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ABSTRACT

The development of high-quality health indicators based on
Artificial Intelligence (AI) for condition monitoring, reflect-
ing the degradation process and trend, remains a key area of
research. Unsupervised deep learning methods, such as deep
autoencoders and variational autoencoders, are often employed
to establish health indicators for rotating machinery. How-
ever, commonly used methods frequently face challenges in
controlling and evaluating the quality of learned features that
represent this distribution, which subsequently impacts the
accuracy of the test data analysis and anomaly detection. Ad-
ditionally, the empirical nature of threshold setting adds an
element of uncertainty to detections.

The research propose a novel approach for constructing gear
health indicators and performing anomaly detection using Gen-
erative Adversarial Networks (GAN), with a particular em-
phasis on the f-AnoGAN structure. The research focuses on
modeling the distribution of vibration signals acquired from
healthy systems using adversarial learning. By comparing
test samples against this modeled distribution, the degree of
similarity or dissimilarity acts as an indicator of anomalies.
Owing to the generative process of the GAN architecture (cre-
ating data from randomly sampled low-dimensional noise),
GAN-based modeling overcomes the limitation of autoen-
coders by aiming to reconstruct the continuous distribution
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of systems in healthy conditions from a limited set of healthy
(training) samples. In this way, it offers more generalizability
than traditional model learning. Moreover, this study pro-
poses a new method for establishing thresholds based on dis-
tribution fitting by the anomaly score of healthy data. The
proposed f-AnoGAN-based model and thresholding technique
is applied, tested and evaluated in a gear-pitting degradation
dataset and result in more accurate and timely fault detection,
markedly enhancing the ability to identify subtle faults in sys-
tems over traditional methods.

1. INTRODUCTION

Gears are an indispensable element of rotating machinery,
widely employed across industry, including aerospace, rail
transport, and industrial sectors (Chen, Jiang, Ding, & Huang,
2022; Salameh, Cauet, Etien, Sakout, & Rambault, 2018).
The malfunctioning of gears constitutes a prevalent reason
for the failure of machine systems, which can result in sub-
stantial economic losses and may even pose risks to human
safety (Lee et al., 2014). Consequently, monitoring gear con-
ditions and accurately predicting component failure and fault
progression are crucial.

The employment of vibration based condition monitoring at
both system and component levels represents a universally
endorsed technique within the realm of health monitoring for
rotating machinery (Elasha et al., 2014; Teng, Wang, Zhang,
Liu, & Ding, 2014; Öztürk, Sabuncu, & Yesilyurt, 2008). The
meticulous measurement and subsequent analysis of vibra-
tion signals are instrumental in the precise identification of in-
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cipient faults, thereby enabling the implementation of preven-
tative and predictive maintenance prior to deterioration and
corresponding issues. This proactive approach significantly
contributes to the sustenance of system reliability and safety.
Moreover, vibration analysis serves as an invaluable source of
insight regarding the mechanical condition, since deviations
in pivotal rotating elements, such as gears, manifest within
the vibration signals (Zhu, Mousmoulis, & Gryllias, 2023;
Hendriks, Dumond, & Knox, 2022). The utilization of signal
processing tools for the examination of vibratory data aids in
the extraction of critical information and indicators spanning
both frequency and time-frequency domains. Nevertheless, it
is imperative to acknowledge that the interpretations derived
from these signal processing outcomes frequently require the
expertise of seasoned operators.

With the advancement of artificial intelligence, its application
in gear fault detection has gained increasing attention. Artifi-
cial intelligence, especially machine learning and deep learn-
ing methods, can process and analyze vast amounts of data,
uncovering complex patterns and relationships that may be
elusive to human experts. This reduces reliance on deep ex-
pert knowledge while enhancing the efficiency and accuracy
of fault detection, enabling even non-experts to effectively di-
agnose faults. Among the various techniques, Convolutional
Neural Networks (CNN) have demonstrated their versatility
in state monitoring applications, including the detection and
diagnosis of gear pitting faults (Zhang, Liu, Wang, & Gu,
2022; Xiang, Yang, Hu, Su, & Wang, 2022; Shi et al., 2022;
Kim, Na, & Youn, 2022).

Viewing fault detection as a classification problem is a widely
adopted strategy. However, obtaining clean, ample, and bal-
anced healthy and especially faulty data, is challenging. Thus,
various unsupervised one-class classification methods have
been introduced. Unsupervised training methods, which in-
fer based solely on information from healthy data, are limited
by their output being the probability of a sample being nor-
mal. Thus for detection in a continuous progress, such as a
degradation, this type of methods lacks of ability to represent
trend. These methods primarily involve two steps: firstly,
through the neural network’s learning, mastering the distri-
bution of healthy data and gauging the deviation of test data
from this baseline; secondly, establishing reasonable thresh-
olds for anomaly detection. A popular method is Deep Sup-
port Vector Data Description (DSVDD) (Ruff et al., 2018;
Liu & Gryllias, 2020; Peng, Liu, Desmet, & Gryllias, 2023),
which uses the Euclidean distance between hidden layer fea-
ture representations to characterize the extent of faults, allow-
ing for trend assessment. However, DSVDD faces limitations
in feature space representation capability and a lack of control
over hidden layers/features.

An alternative unsupervised learning approach involves self-
supervised schemes like Autoencoder (AE). By encoding and

decoding complete data through neural networks, these mod-
els learn the intrinsic structure of the data (C. Zhou & Paf-
fenroth, 2017; Ren, Sun, Cui, & Zhang, 2018; Mao, Feng,
Liu, Zhang, & Liang, 2021). Yet, the characteristic of data
compression in autoencoders limits their generalization abil-
ity, showing a significant dependency on the training data.

Recent years have seen generative models emerge as a new re-
search focus. From the perspective of mechanical fault detec-
tion, Generative Adversarial Networks (GANs) (Goodfellow
et al., 2014) have been applied primarily in data augmentation
tasks (He, Tian, & Zuo, 2022; K. Zhou, Diehl, & Tang, 2023;
Qin, Wang, & Xi, 2022; Wang et al., 2019). (Ding, Ma, Ma,
Wang, & Lu, 2019) proposed a GAN-based anomaly detec-
tion method for bearing fault diagnosis, where the discrimi-
nator is used as an anomaly detector. (Dai, Wang, Huang,
Shi, & Zhu, 2020) introduces an adversarial learning strategy
to optimise the training of autoencoder(the method is also
known as adversarial autoencoder) for the establishment of
rotating machinery health indicators.

However, the essence of GANs lies in their use of adversarial
learning to better fit the distribution of training data, allowing
the direct generation of new data from this distribution. This
aligns with the upstream task of various anomaly detection
algorithms, which is to simulate the distribution of training
data.

This study explores the potential of Generative Adversarial
Networks in the task of anomaly detection for rotating ma-
chinery, based on vibration signals. It proposes a scheme for
constructing a gear health indicator using GANs, along with
a corresponding threshold setting and an anomaly detection
system, aimed at detecting pitting initiation as early as possi-
ble. The methodology is validated on a dataset from a gear-
accelerated degradation test.

The rest of the paper is organised as follows. In Section 2, the
proposed anomaly detection methodology including model
training, construction of health indices, and the threshold set-
ting scheme is presented in detail. Then in Section 3 the ex-
perimental set up is described, the proposed methodology is
applied on the experimental dataset and its effectiveness is
analysed. The paper closes at the final section with some con-
clusions and the potentials of the proposed method in the field
of rotating machinery health monitoring.

2. PROPOSED METHOD

The proposed detection scheme can be divided into three in-
dependent steps:

1. Offline Distribution Learning, by generative adversar-
ial learning. In this step, the model is trained only by a
limited number of partitioned healthy signals. The gen-
erator uses low-dimensional random noise as input and
upscales it to the same dimension as the actual samples.
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The objective of the generator is to produce signals from
the random noise (i.e., feature space) that are as realis-
tic as possible. This process can be considered as the
model’s grasp of the intrinsic structure of the training sig-
nals.

2. Health Indicator Formation, by the fast AnoGAN (f-
AnoGAN) structure. The well-trained generator from
step 1 can upscale any arbitrary low-dimensional feature
set to obtain sufficiently realistic signals. This result can
be interpreted as having obtained a continuous, infinite
set of training samples. Therefore, for a test sample, its
state related with health can be determined by whether an
identical sample (or, as similar as possible) can be found
within this continuous healthy set. The process of finding
the corresponding sample, according to the f-AnoGAN
structure, is assisted by an independently trained encoder
working alongside the generator. After obtaining the cor-
responding sample for the test signal, the Euclidean dis-
tance is measured between signals to gauge the test sam-
ple.

3. Fault Detection, by a thresholding method. The discrep-
ancy measured as outlined in step 2 is compared against a
pre-determined threshold. Samples exceeding this thresh-
old are flagged as potential anomalies, indicating a de-
parture from the healthy signal distribution and hence,
identifying possible faults.

2.1. Generative Adversarial Network (GAN) Training

2.1.1. Training Strategy

The training of GAN, depicted in Figure 1, alternates between
updating the discriminator (also referred to as the Critic in
the context of WGANs) and the generator. The discriminator
(Critic model)’s task is to evaluate the realism of both real and
generated samples, while the generator aims to produce data
that are indistinguishable from real data. The key innovation
of WGAN-GP (Gulrajani, Ahmed, Arjovsky, Dumoulin, &
Courville, 2017) lies in the gradient penalty term, which en-
forces a soft version of the Lipschitz constraint by penalizing
the gradient norm of the Critic’s output with respect to its in-
put.

2.1.2. Loss Composition

Generator Loss: The generator’s objective is to minimize the
negative average score of the generated samples evaluated by
the discriminator:

LG(θG) = −Ex̃∼Pg
[C(x̃)] (1)

where θG represents the generator’s parameters. The genera-
tor is trained to produce samples x̃ that maximize the discrim-
inator’s (critic’s) score C(x̃), pushing it towards generating
more realistic samples.

Discriminator Loss: It includes two components - the aver-
age score for the real samples and the average score for the
generated (fake) samples.

The objective of the GAN’s training can be expressed as:

min
θG

max
θC∈C

Ex∼Pr [C(x)]− Ex̃∼Pg [C(x̃)] (2)

where θC represents the critic’s parameters. The goal is to
train the critic to assign higher scores to real samples x ∼ Pr

and lower scores to generated samples x̃ ∼ Pg .

However, the optimizing objective (2) is still not effective
enough in the practice of GAN training, and researchers are
often plagued by pattern collapse, which has spawned more
related studies. Among them, the study of (Gulrajani et
al., 2017) has attracted attention by introducing the gradient
penalty:

Gradient Penalty (GP): Is calculated by first interpolating be-
tween real and fake samples, and then computing the gra-
dient of the critic’s scores with respect to these interpolated
samples. The penalty is the squared deviation of the gradi-
ent norm from 1, averaged across the batch. The final loss
function is as follows:

L(θC) =Ex∼Pr
[C(x)]− Ex̃∼Pg

[C(x̃)]+

λEx̂∼Px̂

[
(∥∇x̂C(x̂)∥2 − 1)2

]
(3)

where x̂ is sampled uniformly along straight lines between
pairs of real and generated samples, and λ is a hyperparam-
eter that controls the strength of the penalty, which is set as
default value 10 to ensure Critic’s gradient comply with the
Lipschitz constraint.

This strategy encourages the generator to produce samples
that are realistic enough to receive high scores from the dis-
criminator, while the discriminator is penalized for having
a gradient norm far from 1, ensuring that it behaves like a
smooth function (Gulrajani et al., 2017) that provides useful
gradients to the generator throughout the training process.

2.2. Indicator Formation

As previously mentioned, following the training of the GAN,
the generator can now represent the complete and continu-
ous distribution of healthy samples found within the training
set. Subsequently, the difference between the test signal and
the healthy distribution need to be measured to quantify the
degree of anomaly in a new signal.

However, this learned distribution is implicit, which means
that it is impossible to explicitly write out the mathematical
form of this learned data distribution. In the final implemen-
tation of AnoGAN (Schlegl, Seeböck, Waldstein, Schmidt-
Erfurth, & Langs, 2017), this process is simplified to whether
a similar signal can be sampled from the distribution of the
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Figure 1. WGAN-GP Training Strategy

generated signal (Dgen), that is, finding z in the noise space
(the distribution of Z, DZ , is normally defined as a Gaussian
distribution). This process is further reduced iteratively using
back-propagation for a substantial number of iterations, such
as 10,000 iterations, after which the final sampling result is
considered the closest match to the test sample in Dgen.

However, the drawbacks of this process are evident; iterat-
ing multiple times for a single sample is computationally in-
efficient, especially when considering practical downstream
applications. Moreover, using gradient descent optimization
in isolation carries a significant risk of the sampling being
trapped in local minima, which can adversely affect the qual-
ity of signal sampling in Dgen.

To enhance efficiency, the f-AnoGAN introduces an indepen-
dent encoder for the sampling process. In GAN models, re-
liable mapping from Dz to Dgen is established. The aim of
the independent encoder in f-AnoGAN is to facilitate the re-
verse process: mapping from the complex data distribution
Dgen back to the simple feature space Dz . This process aids
in quickly searching feature vectors z that match the new
test sample best, enhancing both accuracy and efficiency in
anomaly detection tasks. The obtained vector z is used to
generate the corresponding health data xgen = G(z). The
generated signal(xgen) is then considered as the generated
health signal closest to the tested signal to complete the cor-
responding indicator calculation.

To train the model, the encoder takes the generated signal
Xgen as input and Z as output to train the parameters. The
formation of the encoder can be depicted in Figure 2.

The loss of the training process of the Encoder is defined as:

Loss = Lossszs + Lossf
= MSE(Xgen −G(E(Xgen)))

+ MSE(C(Xgen)− C(G(E(Xgen)))) (4)

As mentioned earlier, the detection relies on the discrepancy
between the test data and the generated healthy data. The dis-
crepancies in this work are defined as two independent parts:

1. the Euclidean distance in the signal space

2. the Euclidean distance in the feature space, defined by
the Critic

The Health Indicator (HI): the Anomaly Score (AS) is defined
as the weighted sum of these two distances. In this research,
this weighting parameter is not discussed emphatically and
both distances are considered equally important, thus, for a
tested data x, AS can be expressed as follows:

AS = ∥x−G(E(x))∥+ ∥C(x)− C(G(E(x)))∥ (5)

2.3. Detection Part - Thresholding

The described method evaluates any signal to obtain a unique
quantified indicator AS. For anomaly detection tasks, it is
necessary to set a threshold based on the AS collection of
the given healthy samples. The aforementioned method is
applied to evaluate the healthy signals in the validation set to
obtain the AS. Then, for the resulting SetAS, the maximum
likelihood estimation is used to estimate the parameters ac-
cording to the assumed distribution type. In this step, research
first establishes a distribution bank that includes all common
and interesting distributions. Afterward, for SetAS, differ-
ent distribution estimates can be obtained, Dis1, Dis2, etc.,
along with the estimated distribution parameters. The AIC
is taken as the matrix to compare and evaluate different dis-
tributions, and to select the optimal distribution based on this
comparison as the parametric expression of the AS collection.
The resulting dis is the distribution expression of the healthy
signals. This distribution is inferred based on actual vibration
measurements, and given the potential instability of operating
conditions in the actual experimental process, and various in-
terferences in signal measurements (such as the electrical en-
vironment), there are outliers in both the AS collection and
the estimated distribution. This is also why similar studies
do not use the maximum value of the validation’s AS as the
threshold for judging anomalies. In this method, the threshold
setting is based on the estimation of the threshold according
to the Distribution’s Cumulative distribution function (CDF).
In this paper, the AS corresponding to CDF (AS) = 0.99 is
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Figure 2. Encoder formation in f-AnoGAN

used as the threshold for judgment of anomaly.

3. APPLICATION OF THE METHODOLOGY AND RESULTS

3.1. Description of the data

The data used for validating the anomaly detection approach
in this research were derived from a comprehensive gear-
box degradation test (Van Maele et al., 2023).The measure-
ments were conducted on an FZG multi-stage gearbox test
rig (Figure 3), where the input and output of two gearboxes
were mechanically interconnected, thus forming a mechan-
ical closed loop. The load was provided by a friction disk
coupling mechanism situated between the gearboxes, which
applies torque to the gear meshing system through angular
displacement between two discs at either end. Throughout
the test, the torque, applied manually, was maintained at 60-
90Nm, and the gear under test was set to a speed of 2560
rpm.

Figure 3. Photo of the multistage FZG test rig

Within the gearbox under investigation, the transmission sys-
tem consists of three pairs of meshing gears, with their spe-
cific locations indicated in Figure 4. The test employed two
pairs of helical gears made of 20MnCr5 steel, featuring 41
(monitored) and 38 teeth, respectively. Unlike standard, in-
dustrial gears, the gears under observation were not hard-
ened (250HV) to ensure pitting would occur on the moni-

tored surfaces within a reasonable time frame (Van Maele et
al., 2023). A camera was used during the operation to peri-
odically record the visual information of the gear surfaces at
fixed intervals for the study and quantification of surface pit-
ting. Specifically, the system was slowed down to 1rpm for
image capture every 30 minutes during operation. The cam-
era system took five shots of each meshing surface during the
collection process, and the sharpest image was algorithmi-
cally selected to serve as the basis for quantifying the pitting
area. Thus, after the test concluded, a quantitative description
of the process of surface pitting area evolution over time was
obtained, providing a metric for the degradation process.

Figure 4. Sketch of the test gearbox setup

In addition to the visual information, during the test also torque,
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speed, and most importantly, vibration signals were measured.
The locations of the vibration sensors are indicated in the ac-
companying diagram. Vibration signals were sampled at 10-
minute intervals, with each sample collected at a sampling
rate of 25600Hz over a duration of 10 seconds. In total, this
accelerated degradation test lasted approximately 205 hours.

Overall, the test yielded 999 valid vibration data entries (indi-
cating failure after 999 cycles) and 300 sets of synchronized
gear surface information. According to tribologists’ analysis,
significant and observable pitting occurred on all gear sur-
faces after the 33 cycle.Figure 5 is a depict of the observed
degradation process of pitting.

In this study, the vibration signal in the X-direction from the
vibration sensor EN-3924, which lies closest to the tested
gear, was utilized. A health indicator built on a generative
model was used to track the degradation of gears, aiming for
earlier detection of pitting formation, which would, in turn,
guide maintenance activities.

3.2. Data preprocessing

In this research, the training data were prepared with the fol-
lowing preprocessing steps to use more informative samples.
It is postulated that the degradation features are primarily
concentrated in the gear mesh frequency (GMF), its harmon-
ics, and the features and structures of the sidebands. In this
test, with the input shaft rotating at 2560 rpm, the velocity
of the intermediate and target gears was calculated as v2 =
v1 × gear ratio = 39.5Hz, and the gear mesh frequency was
GMF = Teeth num × v2 = 1622Hz. Table 1 contains the
characteristic frequencies of the test rig and the test.

Table 1. Characteristic frequencies of the test gearbox

Speed (Input Shaft) 2560 rpm
Speed (Driver Gear) 42.7 Hz
Speed (Target Gear) 39.5 Hz
GMF (Target Gear) 1622.6 Hz

2*GMF (Target Gear) 3245.2 Hz
3*GMF (Target Gear) 4867.8 Hz

Accordingly, the following preprocessing was applied to the
data: initially, vibration signals were passed through a filter
targeting the 1500-5000Hz frequency band, which includes
the harmonics from the 1st to the 3rd order of the gear mesh
frequency, along with the related band components. After-
ward, the Discrete Fourier Transform was applied to isolate
the informative frequency band, and then the 1500-5000Hz
range was extracted to form the training, validation and test
set samples.

The complete experimental dataset consists of approximately
999 independent measurements covering the full lifecycle.

For this study, the early-life gear signals are selected as train-
ing samples to ensure that the training set comprised entirely
healthy data to support model building and parameter opti-
mization. A portion of the healthy dataset was also reserved
as a validation set due to the encoder architecture of f-AnoGAN.
In f-AnoGAN, unlike the original AnoGAN structure that re-
lies solely on random sampling and gradient descent for sam-
pling in Dgen, the model treats the training data as input to
build the latent feature z via the encoder. Hence, to establish
a threshold for anomaly detection, the new, unseen healthy
data is still required as a reference.

Figure 6 delineates the division of the dataset in the test. Due
to the run-in and gear bedding-in phases, which led to an un-
stable operational state of the experimental system, the ini-
tial two signals were discarded. The complete training set is
composed of 19 independent signals, each sliced into time se-
ries of 51200 points with a 50% overlap during segmentation.
All models in the study, including the generator, discrimina-
tor, and encoder, were trained exclusively with the aforemen-
tioned samples as per the described method. Furthermore,
following the aforementioned method, 9 independent mea-
surements from the healthy system were retained as a valida-
tion set, with the data division and sample generation being
identical to the training set. All remaining data, encompass-
ing both healthy and anomalous readings, were used as the
final test set. It is important to note that the exclusion of data,
as well as the delineation of the training, validation, and test
sets, was conducted in chronological order following the ac-
celerated degradation life course. In other words, the train-
ing and validation sets represent the early service life of the
gears, while the test set includes the entire progression from
a healthy state through the onset and development of pitting.
Figure 7 illustrates the data pre-processing process.

3.3. Results

To verify the methodology’s effectiveness, this study sets up
comparative experiments and discusses the performance of
the proposed model and the Autoencoder (AE). For the f-
AnoGAN architecture, all models are set to be based on fully
connected networks. To ensure fairness in the comparative
experiments, the main model’s structure and the number of
parameters are kept as consistent and comparable as possi-
ble. This implies that both the generator of the proposed
approach and the decoder of the AE, which serves as the
benchmark method, undertake analogous functions by up-
scaling low-dimensional variables in the feature space to the
target dimension. Consequently, to guarantee comparability
between the two models, their parameters and network struc-
tures are configured to be identical. Both G and AE are com-
pleted by fully connected neural networks, transforming di-
mensions from 1000 → 2500 → 5000 → 7001, finally ob-
taining the spectrum from 1500-5000Hz (with a resolution of
0.5Hz). Based on these two models, model construction in
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Figure 5. Observed degradation process of pitting

Figure 6. Segmentation of the training, validation, and test
sets

each method is respectively completed, i.e., completing the
Critic in GAN and implementing the encoder in f-AnoGAN.
For the AE, the encoder is set according to the structure of the
decoder. The AE uses the Mean Squared reconstruction Error
(MSE) as its training loss and evaluates the health indicator
during an assessment based on the MS reconstruction error.

For the proposed method, the training process generally fol-
lows the WGAN-GP (Wasserstein GAN with Gradient Penalty)
scheme, setting the model to be trained for 2000 epochs (learn-
ing rate = 0.0001) to allow the model parameters to converge.
After complete training, the generator can produce specified
frequency bands based on any given set of features z. Fig-
ure 8 shows examples of training data and Figure 9 shows
the generated results after 1990 epochs based on four ran-
domly sampled z values. It is observed that the generated
frequency bands closely mimic the features of the training
data. From this, it can be inferred that the generator model
has grasped the internal structure of the training data, that

Figure 7. Dataset formation & pre-processing of signals,
where v(t) is the time-domain vibration signal, F is the filter,
the Discrete Fourier Transform (DFT) of the filtered signal
vf (t) is represented as Vf (ω).

is, the representation of the service vibration condition of the
given gear in the experimental system in the frequency do-
main. Specifically, the generated samples accurately repli-
cate the gear mesh frequency and its higher-order harmonics,
as well as the surrounding sideband performance.

According to the f-AnoGAN architecture, the construction of
the Anomaly Score (AS) for any signal is completed with the
help of the encoder. Figure 10 illustrates the result of gener-
ator sampling based on the aforementioned method and cal-
culating the Euclidean distance in two spaces, with example
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Figure 8. Sample overview in the training set

Figure 9. Generated spectrum at the end of the training period

signals from the validation set.

Based on all the validation set data, a reference benchmark
for anomaly detection, namely the Anomaly Score (AS) col-
lection of healthy data, will be established. Figure 11 shows
the AS for 81 samples (from 9 vibration signals) in the valida-
tion set 11. The study constructed a distribution bank using
some common distributions. Following the aforementioned
thresholding method, the fitting of the obtained distribution
is as shown in Figure 12. The legend lists the distribution
types in the figure, which are sorted in ascending order of
the Akaike Information Criterion (AIC). Theoretically, a dis-
tribution with a smaller AIC value is closer to the true dis-
tribution. According to this criterion, the distribution among
tested that best represents the AS of the healthy samples is
the lognorm distribution (Figure 12). Additionally its numer-
ical solution for various parameters is obtained, allowing to
derive the CDF. Based on the aforementioned method where
CDF (ASthreshold) = 0.99, the threshold is then determined
for determining the anomaly (Figure 13). The threshold is
then applied to the test set to evaluate the performance of the
proposed method in anomaly detection.

Having completed all the components for anomaly detection

Figure 10. Comparison of the generated spectrum and the
original spectrum

Figure 11. Anomaly score of the validation set (Healthy sam-
ples)

as described previously, the Anomaly Score (AS) for each
data in the test set is obtained following the aforementioned
method. The average AS from the same vibration signal is
taken as the AS for that vibration signal. Figure 14 shows
the variation of AS across the entire test set in chronological
order, along with the threshold performance. The results indi-
cate that, according to the aforementioned method, the onset
of failure occurs at the 33rd cycle (Figure 15), which aligns
with the onset time of pitting derived from tribologists and
visual information.

As a comparison, the AE model was also trained on the train-
ing set for 2000 epochs (learning rate = 0.0001), with an
early-stopping at patience of 100. Figure 16 illustrates the re-
construction effect and schematic after completing the train-
ing.

As mentioned the reconstruction error derived from the AE
model served as health indicators. In the comparative ex-
periments, the threshold was established as the mean plus
three times the standard deviation of the derived HI. AE-
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Figure 12. Distribution fit of the anomaly score in the Valida-
tion set

Figure 13. CDF according to the fitted distribution of the
Anomaly Score of the healthy spectrum

based anomaly detection method identified the 38th cycle as
the first cycle exceeding the threshold. However, this indi-
cator was less stable, with a significant number of cycles be-
tween 38 and 200 falling below the threshold (Figure 18), in-
dicating mis-detections if analogous to a classification prob-
lem.

3.4. Discussion

The results indicate that the proposed health indicator scheme
and the thresholding method based on the GAN accurately
detected the onset of the gear failure. Compared to the tradi-
tional unsupervised anomaly detection AE, the GAN-based
detection advanced the detection time by 5 cycles. Given
that the experiment conducted was an accelerated degrada-
tion test, and the gears underwent softening, this gap would
be even more significant in actual industrial components.

Furthermore, it is also observed that the AE-reconstruction
error, used as a HI, was highly unstable. One reason for this
is the instability in the application of torque during the mea-
surement campaign, which gradually diminishes during oper-
ation, necessitating the experiment to be halted and torque to
be manually reapplied once excessive torque loss occurs. In
the trend of HI obtained from AE, each sharp decrease in HI

Figure 14. Detection result of f-AnoGAN-based anomaly de-
tection method

Figure 15. Anomaly Score in the first 100 cycles

corresponds to the moments when the experiment is stopped
and torque is reapplied. The same phenomenon is also ob-
served in GAN-based HI. In GAN-based HI, even though HI
is still established based on Euclidean distance, the powerful
representation learning capability of the generator model al-
lows it to construct more diverse samples that are more adapt-
able to certain instabilities in torque interference. Conse-
quently, the differences reflected by HI are more attributable
to degradation, with less impact from torque variations. This
explains why GAN-based HI demonstrates better trend per-
formance.

4. CONCLUSION

This work proposes an anomaly detection scheme for the con-
dition monitoring of rotating machinery, focusing on gear
fault detection using vibration signals. This method employs
Generative Adversarial Networks (GANs) to learn the intrin-
sic structure and features of the training data’s spectrum, par-
ticularly aiming to generate non-existent, highly realistic coun-
terfeit samples. Based on the f-AnoGAN architecture, a health
indicator is constructed utilizing the quantified Euclidean dis-
tance in two independent spaces. The study also employs
a distribution fitting-based threshold method to assist in de-
tection. The methodology is validated in a comprehensive
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Figure 16. Comparison of the original spectrum and the re-
constructed spectrum by an Autoencoder

Figure 17. Detection result of Autoencoder-based anomaly
detection method

gear accelerated degradation measurement campaign, which
includes synchronized visual information collection, thus al-
lowing for precise determination of the initial onset of pitting
— the target of anomaly detection based on vibration signals
in this research. In comparative experiments, the GAN-based
method surpassed traditional unsupervised autoencoders and
demonstrated better adaptability to changes in operating con-
ditions, highlighting the performance of generative models
with adversarial learning in the field of anomaly detection.
Exploring how to better and more controllably utilize its adapt-
ability under changing operating conditions will be the focus
of future research.
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