of
industrial development and engineering research, and numer-
ous strategies have been developed by researchers, scientists,
and engineers through years of innovative and diligent work.

Over the last decade, Machine Learning (ML) techniques have
been widely used in MFD. A vast majority (over 80%, see
figure 2) of those MFD methods have used supervised learn-
ing (SL) approaches (Das, Das, & Birant, 2023) to classify
fault types. While such methods can detect faults previously
seen, they are unable to detect new or unseen types of faults.
Because many modern machines are operated in complex in-
dustrial environments, new types of faults can emerge over
time. Also, to train a decent model to classify different types
of faults, we need a sufficient amount of labelled data for
each fault type. The scarcity of labelled data is a challenging
problem in real-world industrial settings. Data labelling is
an expensive and time-consuming process as it requires do-
main expertise to manually annotate different types of faults.
Moreover, labelled data might not cover the entire spectrum
of possible faults, leading to a lack of diversity in the training
dataset and potentially limiting the model’s ability to general-
ize to unseen faults.

To show the aforementioned limitations of SL in MFD, we
evaluated the capability of the Decision Tree classifier using
deep features from the pre-trained ResNet (ResNet-DT) (He,
Zhang, Ren, & Sun, 2016) in detecting previously unseen
faults. We trained the ResNet-DT model for binary classifica-
tion (faulty vs. normal type) by excluding certain fault types
from the training set, while including all fault types in the test
set. The objective is to distinguish between normal operation
and any fault condition, rather than identifying specific types
of faults. We used 10 runs of a random 70-30 train-test split
for each combination of omitting i = {0, 1, 2} fault types from
the training set. Our results, shown in figure 3, for the Case
Western Reserve University (CWRU) datasets show that the
ResNet-DT model’s performance declines significantly when
it encounters fault types that were not present during the train-
ing. In the x-axis of figure 3, labels C0O, C1, and C2 represent
the number of fault types intentionally omitted during the
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Figure 3. Average F1 score of the ResNet-DT classifier from
scalogram images of vibration signals on the CWRU dataset.

model’s training phase. CO indicates that the model is trained
with all fault types included. C1 represents the model being
trained with one fault type excluded; this is done sequentially
for each fault type (first excluding fault type 1, then includ-
ing it while excluding fault type 2, and so on). Similarly, C2
denotes the exclusion of two fault types simultaneously. The
y-axis shows the average F1-score for the classification of the
fault condition, corresponding to the different combinations
of omissions. Due to the numerous possible combinations of
omitted fault types, we calculated and presented the average
F1 score. The red dots in the figure denote the respective
average F1 score for each fault type omission. In contrast,
the green dot represents the F1 score of the Isolation Forest
(iF) based semi-supervised Anomaly Detection (AD) method
using the same ResNet deep features (ResNet-iF) trained on
half of the normal dataset. The other half is concatenated
with all fault types together. It is evident from figure 3 that
the ResNet-DT model encounters challenges in detecting un-
known faults. The trend shows a significant decrease in the
F1-score as more fault types are excluded from the training
set, underscoring the model’s limitations in recognizing un-
seen machinery faults. In contrast, the ResNet-iF’s average
F1 score shows the effectiveness of AD methods in detecting
unseen faults. The iF, trained on half the amount of the normal
state machinery signals and tested on all the fault types along
with the other remaining half of the normal data, performed
nearly equal (1.8% lesser) to the ResNet-DT model (trained
with 70% data as training) with no classes omitted in training.

Taking the supervised model’s ineffectiveness in detecting un-
seen faults in real-world scenarios as the motivation for this
project, we have explored the potential of semi-supervised
learning (SSL) based AD algorithms that are trained on nor-
mal data only and aim to detect unseen fault types. These
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algorithms model the profile of normal vibration signals to
distinguish faulty (or abnormal) vibration signals from nor-
mal signals. In the real-world scenario, where the availability
of normal/healthy machinery data is abundant, these algo-
rithms are very useful and can detect anomalies or faults more
easily and quickly than the SL classification models.

The use of SSL in MFD is relatively unexplored. Prior stud-
ies employing SSL techniques mostly focus on classifying the
faults only. A recent study (Zong et al., 2022) on bearing fault
diagnosis of CWRU and Xi’an Jiaotong University dataset
focused on the use of SSL. The study utilized a short-time
Fourier transform as a preprocessing step and employed SSL
with domain adversarial neural network for fault classifica-
tion and achieved an average accuracy of 96.77%. Another
study by Zhang et al. (Zhang, Ye, Wang, & Habetler, 2021)
also focused on SSL employing VAE for the classification
of bearing faults for the CWRU and University of Cincinnati
Intelligent Maintenance System dataset. With 16.67% of la-
belled data in each class, the accuracy of 98% was achieved.
Moreover, a research (Zhang, Ye, Wang, & Habetler, 2020)
addressed bearing AD challenges via few-shot learning based
on model-agnostic meta-learning using CNN on the CWRU
and Paderborn University (PU) dataset. The study also fo-
cused on classifying the bearing faults using a limited amount
of data. Other than these two datasets, a study by Vos et al.
(Vos et al., 2022) employed AD for vibration-based fault diag-
nosis. Experimented on Airbus and DST gearbox datasets, the
study employed LSTM-SVM and simple OCSVM techniques.

For this research, we have used seven AD algorithms, in-
cluding traditional approaches like iF (Liu, Ting, & Zhou,
2008), Local Outlier Factor (LOF) (Breunig, Kriegel, Ng,
& Sander, 2000), one class support vector machine(OCSVM)
(Scholkopf, Williamson, Smola, Shawe-Taylor, & Platt, 1999),
and the Deep Learning (DL)-based techniques like Autoen-
coder (AE) (Ahmad, Styp-Rekowski, Nedelkoski, & Kao,
2020) and Variational AE (VAE) (Zhang, Ye, Wang, & Ha-
betler, 2019), and the hybrid approaches like ResNet (He et al.,
2016) and VGGNet (Simonyan & Zisserman, 2014)-based iF,
LOF and OCSVM, which will be described in detail in later
sections. The motive behind taking the traditional algorithms
is that, for fault or anomaly detection, it is not necessarily true
that DL architectures are always superior (Wang, Vos, et al.,
2023; Audibert, Michiardi, Guyard, Marti, & Zuluaga, 2022).
The traditional algorithms, with the simpler architectures, can
sometimes outperform the complex and deeper networks.

The organization of this article is as follows. In Section 2,
the dataset description is presented. Section 3 provides an
overview of the methodology implemented in this research,
and Section 4 presents the experimental results and analysis
of this work. Finally, the article concludes in Section 5.

2. DATASET DESCRIPTION

We have used three datasets for this research, two of which
are the most widely used benchmark datasets—the CWRU and
PU bearing datasets— and the other is the Health and Usage
Monitoring System (HUMS) planet gear rim crack dataset pro-
vided by the Defence Science and Technology Group (DSTG)
in Melbourne, Australia.

2.1. CWRU Dataset

The CWRU bearing dataset is one of the most widely used
fundamental bearing datasets for MFD research. It contains
experimental data collected from a test rig with four different
types of faults: inner race fault, outer race fault, ball fault, and
normal (healthy) state. These faults are artificially induced
with varying severities and load conditions. The dataset pro-
vides time-domain vibration signals, making it suitable for
MFD methods such as feature extraction, classification, and
model training (Chaleshtori & Aghaie, 2024). The dataset is
publicly available on this website . For this research, we have
used all four types of faults with a fault diameter of 7 mils (1
mils=0.001 inches) with all available loads from 0 to 3 HP. A
total of 413 instances were used for each class. The types of
faults used are shown in Table 1.

2.2. PU Dataset

The PU dataset, provided by the KAT data center at Paderborn
University, is a comprehensive resource for MFD and prog-
nosis research. The PU bearing dataset comprises vibration
data from experiments on six healthy bearings and 26 dam-
aged bearing sets, of which 12 are artificial damages, and 14
are real damages. The dataset provides time-domain vibration
signals, acoustic emission signals, and temperature measure-
ments, covering various fault severities and load conditions
(Lessmeier, Kimotho, Zimmer, & Sextro, 2016; Neupane,
Bouadjenek, Dazeley, & Aryal, 2024). This dataset can be
downloaded from this website 2. For this research, we have
taken five types of bearing vibration data, including two ar-
tificial fault types, two real fault types, and one normal state
data. A total of 4967 instances from each class were used.
Other information about the dataset is described in Table 1.

2.3. HUMS Dataset

The HUMS dataset originates from an extensive experimental
study executed at the Helicopter Transmission Test Facility
(HTTF) at the DSTG in Melbourne. This study was executed
with the specific aim of investigating fatigue cracking in thin-
rim helicopter planet gears, which are critical components of
helicopter transmission systems. The dataset was released as a
part of the HUMS 2023 Data Challenge. Further information
about the experimental set, data processing, and acquisition

Ihttps://engineering.case.edu/bearingdatacenter
2https://mb.uni-paderborn.de/kat/forschung/datacenter/bearing-datacenter/
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Table 1. Types of faults and number of instances used for the
CWRU and PU datasets

CWRU (413) PU (4967)

Normal Normal

B007 KAO1 (Artificial Damage [OR])

IR007 KAO3 (Artificial Damage [OR])

ORO007 KB23 (Real Damage [IR+ORY])
KB24 (Real Damage [IR+OR])

All Faults (B+IR+OR) | All Faults (Artificial+Real)

Table 2. Number of data files (records) provided for the
HUMS dataset

Day No. of records | Remarks

Day 17 65 Provided Later
Day 18 68

Day 19 62

Day 20 87 Total 282

Day 21 89

Day 22 80

Day 23 72 Provided Earlier
Day 24 89

Day 25 85

Day 26 26 Total 526

Day 27 27

Grand Total | 808

technique for this dataset can be found on (Peeters, Wang,
Blunt, Verstraeten, & Helsen, 2024), (Wang, Blunt, & Kappas,
2023), and (Sawalhi, Wang, & Blunt, 2024). A total of 808
four-channel planet-ring hunting-tooth average data files were
provided in two sessions (526 files [files from Day 21 to Day
27] before the data challenge and 282 files [from Day 17 to
Day 20] after the challenge). The whole dataset features 94
load cycles, out of which the last 60 cycles were released prior
to the data challenge, and the first 34 load cycles were released
later. Table 2 shows the number of records with respect to the
days of testing. In this research, we used 282 data files from
Day 17 to Day 20, which were taken as a training set, and the
remaining 526 data files from Day 21 to Day 27 were taken as
the test set. Our experiment encompassed data collected from
all four sensors.

3. METHODOLOGY IMPLEMENTED

The methodology implemented in this research is consistent
across two benchmark datasets, CWRU and PU, with a mi-
nor difference in the pre-processing (PP) step for the HUMS
dataset.

Normalized (0-mean,1-std)
Hunting_SSA (405405)
reshape to 4095 x 99 array

Average along 99 rows
to get Planet_SSA of
length 4095

Remove gear mesh
Real of IFFT [« harmonics + 2 side bands &
lowpass at 3.5 x harmonics

Hilbert & FFT

Figure 4. Preprocessing technique used for the HUMS dataset

3.1. Pre-processing

A. CWRU and PU datasets: The initial preprocessing step
of standardizing the raw vibration signals was done to
achieve a mean of zero and a standard deviation of one.
Then, the signals of length, X (say), were segmented
into N samples, each comprising 4096 data points. It is
important to note that the value of N varies across datasets
but remains constant for different fault types within a
particular dataset.

B. HUMS dataset: The whole dataset consists of 808 files
of Hunting tooth synchronous averaging (H-SSA) with
405405 data points per sample per channel, which was
standardized to zero mean and unit standard deviation.
This standardization of H-SSA mitigates variations in
torque, speed, and temperature, enhancing sensitivity to
fault-induced changes. Then, Planet Gear SSA (P-SSA)
was derived by reshaping H-SSA into a matrix and av-
eraging along specific rows corresponding to gear rev-
olutions. Specifically, each 405405-data points sample
was reshaped into a 4095x99 matrix array and was aver-
aged along 99 rows to get the averaged sample of 4095
data points. The output 4095 data points sample was then
transformed using Hilbert and then fast Fourier transform.
The residual signals were generated by eliminating gear
mesh harmonics and sidebands in the order domain. To
detect rim cracks, an ideal low-pass filter at 3.5 times the
gear mesh harmonics was applied, followed by an inverse
fast Fourier transform (IFFT), and the real values of IFFT
were taken as the data points for samples (Sawalhi et al.,
2024), (Peeters et al., 2024). In this way, 808 planet-
ring hunting-tooth average samples per channel, each of
length 4095, were finally achieved. The preprocessing
steps for the HUMS dataset can also be seen in figure 4.

3.2. Analyses Carried

After these prepossessing steps, two primary analyses were
conducted for all three datasets:

A. Statistical analysis: For each segment generated, key sta-
tistical metrics including, Mean (M), Standard deviation
(Std), Peak-to-Peak (P2P), Kurtosis (K), and Skewness
(Sk) were computed and saved in a CSV format. Further-
more, labels were assigned to each of the samples of the
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CWRU and PU datasets to indicate their condition, with
‘0’ representing a normal state and ‘1° signifying a fault.
Since the HUMS dataset does not contain distinctive nor-
mal and faulty signals, this labelling step was skipped for
this particular dataset.

B. Wavelet transform analysis: Scalograms were gener-
ated from the pre-processed data files for each datasets,
for further examination using the Continuous Wavelet
Transform (CWT) (Zheng, Li, & Chen, 2002) technique,
specifically employing the Morlet wavelet. Research
(Neupane, Kim, & Seok, 2021), (Guo, Liu, Li, & Wang,
2020) indicate that vibration signals featuring periodic
impulses correspond notably with the Morlet wavelet’s
properties. This alignment facilitates the utility of Morlet
wavelets in identifying both anomalies and standard ele-
ments in machinery, which has made it a popular choice
in this domain of study. Scalograms were labelled as ‘0’
or ‘1’ to indicate normal or faulty signals for the CWRU
and PU datasets, and skipped for the HUMS dataset.

3.3. Anomaly Detection Approaches

Anomalies represent data instances that exhibit distinct char-
acteristics from normal instances, and the detection of these
abnormal patterns or instances is called anomaly detection
(Liu et al., 2008). AD, also called outlier detection, is a
widely used technique in data mining and ML to identify or
detect instances or patterns that do not conform to the expected
behavior within a dataset (Kumagai, Iwata, & Fujiwara, 2021).
AD methods have been used in various applications, such as
fraud detection (Pourhabibi, Ong, Kam, & Boo, 2020), intru-
sion detection (Aryal, Santosh, & Dazeley, 2021), and so on.
The task of AD can be addressed through supervised, semi-
supervised, or unsupervised learning strategies. However,
a significant obstacle is the scarcity of high-quality training
instances, particularly for anomalous behaviors, which pose
challenges in various domains, including MFD. Given these
challenges, it is imperative to address the task through semi-
supervised approaches.

Semi-supervised AD techniques are designed to identify anoma-

lies or outliers in data by combining labelled and unlabelled
instances. The process begins by manually labeling a small
subset of the data as either normal or anomalous, which serves
as the training set. Using this labelled data, a model is trained
to distinguish between these two categories. Subsequently,
the trained model is applied to the unlabelled data, assigning
scores or probabilities to each data point. Thresholds are then
applied to these scores to classify instances as either normal
or anomalous.

For this work, we have labelled only the normal data and
trained the AD models on this subset of labelled data. We ex-
plored the efficacy of various AD algorithms like iF, LOF,
OCSVM, AE, and VAE. The use of statistical features is

primarily for traditional AD algorithms, like iF, LOF, and
OCSVM only. In contrast, the scalogram images are fed as
input to the DL architectures, like AE, and VAE. Additionally,
DL architectures like ResNet50 and VGG16 are employed to
extract the features from the scalograms, and traditional algo-
rithms (iF, LOF, and OCSVM) are employed for the extracted
features for detecting normal and anomalous instances. A
brief overview of each of these algorithms is provided below:

¢ iF: Isolation forest (Liu et al., 2008) is an AD algorithm
that operates on a tree-based approach to identify out-
liers in the dataset. This algorithm isolates anomalies by
randomly selecting features and partitioning data points
based on their values along those features. This process
is repeated recursively until each data point is isolated in
its own partition. Anomalies are identified as data points
that require fewer partitions to isolate, as they stand out
as unusual compared to normal instances.

¢ LOF: Local outlier factor (Breunig et al., 2000) is a
density-based AD algorithm, that measures the local de-
viation of a data point in relation to its neighbors. It
calculates the ratio of the local density of a point to the
local densities of its neighbors, identifying outliers as
data points with significantly lower densities compared
to their neighbors.

e OCSVM: One class support vector machines (Scholkopf
etal., 1999), an AD algorithm used for novelty detection,
constructs a hyperplane that separates the normal data
instances from the origin in a high-dimensional feature
space. This method aims to maximize the margin be-
tween the hyperplane and the nearest normal data points,
identifying anomalies as data points lying on the opposite
side of the hyperplane from the normal class.

¢ AE: Autoencoders (Torabi, Mirtaheri, & Greco, 2023),
a type of neural network architecture, can also be used
for AD tasks. When trained on normal data points, AE
aims to reconstruct input data with minimal error; how-
ever, anomalies generally result in higher reconstruction
errors. By setting a predefined threshold, instances with
reconstruction errors surpassing this threshold are flagged
as anomalies or outliers.

e VAE: Variational AEs (Xie, Xu, Jiang, Gao, & Wang,
2024), a variation of AE, are capable of learning com-
plex data distributions and generating new data samples
similar to the training data. VAEs, trained on normal data
points, aim to reconstruct input data with minimal error.
However, anomalies typically result in higher reconstruc-
tion errors, as they deviate significantly from the learned
data distribution. By comparing the reconstructed data
with the original input, anomalies can be identified based
on higher reconstruction errors.

Moreover, we have also used ResNet50 (He et al., 2016),
and VGG16 (Simonyan & Zisserman, 2014) neural architec-
tures for feature extraction from the scalogram images. These
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are pre-trained architectures, which utilize a series of con-
volutional and pooling layers to extract hierarchical features
from inputimages. ResNet50 introduces residual connections,
which help alleviate the vanishing gradient problem during
training, allowing for deeper architectures to be trained effec-
tively. In contrast, VGG16 relies on a simpler architecture
with a stack of convolutional layers followed by max-pooling
layers. Despite the difference in their architecture, both of
these networks can extract informative features from images.
The extracted features are used as the input of three AD mod-
els: iF, LOF and OCSVM.

Thus, the methodology incorporates three diverse strategies
for anomaly detection, specifically designed for those data
types and analytical approaches. These approaches utilize a
consistent evaluation framework, which comprises multiple
runs (10), incorporates statistical and deep features, and em-
ploys various thresholding techniques for detecting anomalies.
The following provides a brief overview of each approach:

A. Approach 1: AD with Statistical Features: This study
evaluates the effectiveness of the key statistical features,
like mean, standard deviation, kurtosis, skewness, and
P2P, computed for each standardized sample, and the tra-
ditional AD algorithms in detecting anomalies. Three
models, iF, LOF, and OCSVM, were implemented. A
comprehensive analysis was conducted across 31 combi-
nations of these features to explore their effectiveness in
AD. The anomaly score generated by these models was
compared with the custom thresholds like three sigma
(u — 307), one percent, and minimum anomaly score +
standard error.

B. DL-based End-to-End AD: The second strategy utilized
end-to-end DL models, specifically AE and VAE, which
are designed for scalogram images. This method employs
reconstruction loss as a measure for AD. Anomalies are
expected to have a larger reconstruction loss. The same
thresholding techniques are applied to the reconstruction
loss to differentiate between normal and anomalous in-
stances. This approach explores the ability of AE and
VAE to capture and reconstruct the intricate patterns
present in scalogram images.

C. Hpybrid Approach (DL + Traditional AD): The third
methodology expands the analysis of scalogram images
by employing feature extraction through the use of pre-
trained DL architectures like ResNet50 and VGG16 neu-
ral networks. Similar to the first approach, the models
iF, LOF, and OCSVM are implemented to the extracted
features to get the anomaly scores, and the anomalies
were detected utilizing the same thresholding techniques.
Employing ResNet50 as a feature extractor, each image
results in a feature vector of size 2048, and using VGG16,
each input image results in a feature vector of size 512.
These features are then fed as the input of the AD models.

3.4. Threshold Techniques

The AD algorithms generate the anomaly scores. Anomaly
scores in iF are typically calculated based on the number of
splits required to isolate each data point in a decision tree.
Data points that require fewer splits to isolate are considered
more anomalous and receive higher anomaly scores. There-
fore, lower anomaly scores indicate normal behavior, while
higher scores indicate anomalies. Similarly, LOF computes
anomaly scores by comparing the local density of data points
around each point to the density of its neighbors. Points with
significantly lower density compared to their neighbors are
assigned higher anomaly scores. Thus, higher LOF scores
denote more anomalous behavior. Similarly, anomaly scores
in OCSVM are determined based on the distance of each data
point from the boundary of the region containing normal data
points. Points lying farther away from this boundary are con-
sidered more anomalous and receive higher anomaly scores.

Three custom thresholds are used for this research: three
sigma, one percent, and the minimum anomaly score (or re-
construction loss) plus the standard error. For u — 30, the
mean of these scores (u) is calculated, along with their stan-
dard deviation (o). The u — 30 threshold is then determined
by subtracting three times the standard deviation (307) from
the mean (¢ — 307). This threshold serves as a boundary for
identifying anomalies; samples with anomaly scores exceed-
ing this threshold are considered anomalous. Additionally, for
models such as AE and VAE, the reconstruction errors of nor-
mal training samples are used instead of anomaly scores. The
u — 30 threshold is calculated in the same manner, but based
on these reconstruction errors, providing a consistent crite-
rion for anomaly detection across different types of models.
Moreover, the one percent threshold is determined by select-
ing the value below which only one percent of the normal
training scores or reconstruction errors fall. This threshold
is established to identify anomalies among samples with ex-
ceptionally low scores, indicating significant deviations from
the norm. Furthermore, the minimum value plus the standard
error threshold is calculated by adding the standard error to
the minimum normal training score or reconstruction error.
The standard error provides a measure of the variability or
uncertainty associated with the estimation of the minimum
value. This threshold aims to capture anomalies beyond the
minimum score while accounting for potential fluctuations.

3.5. Evaluation Framework

A. CWRU and PU datasets: The methodology follows a
consistent evaluation framework across all approaches.
Initially, the training data is split evenly into two halves.
One half is utilized for model training, while the other half
is combined with 90% of randomly selected test data to
establish a diverse testing scenario. The test data includes
various types of bearing health datasets collected from
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the CWRU dataset, each comprising 413 instances. We
created a total of five datasets, as depicted in Table 1. The
‘All Faults’ dataset is the combination of all fault types,
namely B007, IR007, and OR007, excluding the Normal
type, resulting in 1239 instances.

Additionally, we extracted five distinct health states from
the PU bearing dataset. These states encompass a normal
state, two artificial damages featuring OR faults, and two
real damages featuring IR+OR faults, with each class
containing 4967 instances. Consequently, a total of six
datasets were generated, as illustrated in Table 1, in which
the ‘All Faults’ dataset comprises all four faulty states
datasets (except the normal).

B. HUMS Dataset: After the PP of the HUMS dataset, as
mentioned in section 3.1, the resulting 808 data samples
from each of the four sensors, were divided into train and
test sets. As mentioned in an earlier section, 282 data
files from the first 34 load cycles, from Day 17 to Day
20, were taken as a training set in this research, and the
remaining 526 data files, from Day 21 to Day 27, were
taken as the test set.

4. EXxPERIMENTAL RESULTS

As we have mentioned earlier, we implemented the iF, LOF,
and OCSVM models which were fed with the combination
of the key statistical features computed for each sample. We
also employed end-to-end DL-based AD algorithms, includ-
ing AE and VAE, to detect anomalies using scalogram images.
Additionally, we applied ResNet50 and VGG16 architectures
to extract features from the scalograms and implemented iF,
LOF, and OCSVM techniques for detecting anomalies. From
the experiments conducted, we obtained the following out-
comes.

4.1. Results for the CWRU and PU Dataset

Tables 3 and 4 present the performance of various anomaly
detection algorithms achieved for the CWRU and PU datasets,
respectively. These tables represent that the feature combina-
tions of kurtosis, skewness, and P2P excel other combinations,
and the threshold p—30 performs better than other techniques.
Here, the term “best average F1 score” refers to the highest
F1 score calculated by averaging the F1 scores obtained from
10 separate runs. The term “Overall” denotes the best score
achieved across all datasets, reflecting the highest performance
observed collectively across all evaluated datasets. Abbrevia-
tions K, P2P, Sk, M and Std represent Kurtosis, Peak-to-Peak,
Skewness, Mean and Standard deviation, respectively. More-
over, the average F1 score over 10 runs for each of the datasets
for each method is shown as a bar graph in Figure 5 and 6.
The first three bar clusters, representing models iF, LOF, and
OCSVM, denote the use of the respective AD models for the
feature combinations kurtosis, P2P, and skewness. The subse-
quent bar clusters, from ResNet-iF to VAE, use the scalogram

Table 3. Experimental results for the CWRU Dataset.

Dataset

CWRU

Model
Best Average F1 Score
Overall

iF
0.99826221 (OR007)
K, P2P, Sk; u — 30

Model
Best Average F1 Score
Overall

OCSVM
0.0.997340705 (OR007)

K, Sk, P2P; Min+stdError and

u-3o

X
Model

Best Average F1 Score

LOF

0.788509613 (B007)

Overall u-3c

Model ResNet-iF

Best Average F1 Score 0.995008449 (OR007)
Threshold u—-3c

Model ResNet-LOF

Best Average F1 Score 0.8 (BO07)

Threshold u—30

Model
Best Average F1 Score

ResNet-OCSVM
0.993120206 (All Faults)

Threshold u—=3c
Model VGG-iF
Best Average F1 Score 0.908164235(IR007)

Threshold One Percent
Model VGG-LOF
Best Average F1 Score 0.8(All Faults)
Threshold u-3c

Model VGG-OCSVM
Best Average F1 Score 0.8(All Faults)
Threshold u—-30

Model AE

Best Average F1 Score

Threshold

0.753205267(All Faults)

u+30

Model
Best Average F1 Score
Threshold

VAE
0.872920403(All Faults)
u+3c

images as input.

The threshold for all of these models is

u — 30. Figure 5 illustrates notable performance trends of
the ResNet-iF and ResNet-OCSVM models across all dataset
types for the CWRU dataset, whereas figure 6 illustrates no-
table performance trends of ResNet-OCSVM models across
all dataset types for PU dataset.

4.2. Results for HUMS Dataset

The HUMS dataset is a new dataset in the study of machinery
faults, and researchers are employing various algorithms to
detect the faults and find anomalous patterns in them. There
aren’t any concrete results yet. In the results of the data
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Table 4. Experimental results for the PU Dataset.

Dataset

PU

Model
Best Average F1 Score

iF
0.98707402 (Artificial Dam-
ages)

Overall K, P2P, Sk; u — 30
Model LOF

Best Average F1 Score 0.935198014 (All Faults)
Overall Sk; u—30

Model OCSVM

Best Average F1 Score

0.985556437(Artificial Dam-
ages)

Overall K, P2P, Std; u — 30 and
Min+stdError

Model ResNet-iF

Best Average F1 Score | 0.930936511(Real Damages)

Threshold u—30

Model
Best Average F1 Score
Threshold

ResNet-OCSVM
0.999316099 (All Faults)
u — 30 and Min+stdError

Model
Best Average F1 Score
Threshold

VGG-iF
0.981120622(Real Damages)
u=3c

Model
Best Average F1 Score
Threshold

VGG-OCSVM
0.941165324 (All Faults)
u—3o
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Figure 5.
CWRU Dataset.

Comparison of Models’ Performances on the
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challenge, the winning team (Peeters et al., 2024) claimed
the record number #175 (Day 23/ 20211214, 104944) to be
the earliest convincing fault detection. However, the data
challenge committee pointed out that records #264 (Day 24/
20211216, 112716) and #272 (Day 24/ 20211216, 120021)
as contenders. As further research continues, different results
are claimed, proposing different records as the earliest detec-
tion. In the latest notice released by the committee3, records
#15 (Day 21/ 20211208, 113917), #50 (Day 21/ 20211208,
135820), #125 (Day 22/ 20211209, 124241), #143 (Day 22/

3https://www.dst.defence.gov.au/our-technologies/helicopter-main-rotor-
gearbox-planet-gear-fatigue-crack-propagation-test
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Figure 6. Comparison of Models’ Performances on PU
Dataset

20211209, 135146) and #150 (Day 22/ 20211209, 141330)
have found to contain the anomalies as well.

With our various AD detection algorithms, various records (or
file numbers) were detected as the earliest detection. How-
ever, seeing the most convincing features (kurtosis, P2P, and
skewness) and effective algorithms for the CWRU and PU
dataset, the results obtained from ResNet-iF and ResNet-
OCSVM are considered for this HUMS dataset as well. The
iF, LOF and OCSVM algorithms, trained on the combined
features of kurtosis, skewness and P2P and threshold u — 30,
predicted #15 (Day 21/ 20211208, 113917), #50 (Day 21/
20211208, 135820) and #150 (Day 22/ 20211209, 141330)
as the first three consecutive faults. Taking the ResNet-iF
and ResNet-OCSVM models and y — 30 as a threshold, the
earliest anomaly prediction was found to be the file #11 (Day
21/20211208, 112723).

5. DiscussioN AND CONCLUSION

Identifying faults in machinery poses significant challenges,
particularly in accurately classifying fault types. Conven-
tional supervised machine learning methods have limitations
due to the need for abundant labelled data, expert supervi-
sion in labelling, and their inability to generalize to unseen
faults. To tackle these challenges, this article explores the
potential of semi-supervised learning-based anomaly detec-
tion techniques in the field of machinery fault diagnosis. This
study specifically focuses on identifying abnormal patterns in
machinery vibration signals, which are crucial for preventing
breakdowns and ensuring safety and productivity. Our exper-
imental results highlight the effectiveness of certain feature
combinations, such as kurtosis, skewness, and peak-to-peak,
in conjunction with a threshold of three sigma. Furthermore,
we found that models like ResNet-OCSVM and ResNet-iF,
as well as deep learning-based methods like VAE, demon-
strate promising performance. However, it’s worth noting that
DL-based techniques often come with higher computational
resource requirements and longer training times, as depicted
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3000

.

Figure 7. Comparison of Model Performances Based on Run-
time: The figure illustrates the time taken by various models
to complete 10 runs of anomaly detection using all 4 test sets
from the CWRU dataset. Notably, all models operate on the
same input, namely, scalograms.

in figure 7. Interestingly, simpler traditional methods, some-
times, outperform or perform equally well compared to com-
plex DL methods. Given their simplicity and lower computa-
tional demands, prioritizing these simpler approaches may be
more practical in many scenarios.

Our research examines seven AD methods across various fea-
ture representations using benchmark datasets, including the
CWRU bearing, PU bearing, and HUMS planet gear rim
crack dataset. Our findings provide valuable insights with
significant practical implications, suggesting that simpler ap-
proaches may be, sometimes, effective in real-world applica-
tions due to their ease of implementation and reduced compu-
tational burden. DL methods, indeed, have shown promising
results in MFD, but their practicality may be limited by re-
source constraints. Therefore, incorporating semi-supervised
learning-based AD techniques alongside simpler traditional
methods can enhance fault detection systems in industrial set-
tings. We, therefore, would like to recommend that future
researchers proceed with simpler methods initially, then tran-
sition to DL-based methodologies if necessary for MFD.
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