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ABSTRACT 

Machine learning methods are increasingly used for rotating 

machinery monitoring. Usually at system set up, only data of 

the machinery in healthy conditions, the so-called nominal 

data, are available for the machine learning phase. This type 

of training data enables fault detection capabilities and 

several methods such as Gaussian Mixture Model, One Class 

Support Vector Machines and Auto Associative Neural 

Networks (Autoencoders) have been already proved 

successful for this task.  

However, in some predictive maintenance applications, 

information on the type of defect may represent a key element 

for producing actionable information, e.g. to reduce 

diagnostic burden and optimize spare procurement. This 

requires to define classification strategies based on machine 

learning even in absence of data representing the behaviour 

of the system with defects.  

In this study we present an approach that uses only nominal 

vibration data to train an autoencoder which will enable at 

same time fault identification and fault classification tasks. 

As faulty data are expected to possess information content 

which is structured differently from the healthy ones their 

reconstruction at output will result inaccurate.  In 

conventional anomaly detection approaches, the module of 

the reconstruction error, defined as the difference between 

output and input, is uses to determine an unusual input such 

as faults.   

The proposed approach represents a step forward as here a 

single autoencoder is used both for detection and 

classification. 

The underlying idea is that the components of the 

reconstruction error vector whose module is used to trigger 

fault identification in classical autoencoder approaches 

contain the information of the fault type. This way the 

analysis of the different components of the reconstruction 

error allows to differentiate the different types of faults.  

Two methods to analyse the components of the 

reconstruction error vector will be discussed and their 

respective test results will be presented  
Test data have been generated with a machine fault simulator 

to produce 3 different types of bearing defects with different 

load, speed and noise conditions. A dataset of about 10000 

vibration signals has been used to evaluate the classification 

algorithms and to benchmark them with a supervised 

approach. 

The results obtained using the autoencoder method do not 

achieve the same performances as the conventional 

supervised learning algorithms. However, they proved to be 

88% accurate in classification when SNR is above 0dB with 

the ranking based method overperforming the barycentre one. 

 

1. INTRODUCTION 

Diagnostics is a crucial aspect for rotating machinery 

maintenance. Data processing methodologies range from 

traditional techniques such as frequency analysis to more 

innovative approaches like machine learning. In diagnostics 

process two main steps are often distinguished: detection and 

identification/classification. Detection aims to recognize the 

presence or absence of a defect. This can be sufficient in 

some situations where it is simply necessary to know if a 

machine is functioning correctly or if it requires intervention. 

Nevertheless, to optimize maintenance and repair processes, 

it is often essential to precisely target determining which 

component is failing: this requires fault identification. 

 

Data-driven approaches are progressively more employed for 

anomaly detection and fault classification for machine 

condition monitoring purposes.  However, high integrity 

systems could not always use the supervised 

learning/classification process needed for fault classification. 
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This depends on the fact that, at machine installation time, 

only healthy (nominal) data are available for training. 

Unsupervised learning offers a solution to fault detection by 

modeling nominal data and using a distance measure and a 

threshold for determining abnormality (Samanta, Al-Balushi, 

& Al-Araimi, 2003; Jack & Nandi, 2002; Booth & 

McDonald, 1998; Sanz, Perera, & Huerta, 2007; 

Guttormsson, Marks, El-Sharkawi, & Kerszenbaum, 1999; 

Rojas & Nandi, 2006; Prego, et al., 2013; Alguindigue & 

Uhrig, 1991; Fulufhelo, Tshilidzi, & Unathi, 2005; Rubio & 

Jáuregui, 2011). However unsupervised novelty detection 

approaches cannot be used for fault classification.  

In (Nicchiotti et al.,2016) it has been proposed a strategy to 

extend machine learning capabilities from fault detection to 

fault classification with the constraint that only nominal data 

are available for training. The logic is to use a priori 

knowledge about the effects of each fault to be classified in 

order to produce input training data which are somehow fault 

tuned. These training data are generated by computing, on 

nominal data, features which are known to be the most 

responsive to each kind of fault which has to be classified. 

The approach presented in this paper represents a step 

forward compared to the work presented in (Nicchiotti et 

al.,2016), where multiple unsupervised models were trained 

and classification was performed by comparing the models. 

In this case, classification is based on the analysis of the 

results of a single unsupervised model. 

 

The case study used to validate this new approach is the 

classification of faults in ball bearings with a machine 

learning approach where only healthy data are used for 

training. The study required taking measurements on 

defective bearings under various operating and noise 

conditions. The collected signals were preprocessed to 

extract training features both in time (RMS, Kurtosis, Crest 

Factor, etc.)  and frequency domains. The frequency domain 

proved to be particularly effective in discriminating between 

different types of failures, due to the characteristic 

frequencies associated with the defects.  

 

The paper is organized as follows. Next section will briefly 

illustrate the test rig and the data set characteristics. 

A description of data-driven method used in this study will 

be presented in section 2. The focus will be on Auto 

Associative Neural Networks (AANN) . 

The novel strategy to extend the data-driven capabilities from 

detection to classification will be described in section 4 

Two methods for classifying defects will be explored: the 

first based on the ranking of reconstruction errors 

components, the second on the analysis of the barycenter of 

the reconstruction error when represented in a polar plot. 

The results obtained with the 2 data-driven methodologies 

will be then compared and discussed and their robustness 

against noise characterized. 

The classification results will be finally benchmarked against 

supervised approaches. 

2. ACQUISITION SETUP AND DATASET 

The signals were acquired using acquisition systems 

developed by MC-Monitoring. Measurements were 

conducted on a fault simulator, allowing for measurements 

under different operating conditions. The fault simulator 

enables the rotation of bearings under various load, 

unbalance, and speed conditions. Bearings can be affected by 

defects in the inner race, outer race, balls, and a case 

presenting a combination of defects. The defective bearings 

were placed at location 5 (see figure 1), and the measurement 

via the accelerometer is carried out along the x and y axes. 

The sampling rate was 50 kHz 

 

Figure 1. Machine Fault Simulator and acquisition setup. 1 

AC Motor, 2 Frequency Converter ,3 Tachometer, 4 

Additional mass load,  5 Right and left bearing 6Acceleration 

sensor x-y, 100mV/g. 

For each type of bearing fault and under different loads and 

speed conditions, a 6-minute acquisition of the vibration 

signal has been performed. 

After digital conversion, the raw signal undergoes filtering to 

remove the DC component. We then calculate the Root Mean 

Square (RMS) value of the filtered signal, which becomes the 

reference point for adding white noise. To assess the process's 

robustness, seven levels of white noise were added to each 

original signal. This resulted in a total of 140 sequences, each 

containing 6 minutes of healthy and faulty signal data under 

different load, speed, and signal-to-noise ratio (SNR) 

conditions. 

3. MACHINE LEARNING METHODS 

Machine learning offers diverse tools for monitoring machine 

health, including density methods (KNN), boundary methods 

(SVM), and reconstruction methods (AANN) (Johannes, 

2001). These techniques have been successfully applied to 

fault detection (Samanta et al., 2003; Jack & Nandi, 2002; 

Booth & McDonald, 1998). When used for classification, 

these approaches all require pre-existing fault data for 

training (Alguindigue & Uhrig, 1991; Fulufhelo et al., 2005; 

Wang et al., 2020; Prego et al., 2013). 

However, acquiring such data poses a challenge when dealing 

with new equipment. In such scenarios, data-driven anomaly 

detection emerges as the only possible alternative which is 

Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN – 978-1-936263-40-0

Page 919



European Conference of the Prognostics and Health Management Society 2024 

3 

 

 

exemplified in studies by Rubio & Jáuregui (2011), 

Guttormsson et al. (1999), and Sanz et al. (2007) . Methods 

like Auto-Associative Neural Networks (Sanz et al., 2007) 

and one class SVM (Guttormsson et al., 1999) are among the 

most widely used methodologies that rely on "one-class 

classification", when only healthy data is available for 

training. 

Despite their success in fault detection, one-class 

classification methods haven't been explored for fault 

identification. This research aims to bridge that gap by 

incorporating expert knowledge ("a priori") into these data-

driven ("a posteriori") techniques, implementing fault 

classification within the AANN framework.  

3.1. AANN 

Auto-Associative Neural Networks (AANNs), also known as 

Replicator Neural Networks or Autoencoders, are like smart 

copycats in the world of artificial intelligence. These 

networks are trained to mimic whatever data they're given, 

but with a twist: they have a hidden layer with fewer neurons 

than the input and output. This "bottleneck", shown in Figure 

1, forces them to compress the information, essentially 

learning the key features of the data they're trained on. 

 

 

 

Figure 2. AANN Architecture. 

 

Imagine training an AANN with healthy equipment data. 

Once trained, it can accurately reproduce similar healthy 

data. However, faulty data will contain different patterns that 

the AANN struggles to compress in the bottleneck. This 

results in a larger reconstruction error, which is the difference 

between the original data and the AANN's attempt to recreate 

it. 

The reconstruction error can be considered as a measure of 

strangeness. The higher the error, the more different the data 

is from what the AANN knows as "healthy." By setting a 

threshold for this error, we can create a simple fault detection 

system: anything with an error above the threshold is likely 

faulty. 

In practice once a new sample is processed by the AANN, the 

measure of the difference between output and input vectors, 

the Reconstruction Error ( 𝑅𝐸 ) of an input vector 𝑋 , is 

computed as 

𝑅𝐸 = ‖𝑋 − 𝑂𝑋‖   (1) 

where 𝑂𝑋 is the output of the AANN and || symbol stands for 

any p-norm. Once computed the 𝑅𝐸 ,  a fault or anomaly 

detection logic can be easily implemented for instance by 

thresholding. 

 

4. FAULT IDENTIFICATION STRATEGY 

This section aims to examine the usage the reconstruction 

error of an autoencoder to classify different types of defects. 

To compensate for the lack signals associated with the 

defects, the idea is to leverage the "a priori" knowledge of the 

phenomena linked to the type of fault and encode it within 

the autoencoder process. As shown in figure 3, this process 

requires an initial step consisting of extracting features from 

the signal through appropriate signal processing techniques. 

 

 

Figure 3. Main Processing Steps. 

 

 

4.1. Pre-processing 

In the subsequent discussion, the term "feature" refers to an 

individual measurable attribute of the observed phenomenon. 

In this research, the features represent various characteristics 

of the signals extractable from the signals. Features represent 

unique clues about a machine's condition, like symptoms for 

a doctor. Think of these features as different dials on a 

dashboard, each showing a different aspect of the machine's 

health. 

Raw sensor data from ball bearings needs preparation before 

computing features and feeding it into machine learning 

algorithms. This involves filtering, windowing, and 

extracting the signal's "envelope". 
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- Filtering - Since the information we care about lies above 2 

kHz, lower frequencies are irrelevant and clutter the analysis. 

We utilize a Butterworth bandpass filter [2-22kHz]to 

selectively remove them.  In this proof of concept, we 

decided to use such a large bandwidth to represent the worst 

case. Practically, it is more efficient to filter around the 

frequency resonance of the entire system (motor, bearing, 

sensors, etc..) which is between generally somewhere 

between 2kHz and 20kHz to minimize the noise. However, 

as we wanted a “generic” system, we decided to use the 

overall bandwidth of our acquisition system. This also 

presents a practical benefit of not requiring to configure the 

filter during the installation procedure. 

- Envelope Extraction - Ball bearing vibrations, like the one 

shown in Figure 3, contain information in their "envelope". 

This envelope reflects the modulation of the bearing's natural 

resonance frequency caused by impacts between rolling 

elements and defects. To uncover the characteristic 

frequencies of these defects, we calculate the Fast Fourier 

Transform (FFT) on the extracted envelope, not the raw 

signal. As most of the rotating machines we monitor in our 

applications run between 25Hz and 60Hz, we know that the 

characteristic frequency of the faults (BPFO, BPFI, etc) are 

between, let say, 5Hz an 500Hz, so the envelope size was 

chosen according to these values. 

 

 

Figure 4. Bearing signal: Raw (slim lines) Envelope (bold 

lines) 

- Windowing - To enhance the accuracy of frequency 

analysis, we apply a Hann window to the filtered data. This 

window smooths the signal edges, reducing artifacts in the 

resulting spectrum. The measured signal (240 s) will be 

divided into 1-second samples with a 1/2-second overlap. The 

choice of 1 second allows balancing the need for enough 

signals for machine learning model training and retaining 

sufficient characteristic information of the vibrational signal 

generated by the bearing. A too small window would make 

the model unreliable if the pseudo-periodic nature of the 

signal is not preserved in the sample. A too large window 

would also not allow good model generalization due to the 

more limited training dataset. 

4.2. Feature extraction 

Features have been extracted with time domain and 

frequency domain analysis. 

In the time domain, signals from defective bearings exhibit 

periodic impulses corresponding to impacts between the balls 

and the cage defect or between the defective ball and the 

metallic components. The impulses excite the resonance 

frequencies of the system. Each impact can be compared to 

the impulse response of the system due to the short duration 

of contact between a ball and the defect The presence of 

defects in a machine can be detected by analysing the 

vibration signal. Defects increase the energy of the vibration 

signal and modify its statistical distribution. These changes 

can be used to identify the presence and severity of the 

defects. Time domain features used in this study are 

(Hornavar & Martin, 1995): RMS,Crest Factor, Kurtosis, 

Skewness, Impulse Factor and Form Factor. 

Each bearing has a unique "fingerprint", its characteristic 

frequencies, determined by its geometry and rotation speed. 

(Kamaras et al. ,1995, Andhare, 2010) 

- FTF - Fundamental Train Frequency: This is the rotation 

frequency of the bearing cage. 

- BPFI - Ball Pass Frequency of the Inner Race: This 

frequency is generated by the passage of balls over the inner 

ring. 

- BPFO - Ball Pass Frequency of the Outer Race: This 

frequency is generated by the passage of balls over the outer 

ring. 

- BSF - Ball Spin Frequency: This frequency is related to the 

rotation of the balls. 

When a fault develops, these specific frequencies become 

amplified, acting like warning lights. These frequencies not 

only reveal the presence of a problem but also pinpoint the 

exact type of fault, allowing for targeted repairs and 

preventing unnecessary downtime.  Hence to identify faults 

in bearings, features were extracted from the vibration 

signal's envelope spectrum. These features included the peak 

ratio amplitudes of characteristic frequencies related to 

bearing health: the Ball Pass Frequency Outer Race (BPFO), 

Ball Pass Frequency Inner Race (BPFI), and Ball Spin 

Frequency (BSF). Additionally, the spectral centroid and the 

energy in the band 10-20 kHz were included. These features 

formed the frequency "fingerprint" of the bearing's health and 

were fed into an Auto Associative Neural Network (AANN) 

for fault classification.  

To extract the features, we first chopped the time signal into 

half second intervals, making sure to overlap them by 0.25s 

to capture any important transitions. From each chunk, we 
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then extracted 14 specific features which we fed into the 

autoencoder for further analysis. 

4.3. Classification 

The fault detection by autoencoder is based on the premise 

that the reconstruction error for data similar to those used for 

training will be lower than the error for data from faulty 

bearings. 

Since different features do not all have the same range of 

values, the data has to be standardized (Equation 2). Each 

new set of tested data will be standardized using the mean 

and standard deviation of the training data. 

𝐹𝑖 =
𝑓𝑖−𝜇𝑖

𝜎𝑖
       (2) 

Where 𝑓𝑖  is the value to be standardized, 𝜇𝑖  , 𝜎𝑖   are the mean 

and the standard deviation of the training set for feature 𝑖 
and 𝐹𝑖 is the standardized feature value. 

The parameters of the autoencoder have been determined 

according to the average reconstruction error on healthy data. 

The autoencoder has a single hidden layer which contain 10 

neurons This value represents a good compromise between 

low reconstruction error and moderate training time. The 

maximum number of iterations (Epochs) for training is set to 

500 beyond this, the improvement in performance is not 

significant. 

For each feature 𝐹𝑖 at the input, the autoencoder calculates a 

corresponding output  𝑂𝑖   . The difference  𝐸𝑖 = ‖𝐹𝑖 − 𝑂𝑖‖ 

represents the components of the reconstruction error along 

the various axes represented by the features used, as shown 

in Figure 5. 

 

Figure 5: Reconstruction error for a healthy signal (left) and 

outer race fault (right). X-axis represent the feature index 

Errors 𝐸𝑖  in stems (vertical lines), continuous lines input 

features dotted features as reconstructed by autoencoder 

The two classification strategies here presented assume that 

the relative values of components 𝐸𝑖  of the reconstruction 

error depend on the type of defect. 

 

The first approach maps 𝐸𝑖  on a polar plot (Figure 6), and 

uses the angle of the reconstruction error to discriminate the 

different types of faults. 

 

To differentiate between fault types, each feature 𝑖 is 

assigned a specific angle (𝜃𝑖). Using a priori knowledge about 

fault behavior, these angles are carefully chosen to maximize 

the angular separation between features clearly associated 

with different faults (e.g., Inner Race, Outer Race, Ball). For 

example, BPFO, BPFI, and BSF might be assigned 0°, 120°, 

and 240° directions, respectively. 

 

 
Figure 6: Polar Plot of the reconstruction error. Blue contour 

represents the shape of outer race fault, Red of inner race, 

Black ball fault, Violet Multiple faults. Different faults types 

correspond to different contours. 

Next, each feature's reconstruction error component 𝐸𝑖  is 

represented as a 2D vector 𝐸𝑖
⃗⃗  ⃗  where the magnitude reflects 

the error value of the component itself and the angle 

corresponds to the pre-assigned 𝜃𝑖 based on fault type a priori 

knowledge. By summing these vectors, a resulting 

reconstruction vector �⃗�  is created  

�⃗� = ∑ 𝐸𝑖
⃗⃗  ⃗𝑁

𝑖=1       (3) 

Based on the vector direction Θ  of �⃗�  𝑤𝑖𝑡ℎ Θ=arg( �⃗� )  the 

fault type can be classified.  

For instance, if Θ  is falling within -60° to 60° we can classify 

the fault as inner race between 60° and 180° as outer race, 

else as ball error. The underlying idea is that reconstruction 

errors not strictly dependent on the type of defect interfere 

destructively, highlighting the direction of the defect in the 

polar plot. 

The second method assumes different fault types make it 

harder for the autoencoder to reconstruct certain feature 

components. By leveraging a priori knowledge, we anticipate 

the ranking of reconstruction errors magnitude for the 

features across different fault scenarios as shown in Table 1. 
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Table 1. Ranking fault signatures 

 
Fault 

type 
Reconstruction error 𝐸𝑖 = ‖𝐹𝑖 − 𝑂𝑖‖ 

←Bigger                                                 Smaller → 

Inner 1 8 10 5 9 12 7 2 11 6 3 4 13 14 

Outer 9 5 12 8 11 1 10 2 7 6 3 4 13 14 

Ball 12 8 1 5 9 7 6 10 11 2 3 4 13 14 

 

This expected ranking serves as a signature to identify the 

actual fault based on the observed ranking of reconstruction 

errors. Comparing the actual observed order to the expected 

ranking enables the classification task. 

 

Figure 7: Example of ranking signature for Outer Race Fault 

and RBO algorithm  

To effectively compare ranking list and classify the fault 

type, the algorithm needs to consider the varying importance 

of features in their ranked order (see Figure 7). The 

correspondence between two top-ranked features (top arrow) 

is more important than two lower-ranked features (bottom 

arrow). Additionally, two identical features that are not at the 

same rank (center arrow) must be taken into account. To 

accomplish this, the Rank Biased Overlap (RBO) algorithm 

(Joshi 2021), which meets these requirements, was used to 

compare the rankings. This algorithm allows assigning a 

weight (𝑝) more or less significant to elements at the top of 

the ranking. The result of the comparison between the two 

lists is a number between 0 and 1 (the value '1' is obtained for 

two identical lists). 

 

5. TEST RESULTS 

An autoencoder with 14 input features and a single hidden 

layer with 8 nodes to distinguish healthy and faulty system 

states has been trained with 3000 healthy samples, each 

represented by a vector of 14 features extracted from a 0.25-

second signal window. The model's performance was 

evaluated on 3000 healthy and 9000 faulty samples. While 

confusion matrices provided insights into classification 

errors, this document focuses on precision, defined as the 

ratio of the total number of correct predictions to the total 

number of predictions made by the model. 

Figure 8 demonstrates the model's ability to accurately detect 

healthy states with excellent precision even when dealing 

with high levels of noise in the signal. 

 

Figure 8: Precision of the anomaly detection as a function of 

SNR(dB) 

To detecting faults, we set a threshold (𝑇ℎ𝐷) based on the 

reconstruction error (RE). If RE exceeds 𝑇ℎ𝐷, a fault is likely 

present. This threshold is calculated as the mean (μTS) plus 

three times the standard deviation (σTS) of the reconstruction 

error computed on the training data (Equation 4). 

𝑇ℎ𝐷 = μTS 
+  3 ∙  σTS  (4)  

The autoencoder demonstrates exceptional anomaly 

detection capabilities even under low noise conditions, 

achieving precision levels exceeding 99.4% for signal-to-

noise ratios (SNR) up to 0 dB. However, as noise levels 

increase, performance drops and false alarms become a 

concern, at SNR 6 dB, precision falls below 90%. 

5.1. Vector Direction classification 

Initially, with 14 features, the method based on the direction 

of the reconstruction vector (Θ=arg( �⃗� )) only achieved a 

76.8% precision. The unsatisfactory percentage is likely due 

to the correlation between some features which produced the 

same interferce pattern. Therefore, we applied Principal 

Component Analysis (PCA) (Shlens, 2014) to identify 

redundancies and reduce the number of features to 8 This 

process ends up with the selection of the most informative 

features, in statistical sense, like RMS, Kurtosis, Peak Factor, 

Impulse Factor, and key frequency components). This 

dimensionality reduction significantly improved 

classification performance, boosting the precision to 87.94%. 
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Figure 9: Polar Plot with 8 features pour outer race fault 

 

 
 

 

 
Figure 10: Polar Plots with 8 features for an inner race fault 

 

 
Figure 11: Polar Plots with 8 features for a ball fault 

 

 
 
Figure 12: Polar Plots with 8 features for a ball fault, with 

misclassification 

In addition to automated fault classification, our method 

provides a visual tool for identifying different fault types.  

Figures 9-11 showcase polar diagrams where each plot 

displays examples correctly classified. Figure 12, however, 

depicts a scenario where misclassification occurred. 

 

In some maintenance situations, where misidentifying a 

failure could have serious consequences, operators can 

leverage these visualizations to perform a semi-automated 

diagnosis, especially if the automated results lack sufficient 

confidence. This allows them to combine the model's insights 

with their own expertise for a more informed decision.  

5.2. Rank Order classification 

When using the rank order RBO method for classification, 

the initial precision with 14 features was only 41.46%. 

Similar to the previous approach, we reduced the number of 

features to decrease redundancy and eliminate less relevant 

information. Using the same features as the "vector direction" 

classifier, the RBO method improved, and achieved a 

maximum precision of 76.8% when the parameter 𝑝 (Joshi 

2021) is set to 𝑝  =0.9. The parameter p determines the 

weighting of the first positions in the similarity measurement 

between two ranked lists. By adjusting the value of p, it is 

possible to control the importance given to the first positions 

compared to the subsequent positions, thus providing 

flexibility to evaluate the similarity between ranked lists 

according to different criteria. The value of p is chosen 

between 0 and 1. In this case, it has been decided to give more 

importance to the first positions in the ranking, which have a 

more significant impact on the classification performances. 

Therefore, the « directional » classifier appears more 

effective in our tests. 

While unsupervised methods like RBO offer an advantage in 

not requiring labelled data, their precision in this case 
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(76.8%) falls short compared to supervised learning (>99% 

precision). (Cherif, 2023) This is likely due to the inclusion 

of actual fault data in the training set for supervised methods, 

providing them with a more direct understanding of failure 

patterns.  

 

6. CONCLUSIONS 

The application of unsupervised machine learning techniques 

for detecting bearing faults and anomalies in rotating 

machinery offers a compelling array of advantages for 

practical business implementations. By eliminating the need 

for labeled faulty data, these approaches streamline the 

deployment process, making it more accessible and cost-

effective for industrial settings. 

The ability to operate without pre-existing fault data enables 

unsupervised algorithms to uncover previously unrecognized 

patterns and anomalies, providing early detection of faults 

and proactive maintenance opportunities. This early 

detection capability, coupled with scalability and adaptability 

to changing conditions, empowers businesses to enhance 

reliability, minimize downtime, and optimize maintenance 

strategies. 

In essence, leveraging unsupervised machine learning in 

industrial contexts not only circumvents the challenges 

associated with acquiring labeled data but also delivers 

tangible benefits in terms of reliability, efficiency, and cost-

effectiveness. This approach represents a transformative 

paradigm for bearing fault detection and anomaly 

monitoring, enabling businesses to proactively manage their 

assets and maximize operational performance without relying 

on historical fault data. 

However, whilst supervised and unsupervised methods show 

similar performance in defect detection, our proposed 

approach using an autoencoder for classification falls short 

compared to supervised learning. However, our method 

offers the crucial advantage of not needing rare defect data 

for training. This combination of unsupervised anomaly 

detection and classification enables defect detection without 

labeled data. 

The "directional error" method achieves a promising 87.94% 

accuracy through optimized feature selection.  

To further improve our classification system, we are pursuing 

two complementary research directions: 

1. Improving precision over time: We're exploring how to 

combine classification results over time to potentially 

boost precision. 

2. Implementing a rejection logic (Bartlett & WegKamp, 

2008; Chow ,1970): This framework aims to prevent 

critical misclassifications by allowing the model to avoid 

predictions when uncertain, at a predefined cost. This 

enables semi-automatic diagnostics where polar plots of 

ambiguous cases can be sent to operators for 

confirmation. 

From the validation point of view, it has been planned to 

validate our methodology on HUST bearing dataset 

(https://data.mendeley.com/datasets/cbv7jyx4p9/3)  

 

NOMENCLATURE 

Ei Reconstruction error component 

Θ Direction of Reconstruction Vector 

p Weight of RBO 

RE Reconstruction Error 

𝑇ℎ𝐷 Detection Threshold 

�⃗�  Reconstruction vector 
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