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ABSTRACT 

Remaining useful life (RUL) prediction of rolling element 

bearings is a complex task in the frame of condition 

monitoring which brings cost benefits to the industry by 

reducing unexpected downtimes and failures. Data-driven 

approaches based on deep learning have demonstrated 

exceptional performance in estimating RUL effectively. 

Nevertheless, challenges such as data scarcity for model 

training and varying operating conditions add more 

complexity to prognostic tasks using these methods. This 

study proposes a methodology for simulating the vibration 

signals during the degradation process of bearings in order to 

mitigate the need for historical data for training the models. 

Simulations are realized using a phenomenological model 

whose free parameters are adapted based on real 

measurements so that the simulated run-to-failure datasets 

are under the same influence of speed as the real dataset with 

almost the same degradation rate. The simulated dataset is 

used for model training. Moreover, the proposed 

methodology is able to react to the shaft speed and be flexible 

at the predictions when the speed of the bearing varies. The 

proposed model can take extra information regarding the 

operating speed and the sequential ordering of the 

measurements to be aware of the working conditions and the 

dynamics of the damage progression. The positive effect of 

the extra information is shown in the results. Model training 

is based on an unsupervised domain adaptation approach to 

reduce domain discrepancy between the simulated and real 

feature space. The effectiveness of the proposed method is 

examined according to bearing run-to-failure tests under 

varying operating conditions. 

1. INTRODUCTION 

Improving the accessibility of industrial assets is a crucial 

factor in boosting productivity and efficiency, leading to cost 

benefits for industries. This is achieved by exploiting the full 

life of components and avoiding premature replacements. 

Rolling element bearings, being the key component of rotary 

equipment in the industry, are prone to failures due to their 

frequent operation in harsh and demanding conditions, 

including high temperatures, heavy loads, and contaminated 

surroundings, which increase the possibility of unexpected 

failures. Failures could spread to the entire machine and lead 

to unplanned downtimes (Buzzoni et al., 2020; Tajiani & 

Vatn, 2023).  

RUL estimation techniques can be employed to determine the 

remaining time until the failure occurs. Failure is defined as 

a state in which a health indicator crosses a predefined 

threshold such that the component is no longer able to operate 

in the desired way (Lei et al., 2018). Numerous methods can 

be employed to achieve this objective. However, data-driven 

approaches, particularly those based on deep learning, have 

recently demonstrated outstanding results due to their 

capability of modeling processes with high complexity like 

degradation process in bearings (Fink et al., 2020). The main 

bottleneck of using deep learning methods is the necessity of 

having a large amount of labeled pre-recorded run-to-failure 

data for training the models. This process is time-consuming, 

labor-intensive, and crucially, in industrial settings, failures 

may be infrequent, and maintenance is usually performed 

before failures (Arias Chao et al., 2022), which makes it hard 

to have a perfect dataset for training the models, since for 

model training, datasets should cover the whole life of 

bearings until the point of failure, and the degradation process 

is normally a long process that could take months or even 

years (Chen et al., 2023). Additionally, labeled data from 
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different bearings or machines operating under different 

conditions may be insufficient due to different deterioration 

trajectories and conditional probabilities. As a solution, 

leveraging simulated datasets for training deep learning 

models has surfaced as a practical approach to mitigate the 

constraints imposed by the limited availability of real labeled 

datasets. This approach enhances the overall performance of 

the models by providing a broader and more diverse set of 

training data (Hosseinli et al., 2023). Gryllias and Antoniadis 

(2012) generated artificial signals by a phenomenological 

model for different types of localized faults in bearings and 

then trained a Support Vector Machine (SVM) model using 

them. The real samples were then classified using the trained 

SVM model. Cui et al. (2020) proposed a method based on a 

5-DOF dynamic model of bearings coupled with surface 

topography excitation to create a dictionary of many different 

degradation processes. Then, based on the similarity of the 

tested bearing and the simulated ones, the RUL of the tested 

bearing can be estimated based on the life label of the most 

matched sample. Deng et al. (2023) developed a 5-DOF 

dynamic model of bearings and generated a large amount of 

samples. Then, a particle filter-based dynamic calibration 

method was used to calibrate the parameters of the model 

based on observations. The simulated dataset was further 

used to train a deep learning model and estimate the RUL of 

real samples. Ai et al. (2023) utilized a phenomenological 

model to create a dataset for three types of fault: ball, inner 

race, and outer race for fault diagnosis. A deep learning 

model based on the transfer learning approach was then 

trained to remove the gap between the distributions of the real 

and simulated signals for fault classification of the real 

dataset. 

Moreover, varying operating conditions, which can be seen 

in industrial cases such as wind turbines, servo motors, 

compressors, etc., pose another challenge for estimating the 

RUL of bearings. Developing a RUL prediction method that 

can respond to the operating conditions is of high importance 

since the developed models based on the assumption of 

steady operating conditions could not have satisfying 

performance under varying operating conditions (Chi et al., 

2022; Liao & Tian, 2013). (Wang et al., 2021) developed a 

model-based method for RUL estimation by considering the 

joint dependency of degradation rate and time-varying 

operating conditions. The parameters of a system state 

function and an observation function were then estimated to 

model the degradation process of the system and predict the 

RUL of bearings. (Li et al., 2019) developed a state-space 

model for systems working under varying operating 

conditions. The model considered two effects of the varying 

operating conditions: changes in degradation rates and jumps 

in degradation signals. By estimating the underlying system 

state and the remaining time until it reaches a failure 

predefined threshold, the RUL of tested bearings was 

estimated. Zhang et al. (2022) proposed a normalization 

method that recalibrates the upward and downward abrupt 

jumps of sensor readings at the operational conditions change 

points. Then, the normalized sensor features and operating 

condition features were fed to a gated recurrent unit (GRU) 

to estimate the RUL of the aircraft turbofan engine dataset 

provided by NASA. 

Motivated by the observation that the literature lacks a 

comprehensive exploration of RUL estimation under varying 

operating conditions using deep learning, in this paper, the 

proposed methodology consists of different steps including 

data simulation as a way of mitigating the influence of data 

scarcity and then a deep learning model based on a domain 

adaptation approach which gets the raw vibration signals as 

input as well as supplementary information on working 

conditions in which the signals are acquired in order to make 

the model aware of varying operating conditions. The rest of 

the paper can be summarized as follows: 

1. Utilize a phenomenological model that simulates the 

general vibration signals of the bearings under 

different fault modes: ball, inner race, and outer race 

defects. 

2. Adapt the phenomenological model based on the 

healthy real signals to tune the dynamic parameters 

of the model and also identify the effect of varying 

speed conditions on the amplitude of vibration 

signals. 

3. Separate the effect of speed from the peak-to-peak 

health indicator so that it only indicates the 

degradation process which is void of the influence 

of speed and realizing anomaly detection based on 

this new health indicator (normalized peak-to-peak). 

4. Realize curve-fitting on the normalized peak-to-

peak after the anomaly to find out how fast the 

damage is progressing and then generate many 

synthetic run-to-failure data under the same 

influence of speed and damage progression as the 

real data to create a big training dataset for training 

a deep learning model. 

5. Train a deep learning model according to the 

domain adversarial method to decrease the 

discrepancy between the unlabeled real data and the 

labeled simulated data. The deep learning model 

takes two additional inputs: speed information and 

sequence information in order to better understand 

the working conditions and the sequential 

relationship between each measurement. 

6. Estimate the RUL of the real measurements using 

the trained deep-learning model. 

In other words, the proposed methodology, as shown in 

Figure 1, is a digital twin (DT) that requires no historical data 

and is able to adapt itself to different rotating speeds, fault 

modes, and degradation rates of bearings.  
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Figure 1. Pipeline of the proposed methodology

Peak-to-peak values are used here as a reference health 

indicator to tune the digital twin, since the EoL criterion is 

assumed to be defined on the peak-to-peak, and the synthetic 

dataset needs to be created under the same definition as the 

real dataset’s EoL to be able to mimic historical datasets for 

training. Moreover, a few unlabeled real data that comes after 

the anomaly detection are used for unsupervised domain 

adaptation. They are unlabeled because their corresponding 

RULs are not known at this stage. 

The rest of the paper is organized as follows. First, the 

fundamental theoretical background used in the proposed 

methodology is shortly introduced in Section 2. Moreover, 

the proposed approach to adapt the DT and predict the RUL 

is introduced in Section 3. Furthermore, a run-to-failure 

dataset captured under varying speed operating conditions is 

presented in Section 4, the methodology is applied, and the 

effectiveness of the proposed approach is demonstrated. 

Finally, Section 5 provides the conclusion of the paper. 

2. THEORETICAL BACKGROUND 

2.1. Phenomenological model 

The phenomenological simulation of bearing vibration 

signals involves replicating the actual vibration signals of a 

real bearing. The simulation method achieves this by 

comparing the entire bearing and its supporting structure to a 

single-degree-of-freedom (SDOF) vibration system and 

introducing consecutive impulses to excite the structure, 

mirroring the effects of localized faults within the bearing. 

This approach allows for a representation that emulates the 

characteristics of real-world bearing vibration signals. The 

initial idea was proposed by McFadden and Smith (1984) and 

then it was improved by Antoni (2007) in order to have a 

more realistic spectral analysis. The simulated vibration 

signal can be generated by the following formula: 

𝑥𝑘(𝑡) = 𝑆(𝑘) . 𝐷(𝑘) ∑ ℎ(𝑡 − 𝑖𝑇 − 𝜏𝑖)𝑞(𝑖𝑇)𝐴𝑖 + 𝑛(𝑡)

+∞

𝑖=−∞

 (1) 

where 𝑆(𝑘) and 𝐷(𝑘) are the amplitude modifiers regarding 

the speed and damage influence on the amplitude of the 

signals, respectively, for the k-th simulated signal in a 

degradation process. ℎ(𝑡)  is the impulse response of the 

equivalent SDOF system. 𝑇  is the time between two 

consecutive impacts. 𝑖 is the index of the 𝑖-th impact due to 

the fault, 𝑛(𝑡) accounts for the possible noise presented in the 

signals, and 𝑞 is the amplitude modulating function due to the 

load distribution. 𝐴 and 𝜏 are the parameters in order to take 

into account the randomness of the impact intensities and the 

moments that the impacts occur, respectively. According to 

(Antoni, 2007): 

𝐸{𝜏𝑖𝜏𝑗} = 𝛿𝑖𝑗𝜎𝜏
2 

(2) 
𝐸{𝐴𝑖

2} = 1 + 𝛿𝑖𝑗𝜎𝐴
2 

where 𝜎𝜏  and 𝜎𝐴  are the standard deviations, and 𝛿𝑖𝑗  is the 

Kronecker symbol. The time period between two consecutive 

impacts depends on the rotational speed of the inner race of 

the bearing, and the mean value of the time interval Δ𝑇 is 

expressed by: 

𝐸{Δ𝑇} =
𝐸{∆𝜃}

2𝜋𝑓𝑟

 (3) 

where 𝑓𝑟  is the inner race rotational speed and ∆𝜃  is the 

angular distance between two consecutive impacts which its 

mean value is expressed by: 

𝐸{∆𝜃} =
2𝜋

𝑂𝑖𝑚𝑝

 (4) 

where 𝑂𝑖𝑚𝑝 is the characteristic fault order, and it is defined 

as follows for different types of faults: 

Outer race 
𝑛

2
(1 −

𝑑

𝐷
cos(𝛽)) 

(5) 

Inner race 
𝑛

2
(1 +

𝑑

𝐷
cos(𝛽)) 

Rolling element 
𝐷

2𝑑
(1 − (

𝑑

𝐷
cos(𝛽))

2

) 

Cage 
1

2
(1 −

𝑑

𝐷
cos(𝛽)) 
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where 𝑛 is the number of rolling elements in the bearing, 𝐷 

is the pitch circle diameter, 𝑑 is the bearing roller diameter 

and 𝛽 represents the contact angle. 

2.2. Domain adaptation 

Acknowledging that simulated signals are derived from a 

simplistic model, incapable of capturing all aspects of faulty 

bearings or the degradation process, a distribution mismatch 

between real and simulated signals arises. This mismatch 

poses challenges in generalization when deploying trained 

models on real datasets. To tackle this issue, a domain 

adaptation method is employed to enhance generalization by 

transferring knowledge acquired from the source domain 𝒟𝑆, 

where simulated signals originate, to the target domain 𝒟𝑇, 

representing real-world datasets (Pan & Yang, 2010). This 

facilitates improved performance and adaptability of trained 

models. In this case, the marginal probability distributions of 

source and target domains, 𝑃(𝑥𝑆) and 𝑃(𝑥𝑇), are assumed to 

be different due to the simplicity of the simulations, but their 

conditional probability distributions, 𝑃(𝑦𝑆|𝑥𝑆)  and 

𝑃(𝑦𝑇|𝑥𝑇), are assumed to be the same due to the fact that in 

the preprocessing steps, the digital twin is tuned based on the 

real data in terms of the type of fault, the influence of speed, 

and the dynamic characteristics of the bearing. 

This paper employs a Domain Adversarial Neural Network 

(DANN) to tackle the abovementioned domain shift problem. 

The network, illustrated in Figure 1, comprises three key 

components: a feature extractor 𝐺𝑓  a domain classifier 𝐺𝑑 , 

and a label predictor or regressor 𝐺𝑟 . The feature extractor 𝐺𝑓 

is typically a deep neural network responsible for learning 

high-level representations from input data. It transforms input 

samples into a latent representation encoding valuable 

features for subsequent layers. The domain classifier 𝐺𝑑  is 

another neural network component that predicts the domain 

of input samples based on extracted features, aiming to 

differentiate between the source and target domains. During 

training, the domain classifier seeks to maximize its 

accuracy, while the feature extractor aims to minimize this 

accuracy by gradient reversal. This adversarial training 

process results in the domain classifier being unable to 

distinguish features from different domains, indicating that 

the feature extractor can extract domain-invariant features. 

Additionally, the label predictor or regressor layer 𝐺𝑟  utilizes 

these domain-invariant features to estimate the output, 

contributing to the overall goal of addressing the domain shift 

problem (Ganin et al., 2016). The objective function of the 

model is: 

ℒ(𝜃𝑓 , 𝜃𝑟 , 𝜃𝑑) =
1

𝑛
∑ ℒ𝑟

𝑖 (𝜃𝑓 , 𝜃𝑟)

𝑛

𝑖=1

 

      −𝜆 (
1

𝑛
∑ ℒ𝑑

𝑖 (𝜃𝑓 , 𝜃𝑑)

𝑛

𝑖=1

+
1

𝑛′
∑ ℒ𝑑

𝑖 (𝜃𝑓 , 𝜃𝑑)

𝑁

𝑖=𝑛+1

) 

(6) 

where 𝑛 and 𝑛′ are the number of samples presented in the 

source domain and the target domain datasets respectively, 

and 𝜆 is a hyperparameter that controls the trade-off between 

the regression loss and the domain adversarial loss during 

training. ℒ𝑟 and ℒ𝑑 are defined as: 

ℒ𝑟
𝑖 (𝜃𝑓 , 𝜃𝑟) = ℒ𝑟(𝐺𝑟(𝐺𝑓(𝑥𝑖; 𝜃𝑓); 𝜃𝑟), 𝑦𝑖) 

(7) 
ℒ𝑑

𝑖 (𝜃𝑓 , 𝜃𝑑) = ℒ𝑑(𝐺𝑑(𝐺𝑓(𝑥𝑖; 𝜃𝑓); 𝜃𝑑), 𝑑𝑖) 

where 𝜃𝑓, 𝜃𝑟, and 𝜃𝑑 are the trainable parameters of the 𝐺𝑓, 

𝐺𝑟 , and 𝐺𝑑 respectively. 

 

Figure 2. DANN architecture for regression task 

3. PROPOSED APPROACH 

To create a synthetic run-to-failure dataset by the digital twin, 

at first the dynamic characteristics of the phenomenological 

model should be tuned based on the real data. Then, the 

modifier functions 𝑆(𝑘) and 𝐷(𝑘), introduced in Section 2, 

are determined. 

3.1. Dynamic characteristics 

Given the fact that rolling element bearings vibrate even in 

healthy conditions due to the waviness of the surfaces and 

other sources of imperfections (Harsha et al., 2003; Jawad & 

Jaber, 2022), the resonance frequency of the structure can still 

be seen in the frequency content of the vibration signals 

(Ghafari et al., 2010). Therefore, by considering the Fast 

Fourier Transform (FFT) of the healthy signals, the dominant 

natural frequency of the structure, 𝜔𝑛, can be found and then 

used in the phenomenological model as an equivalent SDOF 

system. Moreover, the logarithmic decrement can be used to 

see at which rate the amplitude of the impact responses, 𝑥, in 

real measurements is decreasing in order to determine 𝜁. 

ℎ(𝑡) = 𝑒−𝜁𝜔𝑛𝑡 𝑠𝑖𝑛 (√1 − 𝜁2𝜔𝑛𝑡) 

(8) 𝜁 =
𝛿

√4𝜋2 + 𝛿2
 

𝛿 = 𝑙𝑛 |
𝑥1

𝑥2

| 
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3.2. Influence of speed, 𝑺(𝒌) 

The real signals before the detection of the anomaly can be 

used to recognize the influence of speed on the amplitude of 

the vibration signals. Figure 3 (a) shows a speed profile and 

its effect on the peak-to-peak amplitude of the vibration. The 

important point here is to consider the possibility of the 

structure resonance when speed is varying. In other words, 

increasing speed does not necessarily result in an increasing 

amplitude. Figures 3 (b) and (c) show two possible behaviors 

that can be seen in speed-varying scenarios. Increasing 

amplitude with increasing speed can be a sign of crossing no 

resonance frequency in that specific speed range (Salunkhe 

& Desavale, 2021). 

 

Figure 3. (a) Varying speed effect on the peak-to-peak 

amplitude of the signals, (b) in case of no resonance 

crossing, (c) in case of crossing a resonance frequency 

Corresponding to each operating speed, a constant parameter 

𝑐 can be found to create a link between the rotating speed and 

the vibration amplitude or the peak-to-peak: 

𝑃𝑗 = 𝑐𝑗  .  𝑟𝑝𝑚𝑗   (9) 

where 𝑃 is the peak-to-peak of real signals, 𝑐 is a constant 

parameter, 𝑟𝑝𝑚 is the operating speed, and 𝑗 is the index of 

measurements. In this way, any non-linearity between speed 

and vibration due to the frequency response of the structure 

can be captured (Figure 4). 

 

Figure 4. Capturing the complex relationship between speed 

and vibration amplitude in real measurements 

It should be noted that these analyses must be done based on 

a few measurements at the beginning of the operation of the 

machine to be far from the influence of bearing faults. After 

the detection of the anomaly, when the synthetic run-to-

failure dataset should be created, a speed profile should also 

be provided so that the digital twin can generate signals 

accordingly. Since a random speed profile might be desired 

at this stage, an interpolation would be needed to find the 

correct value of 𝑐 while dealing with unseen speed values. 

Then, the modifier function 𝑆(𝑘) in equation 1 will be: 

𝑆(𝑘) = 𝑐𝑘  .  𝑟𝑝𝑚𝑘  (10) 

3.3. Normalized health indicator 

By knowing the relation between speed and vibration, the 

effect of speed can be removed from the peak-to-peak 

amplitude of the vibration signals by equation 11, meaning 

that any changes in the health indicator that are not associated 

with speed can manifest itself more clearly. This method will 

be used to find anomalies. The Normalized peak-to-peak 

amplitude, 𝑃𝑁, is constructed as follows: 

𝑃𝑁,𝑗 =
𝑃𝑗

𝑐𝑗  .  𝑟𝑝𝑚𝑗

 
 

(11) 

Obviously, for the healthy samples before the detection of the 

anomaly, 𝑃𝑁~1. Figure 5 (b) shows the normalized peak-to-

peak amplitude whose mean and standard deviation in the 

time interval [𝑡0, 𝑡1] , which is at the beginning of the 

measurements, can be used as the threshold for anomaly 

detection. 𝐾𝑎𝑛𝑜𝑚𝑎𝑙𝑦  is used to refer to the k-th signal in the 

degradation process where the anomaly occurs. As shown in 

Figure 5 (b), the fluctuations caused by the varying speed 

profile no longer exist in the normalized peak-to-peak 

amplitude.  

 

Figure 5. (a) Peak-to-peak amplitude of real data, (b) 

anomaly detection by the normalized peak-to-peak 

3.4. Influence of damage, 𝑫(𝒌) 

After the anomaly, a limited number of signals will be used 

for curve fitting in order to estimate the degradation rate of 

the real bearing so that the digital twin will be able to generate 

a synthetic run-to-failure dataset with almost the same 

degradation rate as the real bearing. As shown in Figure 6 (a), 

curve fitting is done based on the normalized peak-to-peak 
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amplitude because the effect of speed has been removed, and 

it is only the degradation process that plays a role. The 

modifier function 𝐷(𝑘) in equation 1 can be modeled by an 

exponential function to approximate the degradation 

trajectory of the normalized peak-to-peak amplitude: 

𝐷(𝑘) = 𝑒𝑎(𝑘−𝐾𝑎𝑛𝑜𝑚𝑎𝑙𝑦) (12) 

where 𝑎 is a constant parameter that defines the degradation 

rate. By introducing slight variations in the parameter 𝑎 in 

function 𝐷(𝑘), various degradation trajectories can be built 

in order to have a big synthetic run-to-failure dataset. The 

variations are such that the time difference between the 

synthetic EoLs is limited to the Simulation range as shown in 

Figure 6 (b). This figure shows the typical degradation 

trajectories of the peak-to-peak amplitude of the synthetic 

dataset generated by equation 1. Domain adaptation is also 

done using a few real unlabeled available measurements after 

the detection of the anomaly. 

 

Figure 6. (a) Curve fitting according to the normalized peak-

to-peak amplitude, (b) peak-to-peak amplitude of the 

synthetic dataset 

3.5. Encoding 

In order to encode the speed and sequence label of each 

measurement, which will be fed into the deep learning model, 

this paper adopted one of the well-known methods of 

information encoding from the natural language processing 

(NLP) research domain. Positional encodings are used to 

make the transformers aware of the relative or absolute order 

of the words inside a sentence (Vaswani et al., 2017). To 

encode the positional information, sine and cosine functions 

with different frequencies can be used: 

𝑃𝐸(𝑝𝑜𝑠,2𝑖) = 𝑠𝑖𝑛 (
𝑝𝑜𝑠

100002𝑖 𝑑𝑚𝑜𝑑𝑒𝑙⁄
) 

(13) 

𝑃𝐸(𝑝𝑜𝑠,2𝑖+1) = 𝑐𝑜𝑠 (
𝑝𝑜𝑠

100002𝑖 𝑑𝑚𝑜𝑑𝑒𝑙⁄
) 

where 𝑝𝑜𝑠  is the position of the word, 𝑑𝑚𝑜𝑑𝑒𝑙  is the 

dimension of the word embeddings, and 𝑖  represents the 

dimension of the positional encoding. Unique encoding for 

each position is achieved by using sine and cosine functions 

with varying frequencies, making the model able to 

distinguish the sequential order of measurements. It is 

important to highlight that each positional encoding with 

offset 𝑘, 𝑃𝐸𝑝𝑜𝑠+𝑘 can be described as a linear function of the 

positional encodings 𝑃𝐸𝑝𝑜𝑠 , this characteristic enables the 

model to readily learn the relative dependencies between 

different positions, contributing to the model's ability to 

capture sequential information and relationships effectively 

(Vaswani et al., 2017). 

The concept of positional encoding can be transferred to the 

prognosis research domain. The sequential order of vibration 

signals obtained from a bearing holds significant importance 

in prognosis, serving as an indicator of how the damage 

progresses over time. Moreover, equation 13 can be utilized 

for encoding speed information. While this encoding method 

might lack a direct physical interpretation, it serves the 

purpose of making the neural network aware of distinctions 

among vibration signals working in different conditions. 

Each operating condition should have a unique encoding by 

which the raw vibration signals are accompanied while 

feeding to the model. 𝑑𝑚𝑜𝑑𝑒𝑙  is a hyperparameter that will be 

determined in section 4.1, and the value of 𝑝𝑜𝑠 is an integer 

number that starts from 1, representing the sequential order 

of each measurement. The same way is followed to encode 

the speed information. For example, 𝑝𝑜𝑠 = 1 is used for the 

lowest rotational speed. For each 𝑝𝑜𝑠, the value of 𝑖 starts 

from 0 and ends in 
𝑑𝑚𝑜𝑑𝑒𝑙

2
, forming a vector of length 𝑑𝑚𝑜𝑑𝑒𝑙 . 

For each 𝑖 there are two values, one from 𝑠𝑖𝑛𝑒 function and 

the other from 𝑐𝑜𝑠𝑖𝑛𝑒 function. For example, the encoding 

for 𝑝𝑜𝑠 = 1 is [𝑃𝐸(1,0), 𝑃𝐸(1,1), … , 𝑃𝐸(1,𝑑𝑚𝑜𝑑𝑒𝑙−1)] which is a 

one-dimensional vector. 

3.6. RUL curve for varying speed scenario 

One of the most important outcomes of the proposed 

methodology is to see how the speed is influencing the RUL. 

Obviously, for higher speeds, lower RUL is expected, and 

vice versa. To the best knowledge of the authors, no paper 

has taken into account the effect of speed on the RUL curve.  

 

Figure 7. (a), (b) Remaining revolutions and remaining time 

after the detection of anomaly, (c) the corresponding speed 

profile 
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The proposed idea is to estimate the remaining revolutions 

until the end-of-life, and in the post-processing step, the 

number of revolutions can be transferred to the remaining 

time by simply dividing it by the operating speed. Figure 7 

shows the remaining revolutions and the RUL for a 

measurement campaign which has been done under varying 

speed operating conditions. Equation 14 is used to calculate 

the total number of revolutions after the detection of anomaly 

which are then used as the labels in the model training. 

𝑅𝑒𝑣𝑇𝑜𝑡𝑎𝑙 = ∑ 𝑟𝑝𝑚𝑖 . Δ𝑡

𝑁

𝑖=𝐾𝑎𝑛𝑜𝑚𝑎𝑙𝑦

 

 

(14) 𝑅𝑒𝑣𝑛 = 𝑅𝑒𝑣𝑇𝑜𝑡𝑎𝑙 − ∑ 𝑟𝑝𝑚𝑖+𝐾𝑎𝑛𝑜𝑚𝑎𝑙𝑦
. Δ𝑡

𝑛

𝑖=1

 
 

𝑅𝑈𝐿𝑛 =
𝑅𝑒𝑣𝑛

𝑟𝑝𝑚𝑛+𝐾𝑎𝑛𝑜𝑚𝑎𝑙𝑦

 
 

where 𝑅𝑒𝑣𝑇𝑜𝑡𝑎𝑙 is the total number of revolutions after the 

detection of anomaly, 𝑁 is the number of samples in the run-

to-failure experiment, Δ𝑡 is the length of each measurement. 

𝑅𝑒𝑣𝑛  and 𝑅𝑈𝐿𝑛  are the remaining revolutions and the 

remaining time until the end-of-life for the n-th sample, 

respectively. 𝑅𝑒𝑣𝑛 is used as the labels for model training. 

The important point is that the slope of the RUL curve is -1 

as long as the speed is constant, as shown in Figure 7 (b) by 

the orange line, preserving the most useful property of the 

RUL curve. 

3.7. Deep-learning model 

As mentioned in Section 2.2, a deep learning model based on 

the DANN model is used to estimate the RUL of the real 

bearings. Two supplementary information, speed and 

sequential ordering of the measurements, have been encoded 

and will be fed to the model as extra inputs in addition to the 

raw vibration signal. As shown in Figure 8, Convolutional 

Neural Network (CNN) is used to extract the local 

information and deep features automatically from the raw 

vibration signals. The extracted features are concatenated by 

two encoded inputs to form a bigger 1-D vector which is 

followed by two parallel Fully Connected (FC) layers, a 

domain discriminator, and a source regressor. The loss 

function of the regressor part is the mean squared error and 

the loss function of the discriminator part is the binary cross 

entropy which is expressed as follows: 

ℒ𝑑 = −𝑦. 𝑙𝑜𝑔(�̅�) − (1 − 𝑦). 𝑙𝑜𝑔(1 − �̅�) (15) 

where 𝑦 ∈ {0, 1} is the domain label and �̅� is the predicted 

value between 0 and 1. Table 1 and Table 2 show the network 

parameters in detail. As depicted in Figure 8, the gradient 

reversal layer (GRL) with the trade-off parameter 𝜆 = 0.1 is 

also added as the first layer of the discriminator part to 

reverse the gradient in the backpropagation process. 

Table 1. Network parameters of the feature extractor 

Layer Type 
Filter/ 

Kernel/Stride 

Activation 

function 

1 1D CNN 4/128/16 ReLU 

2 Max Pooling -/8/8 - 

3 1D CNN 16/16/8 ReLU 

4 Max Pooling -/8/8 - 

Table 2. FC parameters in the regressor and the 

discriminator 

Regressor part Discriminator part 

Layer 
Units/Activati

on function 
Layer 

Units/Activati

on function 

1 64/ ReLU 1 64/ ReLU 

2 32/ ReLU 2 32/ ReLU 

3 1/ ReLU 3 1/sigmoid 

 

Figure 8. The architecture of the proposed model 

It is important to emphasize that the length of the input signal 

must be sufficiently long to encompass an adequate number 

of impacts resulting from faults in the bearing. Notably, the 

number of impacts due to a ball defect in one revolution of 

the shaft is lower compared to other types of faults. Using 

equation 16, the number of data points needed to cover at 

least 1 impact due to the ball defect can be calculated. This 

number will cover more than one impact if a different type of 

defect is present at any speed (Hosseinli et al., 2023). 

𝐿𝑐 =
𝐹𝑆

𝐵𝑆𝐹
 (16) 

where 𝐿𝑐 is the critical length of the signal, BSF is the ball 

spin frequency at the lowest shaft speed, and 𝐹𝑆  is the 

sampling frequency. 
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4. APPLICATION OF THE METHODOLOGY AND RESULTS 

4.1. Case study 

Smart Maintenance (SM) dataset provided by Flanders Make 

(Ooijevaar et al., 2019) consists of accelerated life tests where 

indentations were deliberately created on the inner races (IR) 

of bearings using a Rockwell-C indenter with a force of 100 

kg before the tests started to run. The radial load is 9 kN and 

the rotational speed follows a periodic stepwise profile 

starting from 1000 rpm to 2000 rpm, each step is 100 rpm and 

is maintained for 60 seconds. The type of test bearings is 

6205-C-TVH from FAG. The sampling rate frequency is 50 

kHz, and a peak-to-peak amplitude of 15g is considered the 

end-of-life criterion in this study. Figure 9 shows the peak-

to-peak amplitude and the speed profile of one of the 

measurement campaigns. Table 3 shows the specifications of 

all the bearings used in this study. 

Table 3. Bearing information in the SM dataset 

Bearing Test duration Anomaly detected at Fault 

A148 142.5 min. 112.6 min. IR 

A150 197.5 min. 169.1 min. IR 

A153 229.3 min. 207.8 min. IR 

A154 126.0 min. 98.8 min. IR 

A155 369.3 min. 348.6 min. IR 

A156 251.3 min. 224.0 min. IR 

Referring to equation 16, a signal of 25000 data points is set 

as the input to make sure that at least 20 impacts will be 

covered in the critical scenario for the Smart Maintenance 

dataset. The length of the encodings, 𝑑𝑚𝑜𝑑𝑒𝑙  in equation 13, 

should be kept lower than the length of the deep features after 

the Flatten layer. This ensures that subsequent layers can 

effectively learn the deep features by maintaining a lower 

dimensionality for these encodings compared to the deep 

features, the model can efficiently process and integrate 

additional information without overwhelming the learning 

process or introducing unnecessary complexity. For the 

architecture described in Table 1, the length of the deep 

features for the input length of 25000 is 112. 

Table 4. Length of the inputs of the proposed architecture 

Input No. Length 

Input 1 (raw signal) 25000 

Input 2 (time encoding) 24 

Input 3 (speed encoding) 24 

 

 

 
Figure 9. Bearing A148, peak-to-peak amplitude and speed 

profile 

4.2. Results and discussions 

Before the anomaly occurs, the relation between speed and 

vibration amplitude is analyzed. After the anomaly, curve 

fitting is done based on the available data, as shown in Figure 

12. 10 minutes of measurements are used at this stage. This 

few unlabeled available real data is also used for domain 

adaptation while model training. It should be highlighted that 

the unlabeled past samples will be labeled in the inference 

stage. Despite the passage of time, labeling the past samples 

is still valuable, since it indicates what were the predictions 

from a few moments ago which can be used for decision-

making. Figure 10 shows the result of anomaly detection and 

the corresponding speed profile for bearing A148.  

 

Figure 10. Bearing A156, (a) Peak-to-peak amplitude, (b) 

Normalized peak-to-peak amplitude, (c) Corresponding 

speed profile 
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Figure 11. Bearing A148; (a) Comparison between the real 

and generated signals, (b) envelope spectrum of the real 

signal, (c) generated signal 

Figure 11 shows one of the examples of the generated signals 

for bearing A148 after the anomaly. The results of the 

proposed method for anomaly detection are mentioned in 

Table 3.  

After adapting the digital twin in terms of the speed influence 

and degradation rate, 6 trajectories are generated as shown in 

Figure 12. Their corresponding raw vibration signals will be 

the input of the deep learning model for training. The 

Simulation range is chosen to be 40 minutes. The synthetic 

run-to-failure dataset is used to train 5 models. A simple CNN 

model that neither includes the discriminator part of the 

architecture nor encodings, a DANN model without 

encodings, proposed model 1 with CNN and only speed 

encodings, proposed model 2 with CNN and only sequence 

encodings, and proposed model 3 with DANN and both speed 

and sequence encodings. Table 5 shows the superior 

performance of the proposed model 3 which in all cases can 

improve the root mean squared error, RMSE, of the RUL 

predictions compared to the DANN and CNN model. As 

discussed before, the important point of feeding the operating 

condition and the sequential information to the models is to 

make the model aware of the working environment and any 

other information that influences the physical behavior of the 

assets. This fact is perfectly shown in Figure 13 where by 

using the t-distributed stochastic neighbor embedding (t-

SNE) technique the feature distribution of the second to the 

last fully connected layer in the regressor part of the proposed 

model is visualized. This layer outputs a 32-dimensional 

feature space that t-SNE can reduce the dimension to a lower 

one such as a 2-dimensional  feature space which is easier to 

visualize. Figure 13 shows how the extra information fed to 

the model helps to distinguish between different speeds, 

resulting in better predictions. More importantly, 

supplementary information fed to the model makes the model 

more robust against the major changes in the speed profile. 

For example, bearing A156 underwent two major changes in 

operating speed after the detection of the anomaly. As 

depicted in Figure 14, abrupt speed changes from 2000 rpm 

to 1000 rpm in a short time interval led the CNN and DANN 

models to have a higher error in the predictions. Proving that 

these models have less control over the predictions when 

speed plays an impactful role. The proposed model makes 

satisfying predictions at the moment of abrupt speed changes 

and the predicted RUL is not too far from the ground truth, 

showing that the proposed model understands the 

relationship between rotating speed, vibration, and 

degradation severity thanks to the encodings. Most 

importantly, the estimated RUL is reactive to the operating 

speed. Higher speeds lead to lower RUL and vice versa. This 

property of the proposed method makes it applicable to real 

industrial cases where a varying speed profile is used. 

 
Figure 12. Bearing A148; (a) several trajectories by curve 

fitting on the real normalized peak-to-peak, (b) peak-to-peak 

of the generated signals by digital twin 

Table 5. RMSE of the predicted RUL of the SM bearings in 

minutes 

Bearing CNN 
DA

NN 

Proposed 

model 1 

Proposed 

model 2 

Proposed 

model 3 

A148 6.6 7.8 7.3 5.7 5.8 

A150 7.6 7.9 6.5 5.7 5.7 

A153 4.2 3.8 2.8 2.5 2.4 

A154 6.2 6.0 5.2 2.7 2.7 

A155 5.5 5.3 4.7 3.7 2.9 

A156 7.4 7.0 4.5 3.6 2.7 

 

 

Figure 13. t-SNE visualization of the second to the last layer 

of the regressor part, the size of circles is proportional to the 

RUL, bearing A156, (a) CNN, (b) Proposed model 3 
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Figure 14. Predicted RUL of the bearing A156, (a) CNN, (b) DANN, (c) Proposed model 3 

5. CONCLUSION 

The objective of this study is to create a digital twin based on 

the simple physical knowledge of the fault progression 

phenomena. Utilizing a phenomenological model to generate 

synthetic signals helps to have a big synthetic run-to-failure 

dataset under varying speed operating conditions for training 

the machine learning models. On the other hand, leveraging 

the phenomenological model and simulated signals enhances 

the cost-effectiveness of the proposed approach by 

minimizing the reliance on historical run-to-failure datasets. 

The proposed methodology shows how the synthetic dataset 

should be adapted while facing varying speed scenarios. 

Additionally, the proposed model facilitates the integration 

of supplementary information regarding the working 

conditions and sequential ordering of measurements in a 

deep-learning model for prognosis and demonstrates that 

using extra information in the architecture of the DANN 

model enables the model to gain knowledge about both the 

operating conditions and the dynamics of damage 

progression. Moreover, a few unlabeled measurements from 

the real dataset after anomaly are used for domain adaptation 

in an adversarial way to reduce the gap between the feature 

distribution of the real and simulated dataset. Encoding the 

extra information, despite the lack of physical meaning, can 

aid the network in distinguishing signals from different 

operating conditions and identifying their relative 

relationships. Experimental results on the SM dataset 

demonstrate that the proposed model achieves improved 

RUL estimation accuracy, particularly in scenarios involving 

abrupt speed changes, and delivers more reliable predictions. 

The estimated RUL can also react to the operating speed 

which is a must in prognosis and decision making. Thanks to 

the t-SNE technique, the model's ability to discriminate 

between different operating conditions has been validated. 

The flexibility of the proposed method in recognizing the 

speed influences on the amplitude of the signals makes it 

applicable to the various speed profiles including random 

profiles, and also different speed ranges, whether or not they 

cross the resonance frequency of the structure. Experimental 

results have shown the capability of the proposed method 

compared to the models that do not utilize encodings. 
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