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ABSTRACT 

This study delves into the creation of anomaly detection 

technology applicable to a range of equipment groups within 

smart factories. This advanced technology uses high-

performance MEMS vibration sensors, edge CMS devices, 

and PHM platforms to tackle issues such as data imbalance, 

learning model limitations, complex equipment operating 

patterns, and real-time processing. It also addresses central 

server concentration, data cycling problem, various 

equipment classification, and algorithm operation problems 

that can arise when implementing systems in the field. Using 

AI-based vibration detection algorithms, data can be 

collected at high sampling rates and analyzed in real-time 

through edge computing, minimizing latency and mitigating 

server capacity issues compared to cloud-based analytics. 

The system continually monitors and learns standard 

performance data from equipment to provide practical 

solutions that minimize equipment failures and downtimes. 

The results of this study are impressive, as it has successfully 

developed anomaly detection framework and PHM systems 

that are expected to enhance the efficiency and sustainability 

of smart factories. Furthermore, the study aims to showcase 

and improve the effectiveness of predictive maintenance in 

both domestic and international automotive factory 

production lines. This revolutionary technology will be a key 

component in smart and software-defined factories and help 

companies achieve intelligent automation. 

 

1. INTRODUCTION 
The rise of smart factories has recently led to an increase 

in production line automation equipment. As a result, 

maintenance activities have become crucial, and the need for 

predictive maintenance technology that can foresee 

equipment failures has emerged. Many companies are 

exploring ways to perform predictive maintenance, from 

installing additional sensors to analyzing controller data. 

Currently, predictive maintenance technology is limited to 

equipment that moves at a constant speed, like large turbines 

and fan motors. 

We have developed a PHM (Prognostics and Health 

Management) system and an AI-based vibration detection 

algorithm capable of predicting anomalies in constant and 

variable-speed equipment to meet this need. Our technology 

stands out as it can collect vibration data at a high sampling 

rate, perform AI learning, and make decisions at the edge. 

The PHM system consists of two primary components: the 

CMS (Condition Monitoring System) module and the PHM 

platform. The CMS module is a device equipped with edge 

computing functions, data collection capabilities, and 

decision-making algorithms. The PHM platform, on the other 

hand, monitors mining data from the CMS module, manages 

its operations, and deploys registered algorithms as a service 

for each CMS. Additionally, the platform is responsible for 

deploying the optimal algorithm as a module. The algorithm 

used in the PHM platform is developed through deep learning 

AI modeling and is registered and deployed as a CMS module 

[1]. 

Four-stage research was undertaken to create an AI-powered 

anomaly detection algorithm that relies on vibration data. 

Initially, a PoC (Proof of Concept) scenario was devised that 

focused on identifying the target equipment (robot reducer, 

automation equipment drive motor, etc.), the operating type 

(constant/variable speed, part/finished product), and the 

target defect type (robot reducer defect, motor bearing 

damage, etc.). Next, data was collected based on specific 

criteria for data type (vibration, current, speed, etc.) and 

collection method (CMS module, PLC, Cloud, etc.). In the 

third stage, signal feature extraction methods were defined 

through feature-based analysis, which uses domain 

knowledge to determine data analysis. An anomaly detection 

method was also developed to check abnormal scores by 

learning the normal group to suit the data imbalance situation 

where it is challenging to secure abnormal data compared to 

normal. The AI model used an Auto-Encoder structure and an 

unsupervised learning method, and an optimal model was 

developed through hyper-parameter adjustment to define the 

anomaly score [2]. The algorithm was verified through PoC 

activities by matching the score of the normal/abnormal state 
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of equipment with the actual motor defect phenomenon. 

The PHM system and AI anomaly detection algorithm 

operate within the production line to learn and monitor the 

equipment's standard performance data. An alarm prompts 

maintenance activities when a score falls outside the normal 

range [3]. This approach minimizes equipment failure and 

ultimately aims to reduce non-operation rates. By leveraging 

data analysis to inform condition-based maintenance 

activities, our system establishes highly efficient 

maintenance and production plans that surpass traditional 

time and usage-based approaches. As a result, we can lower 

costs associated with non-operation rates within the 

production line [4]. 

 

2. BACKGROUND 
Current predictive maintenance systems have typically 

utilized centralized models to analyze and predict facility-

level data gathered from a central server. This approach has 

allowed rule-based algorithms to successfully extract key 

characteristics and implement predictive maintenance, even 

in low data sample rate environments where the facility 

operates at a constant speed. 

However, operation patterns have become more complex 

with the rise of smart factories and diverse automation 

equipment. As the number of transmission equipment 

containing acceleration and deceleration patterns increases 

and the data types become more varied, data quality and 

accuracy have become increasingly important. A high data 

sample rate is required to analyze these transmission facilities 

effectively, and the utilization of AI algorithms has become 

crucial. 

As a solution, we have developed a cutting-edge PHM 

system that seamlessly integrates an edge device and platform. 

With the power of edge computing technology, this system 

can efficiently process data near the facility, thereby reducing 

the volume of data transmitted to the central server. This not 

only lessens network load but also alleviates server burden. 

Furthermore, the system's real-time processing capabilities 

have been enhanced, resulting in a faster response time for 

our predictive maintenance system. 

A framework for detecting anomalies that utilize 

advanced AI algorithms has been crafted to manage high data 

sample rates and identify significant features for precise 

anomaly detection. This framework has been customized for 

different kinds of facilities and effectively fulfills the 

requirements of smart factories. 

Adopting smart manufacturing has necessitated a 

departure from conventional, centralized PHM systems 

towards decentralized, intelligent, and adaptive solutions. 

Incorporating edge computing and robust AI analytics is a 

forward-looking measure that promotes operational 

efficiency and dependability in contemporary automated 

facilities. Such innovations react to the evolving industrial 

landscape and a deliberate strategy to harness sophisticated 

technologies for more accurate fault prediction and 

prevention. 

 

3. CHALLENGES 
3.1. Challenges with PHM system developments 

3.1.1. Data imbalance 

Smart factories primarily collect steady-state data, which 

poses a challenge in detecting anomalies. The lack of 

abnormal data makes developing effective anomaly detection 

models difficult, as supervised learning models require 

sufficient labeled abnormal data. However, intentionally 

creating abnormal states in real environments is not feasible 

[5]. As a solution, an experimental test bench can be created 

to simulate normal and abnormal conditions to ensure a 

continuous supply of abnormal data. This data can be used to 

perform PoC verification. By conducting PoC, we can collect 

normal/abnormal data based on test conditions and create 

labeled data for each facility. This enables the use of highly 

accurate supervised learning models. 

Unsupervised or semi-supervised learning methods are 

commonly used to solve the data imbalance in in-line. 

Unsupervised learning uncovers hidden patterns without 

labels, while semi-supervised learning enhances model 

performance by utilizing limited labeled data. This approach 

leverages smart factory inline data, primarily normal data, to 

establish normal distribution benchmarks for monitoring 

status. We can monitor anomaly score set up the lines divided 

warning and fault. By configuring and implementing the 

system on the production line, we can effectively address 

issues related to data imbalances. 

 

3.1.2. Challenges with learning models 

While unsupervised or semi-supervised learning methods 

can effectively identify anomalies, they do have a drawback 

because it can be challenging to pinpoint the exact cause of 

the anomaly. For instance, if a model detects an abnormality, 

it does not necessarily reveal whether the sensor responsible 

for the anomaly is faulty. To address this issue, it is necessary 

to conduct a thorough re-analysis of the facility's data after an 

anomaly is detected. Data from sensors must be separated and 

examined individually for each moving part or component 

location in the equipment, and specific patterns or 

characteristics contributing to the anomalies must be 

identified. To accurately determine the characteristic 

frequency based on the rotational speed of each component 

and identify any unusual fluctuations, we utilize domain 

knowledge to collect statistical data on gear frequency bands 

prior to the learning process. This stored information can be 

easily accessed through our platform for thorough analysis. 

This approach can be incredibly helpful in taking practical 

measures to resolve the issue. 

 

3.1.3. Equipment challenges with complex patterns of 

robots 

Sophisticated machinery, such as robots, can be 

challenging to monitor for irregularities due to their frequent 

acceleration, deceleration, and complex patterns. 

Additionally, the lengthy cycle times and diverse movements 

of robots make it difficult to identify patterns using traditional 

methods. However, advanced algorithms, including cycling 

techniques and signal processing methods such as time-

frequency transformation (STFT) [6], can be applied to more 

accurately detect abnormal changes. These techniques make 

it possible to detect abnormalities with a higher degree of 

accuracy, even in facilities with complex patterns. 
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3.2. Challenges when applying PHM in the field 
3.2.1. Challenges with the central server concentration 

method 

In a cutting-edge factory setting, copious amounts of data 

are produced from diverse facilities. Specifically, intricate 

automation facilities generate significant quantities of data, 

including high sample rate vibration data. However, the 

conventional approach of transmitting this data to a central 

server for processing results in heightened network load and 

latency [7]. A practical solution to this challenge is to create 

an 'edge + platform system' leveraging edge computing 

technology to analyze data in real-time near the facility, 

extract critical information, and transmit it to the central 

server. This approach can expedite data processing while 

minimizing communication costs and central server storage 

management cost. 

 

3.2.2. Challenges with cycling 

In order to analyze data, it is necessary to cycle the data 

for a certain period, and PLC data is often used for this 

purpose. PLC typically utilizes line start/end process signals 

to timestamp data accurately. While low sample rate data is 

easily timestamped, high sample rate data like vibration 

presents a challenge. While the existing method to set 

timestamps was straightforward given the low data sample 

rate, more intricate equipment necessitates using high-sample 

rate vibration data to prevent information loss through down-

sampling. However, this presents a challenge when 

attempting to set timestamps with PLC due to its limitation of 

about ten samples per second to avoid taxing the controller. 

As vibration sample rates can reach up to 16 k 

Samples/second, the resulting difference of approximately 

1600 times is sufficient for information loss. A cycling or 

robust delay learning method is needed to address this issue. 

 

3.2.3. Challenges with algorithm operation 

Given the dynamic nature of smart factory environments, 

ensuring that AI algorithms remain up-to-date is crucial. To 

achieve this, an MLOps must be implemented, enabling 

periodic retraining and redeployment of algorithms [8]. 

Moreover, a collaborative approach between operating 

departments and maintenance organizations must be 

established to adapt swiftly and effectively, with a mechanism 

in place for rapid feedback and adaptation. 

The upkeep and enhancement of AI algorithms demand 

consistent attention and a well-structured approach. To 

achieve this, the operations, conservation, and AI 

development departments must collaborate closely. Through 

monitoring data, identifying areas that require retraining, and 

leveraging real-time operational feedback, they can optimize 

the predictive conservation system's performance, leading to 

heightened efficiency. 

 

3.2.4. Challenges with directing maintenance workers 

In the early stage of system implementation, maintenance 

workers may face challenges in responding promptly to fault 

alarms. To enhance their response effectiveness, it is 

imperative to set up a system that showcases the blueprint of 

each facility on the platform and highlights the precise 

location of the alarm. The platform clearly presents the 

factory layout, indicating the location of all facilities. Every 

moving part of the facility has sensors and edge devices 

placed in precise locations, making it easy for maintenance 

workers to identify maintenance work locations through 

alarms displayed on the screen. Achieving this level of 

efficiency should be effortless. This approach will 

significantly boost the speed and precision of maintenance 

work. 

 

4. METHODS 
4.1. PHM System 
4.1.1. Vibration sensor 

Smart factory transmission equipment requires more 

precise and accurate data analysis. For this purpose, we used 

a vibration sensor with a sensitivity of 160 mV/g and a 

sampling rate of more than 8 k Samples/second to obtain 

high-quality data. These high-performance wired vibration 

sensors have the disadvantage of incurring additional 

installation costs. Still, applying a cost-effective, inexpensive 

vibration sensor of the MEMS type has compensated for this 

disadvantage. This makes it possible to collect high-quality 

vibration data economically. 

 

Table 1. Vibration sensor 

Vibration 

Sensor 

Type MEMS 

Axis Z (mono) 

Sensitivity 160mV/g 

 

 
Figure 1. Vibration sensor 

 

4.1.2. Edge CMS (Continuous Monitoring System) 

As the amount of data increases exponentially, 

concentrating data on a central server for analysis becomes 

difficult due to storage capacity management and data latency 

issues. In particular, high sampling rate data processing is 

essential in facilities with complex patterns, which makes 

centralized analysis more difficult. To respond to this, we 

developed Edge CMS with edge computing capabilities, 

processing high-sample rate vibration data in real-time at the 

edge, extracting features, and calculating AI scores. The 

system supports 24-bit resolution and a sampling rate of 

16kS/s, allowing processing without data loss. AI algorithms 

are mounted on these Edge CMSs and can make decisions 

immediately near the facility. 

 

Table 2. Edge CMS module 

CMS 

Module 

Max. Sampling Rate 16 k sample/sec 

Channel 8 channel 

Bit Resolution 24 bit 
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Figure 2. Edge CMS module 

 

4.1.3. PHM Platform 

 The PHM platform is located on the central server and 

manages each Edge CMS device applied to each facility. The 

AI algorithm is registered in the platform as learned and then 

distributed to the CMS, which requires updates when 

necessary to optimize and manage abnormality detection. For 

example, if the line situation changes and the operating 

pattern teaching is modified, two weeks' worth of raw data is 

relearned, and the learned model is redistributed to the CMS 

located in the relevant process facility for operational 

management. In other words, the MLOps cycle that allows 

re-learning/re-distribution was implemented. Key features 

and AI scores calculated from the CMS located at each 

facility are transmitted to the platform and displayed to check 

trends by date. If the appropriate standard value is exceeded, 

a warning and fault alarm is given to notify the operator, and 

it displays which equipment and location on the layout shows 

signs of abnormality, helping to instruct maintenance workers 

on maintenance work. The platform layout was modeled after 

each factory line, and the web screen was designed so that if 

an error occurs, the area is marked in red to be visually 

checked immediately. 

 

4.2. Anomaly detection framework 
4.2.1. Cycling Techniques 

‘Cycling’ is ‘Extracting one cycle in operating data patterns 

of equipment’. Our data must be ‘cut off’ in the equipment 

operation cycle. Usually, cutting is done with PLC signals, 

but down-sampling is necessary to match the start / end signal 

timestamps to the data. However, the simple down-sampling 

method may be ineffective when collecting vibration 

ineffective when collecting vibration data at 8kS/s 

 

 
 

Figure 3. PHM platform monitoring screen composition 

 

 

 
 

Figure 4. A configuration block diagram of the PHM 

platform and Edge CMS module connection with AI 

algorithm in the OT/IT range 

 

to analyze transmission equipment that repeats 

acceleration/deceleration. To overcome this, we utilized an 

auto-cycling technique to divide the acceleration, constant 

speed, and deceleration sections. We obtained the specific 

frequency by determining the rotational frequency based on 

the equipment motor's RPM. We then counted the peaks of 

the acceleration/deceleration in both time and frequency and 

set a vibration magnitude threshold to divide the 

acceleration/constant speed/deceleration sections. This 

technique can be applied to various equipment motors, 

including lifts, conveyors, and stackers/destackers for 

transporting logistics boxes or vehicles. Regardless of the 

distance traveled, the acceleration/constant 

speed/deceleration types can be learned and utilized 

separately. 

Advanced gear-shifting equipment, such as robots, faces 

a challenge when splitting acceleration and deceleration 

using auto-cycling techniques. As a result, the entire one 

cycle must be used for learning. The process signals receive 

start and end bits, which are then used to set the cycling point. 

To ensure robust learning despite delays caused by different 

sample rates, features are imaged at a later point. The 

frequency distortion caused by converting the entire cycle is 

resolved through STFT conversion, allowing for the 

utilization of all time-frequency information. 

 

4.2.2. Preprocessing and Conversion 

Data value can vary depending on the unique conditions 

of each facility. To refine normal data, checking its 

distribution, applying DC offset, and filtering where 

necessary is essential. Since most equipment comprises 

motors and gears, confirming rotation frequency in the 

frequency spectrum based on speed is possible. Features are 

extracted to ensure accurate expression of rotational 

frequency and harmonic components based on gear mesh 

theory [9], and window size is set to perform FFT spectrum 

conversion up to the 4kHz band [10], [11]. After conversion, 

RMS statistics are calculated for each harmonic frequency 

band and basic statistics like Min, Max, Average, Kurtosis, 

and Skewness [12]. This data is stored on a server to enable 

detailed analysis and monitoring. The magnitude of the FFT 

spectrum converted to a 1D shape is fed into the AI algorithm 

for further study. The spectrum is transformed with a window 

size of 3 seconds, and data is extracted through window 

sliding with a duration of 0.25 seconds [13]. In the case of 
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slow-speed equipment, the spectrum is reduced to 1.5 kHz, 

and the conversion values for each channel are concatenated 

and studied in the form of a wave set. This process has led to 

the development of an optimized anomaly detection 

framework that applies different conversion techniques to suit 

the specific characteristics of each facility. 

Robots utilize STFT transformation to extract features, 

which involves cycling in the manner described above. The 

output of STFT is a 2D shape from a colormap image, which 

serves as input to the AI algorithm. When features are 

extracted using 1D Conv, some degree of conversion freedom 

allows for flattening and use within the algorithm. The STFT 

value is also stored separately and used for detailed feature 

analysis. The robot stores features in separate channels for 

each axis to allow for more accurate analysis. This approach 

enables the identification of any anomaly score increase in a 

specific channel, which can then be used to issue maintenance 

instructions for the affected axis. The FFT spectrum is re-

extracted for the robot's statistics, using a window size of 3 

seconds within one cycle. The extracted features are stored 

similarly to the driving motor of general equipment and are 

not separately learned by the AI model. They are stored on 

the server for monitoring during detailed analysis. 

 

4.2.3. AI algorithm 

The most effective method for confirming data 

classification is Dimensional Reduction Visualization. This 

involves reducing the extracted features' dimensions and 

representing them on a 2D graph's x and y axes. Doing so can 

ascertain how the feature distribution is formed by date and 

whether it is clustered. LDA (Linear Discriminant Analysis) 

is utilized for dimensionality reduction [14]. The average 

feature value for each date is represented as a single point, 

and each month is color-coded to show how the features 

change visually from one month to the next. 

Supervised learning struggles to classify typical smart 

factory data due to the difficulty of obtaining abnormal data. 

However, clear labeling can ensure the accuracy of this 

method. To address this issue, we developed an algorithm to 

collect abnormal data and classify the collected abnormal 

data so that it can be distinguished from normal data in 

various scenarios, such as motor misalignment, bearing 

failure, bearing cage damage, robot reducer failure, and 

lubricant shortage. We utilized deep learning, specifically a 

convolution method, to capture features easily using spatial 

information of image data. The 1D CNN layer consisted of 3 

layers, utilizing the relu activation function [15], a model was 

created to classify into normal/abnormal through the dense 

layer. After verification, over 97% of the classifications were 

confirmed. The classification model was saved in the system, 

and data on diverse types of defects were collected and 

attributed to the system for future classification purposes. 

In cases where there is insufficiently abnormal data, 

Anomaly Detection can be achieved by establishing a 

baseline of what constitutes "normal" data and monitoring 

any deviations from that baseline through a scoring system. 

An AI algorithm utilizing an auto-encoder structure must be 

introduced to employ this method [16]. Before training the 

model, extracted features are inputted as the model's input 

values. When dealing with robots, input values take the form 

of images, for which a convolution layer is created to 

facilitate image analysis. This layer consists of three layers 

with a relu activation function, and instead of pooling, it 

utilizes the stride technique to employ all pixel information 

[17]. The decoder comprises three Conv2DTranspose layers 

reconstructing the extracted features. Learning uses the Adam 

optimizer, mae loss, and appropriate batch_size and 

learning_rate parameters. The trained model predicts new 

data with the same feature shape, calculates the loss 

difference from the normal group learning value, and 

generates an anomaly score. Anomaly detection is achieved 

by monitoring this score over time and checking the platform 

display for gradual increases.  
 

 
Figure 5. Configuration of vibration-based AI model (Auto-

Encoder) for Anomaly detection 

 

 

5. Verification 
5.1 Verification of PoC 

5.1.1 Construction of Test-bench and data collection 

environment through PoC 

We set up an external test bench and conducted a PoC test 

to gather information on the target equipment. In the case of 

industrial robots, we installed vibration sensors on each axis 

of the reducer part for manufacturers such as Hyundai, ABB, 

Yaskawa, and Kawasaki. We repeatedly drove the machine by 

teaching it a complex, 6-axis movement that could withstand 

heavy use. To collect vibration data from the reducer part, we 

used a motor with the same capacity as the logistics line 

conveyor and lift equipment and connected a load system to 

apply a constant speed drive. We monitored and verified the 

target type by selecting equipment with a high non-operation 

rate in-line, such as when replacing a reducer due to 

mechanical defects. 

 

5.1.2 Development of Motor PHM diagnosis algorithm 

and Verification in Test-bench 

A dynamometer was installed on the motor and reducer 

(manufactured by SEW) to confirm the PoC, which drives the 

automation equipment utilized in actual mass production. A 

load was applied, and critical parts were equipped with a 

vibration sensor to collect data. The system was run at a 

constant speed of 1800rpm with load currents ranging from 

2.5 to 0.1A. 
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Figure 6. Real and dynamometer configuration diagram of 

Motor and Reducer 

 

In our analysis, we compared normal and abnormal data. 

Specifically, we examined changes in vibration magnitude on 

the time axis and alterations in specific frequency values, 

band ranges, and harmonics of the rotating body on the 

frequency axis. Using this information, we conducted a date-

wise assessment to determine if there was a gradual change. 

 

 
Figure 7. Normal data pattern by time/frequency domain 

 

 
Figure 8. Abnormal data pattern by time/frequency domain 

 

Our process involves extracting feature vectors from 

acquired data using FFT spectral transformation. These 

vectors are then input into an autoencoder model, which 

returns an output vector. The model first learns the vector of 

the normal group, compares it with the vector of new data, 

and returns the error value as the final score using MAE. To 

test this, we selected ten days of motor operation data with 

the same conditions and the occurrence time of an 

abnormality. We trained the model using the first three days 

and predicted the next seven days. Finally, we analyzed the 

predictions to identify any changes in the data. 

Figure 9 displays vibration RMS values over time, 

indicating that the RMS only increased at the time of failure, 

making it challenging to predict through rule-based 

measurement value monitoring. However, in Figure 10, the 

Anomaly score gradually increases over time. Figure 11 

displays the average value per date, revealing an increasing 

score from January 28th. As the anomaly score rises, data that 

differs from the standard norm is being collected, making it 

feasible to operate a PHM system that anticipates failure and 

notifies the time of failure via an anomaly score baseline of 

0.2 to 0.3. 

 

 
Figure 9. Comparison of vibration RMS values by date 

 

 
Figure 10. Comparison of Anomaly scores by date 

 

 
Figure 11. Comparison of Anomaly scores average 

 

After the actual abnormal data was acquired, the operation 

stopped due to motor failure after continued operation for two 

months, and a motor disassembly analysis was performed to 

confirm the phenomenon. 

 The cause is damage to the reducer and internal bearing due 

to dynamometer misalignment. Damage to the bearing cage 

and excessive tooth surface wear can be seen in Figure 12. As 

a result, a prediction model for motor failure was developed, 

and it was confirmed that the algorithm could be applied and 

operated by matching the failure phenomenon. 

 

 

 
Figure 12. Result of disassembling bearing of faulty reducer 

 

5.2 Verification of Production factory in-line 

5.2.1 Inline data analysis process 

An aging robot was selected from the in-line welding robots 

used for car body production to verify the development 

algorithm. A vibration sensor was installed, and data was 

collected. The robot was significantly aged after operating for 

11 years without a reducer replacement. Upon analysis of the 

iron concentration in the reducer grease, it was found to be 

approaching the replacement criterion. The data was 

monitored for an additional four months, and the reducer was 

replaced with a new product. The change in Anomaly score 

was checked to verify the replacement. This verification 

process aims to determine whether the aging pattern is 

distinguishable from normal, even if it is not a failure, and 

whether the score can increase gradually and eventually lead 

to a failure. 
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Figure 13. Appearance of aging robot reducer in-line 

 

The anomaly detection process utilized the Auto-Encoder 

model through AI technology. Upon replacement, the data 

was swiftly learned and compared to the data not learned 

before replacement using the AE model for score evaluation 

by date. Below is the comprehensive data analysis procedure 

that is verified based on what is described in Chapter 4. 

Using raw vibration data, we extracted one-cycle data by 

analyzing the similarity or the on/off signals of a PLC. The 

data collected includes six channels and spans 51 seconds, 

with sensors installed on each axis of a 6-axis robot. However, 

the window size was too large to analyze one-cycle data in 

the frequency spectrum. To address this, we used partial data 

corresponding 1~3 seconds to transform to FFT spectrum or 

performed an STFT transformation using total cycled data to 

extract features in both time and frequency bands. This is a  

 
Figure 14. In-line data analysis process 

 

key method for extracting features based on the equipment 

and operation pattern. The converted STFT was then shaped 

into an image with the following input dimensions. 

Abnormal dataset: (580, 385, 387, 3) 

Normal dataset: (185, 385, 387, 3) 

 

To ensure accurate and reliable results, we split 60% of the 

data set into a training dataset of 459 samples and a test 

dataset of 306 samples. This allowed us to effectively 

organize and analyze the data before proceeding with the 

learning process. 

 

5.2.2 Visualization of data distribution 

To visually represent the distribution of data, we employed 

dimensionality reduction using the LDA (Linear 

Discriminant Analysis) technique. This involved breaking it 

down into two-dimensional components and displaying it on 

a 2D graph. M5 to M10 in the graph represent months. After 

the reducer was replaced, October was expressed in brown, 

and the months from May to September before the 

replacement were expressed in a different color. Upon 

observation, we concluded that the data's distribution clusters 

were formed differently before and after the reducer 

replacement. 

 

 
Figure 15. Monthly scatter plots and histograms were 

separated using Linear Discriminant Analysis – Abnormal 

(M5~9_purple) and Normal (M10_brown). 

 

5.2.3 Results of Anomaly Detection Analysis 

We use STFT colormap image as the characteristic feature. 

Utilizing colormap images demonstrated superior feature 

extraction through a convolution layer [18]. This led to a 

highly effective anomaly detection model, which relied on an 

Auto-Encoder structure as its foundation. Specifically, we 

constructed an encoder consisting of three convolution layers 
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and a decoder featuring a convolution transpose layer. 

 50% of the normal dataset was used for learning, and the 

remaining abnormal and normal datasets were used as a test 

set to check the anomaly score. 

A discernible visual difference was observed in the scatter 

plot after comparing the reconstruction error before and after 

replacement with a new product. The distribution graph 

distinguishes the abnormal state in orange color and normal 

state in blue color before and after the replacement time point. 

(Figure 17). Subsequently, upon setting the error threshold, 

the distinction in distribution between the normal state, which 

is represented in dark blue and the abnormal state, which is 

represented in orange, was confirmed through the histogram. 

These findings suggest that the replacement product had a 

significant impact on the reconstruction error and, thus, could 

enhance the overall performance of the system. (Figure 18) 

 
Figure 16. Auto-Encoder Model learning loss graph 

 

 Learning was performed by repeating epochs to minimize 

loss. 

 
Figure 17. Reconstruction error scatter plot by Train/Test set 

 

 
Figure 18. Reconstruction error distribution histogram 

 

It was determined through predictive analysis of the test 

dataset that significant differences in reconstruction error 

exist between the normal and abnormal datasets. The 

formation of distinct clusters in the reconstruction error 

distribution further confirmed these differences. By setting 

the appropriate threshold value and checking the 

classification accuracy, it was ascertained that the 

classification was highly accurate, exceeding 97%. 

Additionally, by monitoring the anomaly score through 

unsupervised learning, variations in data patterns in aging 

equipment were identified as indicative of potential 

breakdowns. 

 

Table 3. Test set classification results depending on metrics 
Accuracy Precision Recall F1 ROC_AUC 

97.04% 99.82% 96.72% 98.25% 97.84% 

 

 
Figure 19. Ab/Normal state confusion matrix of the Test set 

 

6. Smart Factory Application 
Our new smart factory's assembly and logistics lines 

currently utilize the PHM system. It's applied to both 

constant-speed equipment like fan motors and variable-speed 

equipment like robots, lifters, and wireless mobile vehicles. 

Through our research and development, we've been able to 

internalize our technology and significantly reduce 

construction investment costs compared to external products. 

Moving forward, we plan to constantly monitor data and 

enhance our algorithm by identifying and addressing specific 

facility defects. Our ultimate goal is to expand horizontally, 

proving and verifying the effectiveness of predictive 

maintenance on domestic and overseas automobile factory 
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production line facilities. 

 

6.1. Classification of Smart Factory Equipment Group 

6.1.1 Constant speed equipment 

When it comes to equipment that operates at a consistent 

speed, the relevant data values are monitored and analyzed, 

or specific window sizes are set to monitor the score obtained 

from learning features within the frequency spectrum. This 

applies to equipment like painting fan motors, supply/exhaust 

fans, and air blow pumps. 

 

 
Figure 20. Operation pattern of constant speed equipment 

6.1.2 Monotonic acceleration/deceleration pattern 

equipment 

Regarding in-line equipment, movement automation 

equipment may follow a repetitive pattern of acceleration, 

deceleration, and constant speed. This is evident in 

stacker/de-stacker equipment that moves BIW between floors 

in an automobile manufacturing line and conveyor belt drives 

for movement between processes. Despite having variable-

speed capabilities, the acceleration/constant 

speed/deceleration pattern remains constant, allowing for the 

extraction and utilization of features across the frequency 

spectrum by dividing the pattern accordingly. 

 

 
Figure 21. Operation pattern of acceleration/deceleration 

equipment 

 

6.1.3 Monotonic acceleration/deceleration and various 

pattern equipment 

 

In logistics box warehouses, repetitive acceleration and 

deceleration patterns are common, but the locations of the 

logistics boxes can vary greatly. This is particularly true with 

equipment such as the MSC (Multi Stacker Crane) and the 

SC (Stacker Crane). Given the vast number of possible box 

positions, it is not practical to learn the patterns of each 

position individually. Instead, the deceleration, constant 

speed, and acceleration patterns are divided, and learning is 

conducted by selecting features through the frequency 

spectrum. 

 

 
Figure 22. Operation pattern of wireless mobile device 

 

6.1.4 Complex acceleration/deceleration pattern 

equipment 

With the rise of smart factories, 6-axis industrial robots have 

become the primary choice for automation. However, due to 

the complexity of their multi-jointed structure, obtaining 

features for each movement can be challenging. To overcome 

this, the one-cycle pattern for each process is cropped and 

transformed into STFT to extract features using both time and 

frequency. The resulting colormap image is then learned and 

configured to predict one pattern for a new cycle. 

 
Figure 23. Operation pattern of industrial robot 

 

 
Figure 24. Feature extraction method and anomaly score 

calculation/monitoring process for various smart factory 

equipment 

The final process is outlined above. When dealing with a 

fan motor that runs at a constant speed, the frequency 

spectrum of the continuous speed pattern is used as an input 

feature. For an engine that drives a stacker/conveyor or 

wireless mobile device with repetitive 

acceleration/deceleration, the cycle's acceleration/constant 

speed/deceleration pattern is separated by the driving part 

motor and configured through frequency spectrum 

conversion. For industrial robots with intricate patterns, both 

time-frequency features are utilized by imaging and 
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organizing STFT features. An auto-encoder structure 

defines an input shape for each piece of equipment. The 

model is saved by learning the data of the normal group. 

When new data is received, the reconstruction error is 

calculated and compared against the learned features to 

determine how much it differs. Finally, an anomaly score is 

calculated, and the smart factory is monitored by date for 

anomaly detection. 

 

6.2 Smart Factory operation screen 

They are displayed below, as Figure 25 shows the smart 

factory's configuration screen. The process locations that 

have undergone PHM algorithm application are marked, 

allowing for confirmation of AI-predicted vibration data 

anomalies through Anomaly score monitoring. The score's 

baseline is partitioned into warning and fault lines. Crossing 

the warning line triggers a yellow alarm while crossing the  

fault line triggers a red alarm. Workers can observe the red  

 

 
Figure 25. Monitoring screen of the factor layout displayed 

in the PHM system and each facility’s anomaly score 

 

indicator at the factory at the relevant facility location and 

conduct equipment maintenance activities. The score can be 

historically tracked by date/time, and a system utilizing 

MLops has been implemented to enable optimized 

algorithm re-learning and re-deployment. This system aids 

in optimizing the anomaly score baseline while operating 

the factory and conducting intelligent maintenance activities 

accordingly. 

 

7. OPEN PROBLEMS 
Thus far, we have elaborated on developing a PHM 

system and an abnormality detection framework to 

effectively address the challenges that may arise when 

performing predictive maintenance on various facilities 

within a smart factory. However, there are still some 

outstanding issues that require attention. Rest assured, we 

intend to leverage further work to tackle these challenges 

with precision and efficiency. 

 

7.1. Storage space problem 

Despite utilizing edge computing and storing only 

feature extraction results to address some challenges, many 

issues still need to be solved. With the emergence of 

intelligent factories that automate more processes and gather 

vast amounts of data for analysis, the issue of storage 

capacity remains a pressing concern. 

7.2. The problem of wired sensor installation costs 

Vibration data with a high sample rate is ideal for more 

precise analysis. However, the drawback is that it requires 

the installation of vibration sensors and the laying of wired 

cabling. To optimize the return on investment, it is vital to 

classify equipment based on whether it requires high sample 

rate data analysis, like vibration. 

Installing vibration sensors on every axis would provide 

valuable data when analyzing robots, but the associated 

costs would be significant. To mitigate this, it's essential to 

develop technology that relies on multivariate time series 

data, such as current, torque, and speed, collected from the 

robot controller while leveraging multimodal techniques 

and correlational analysis with vibration to ensure optimal 

analysis performance without excessive wiring [19], [20]. 

 

7.3. Problems classifying various types of defects by line 

equipment 

Efficiently identifying different kinds of defects in 

manufacturing plants can be challenging. Establishing a 

seamless collaboration between the operation, analysis, and 

maintenance departments is crucial. Gathering data on each 

defect type during factory operations requires meticulous 

attention to detail and careful feedback collection. 

 

7.4. Problems predicting RUL and lifespan for each 

line facility 

To make precise predictions about facility lifespan [21], 

data must be collected throughout the entire cycle from the 

initial operation to the eventual failure. This data can only 

be obtained once the factory and predictive maintenance 

system have matured, and the technology can only be 

developed when the organization and system are well-

equipped and consistently engage in seamlessly integrated 

predictive maintenance activities. With these measures in 

place, accurate facility lifespan predictions can be 

confidently made. 

 

7.5. MLOps automation level needs to be increased 

The systemization process has been completed; however, 

users need to re-learn and redistribute the system to utilize 

its full potential. Once this is done, the system will need 

further development to enable Continuous Integration and 

Deployment and subsequently automate MLOps. 

 

7.6. Existing smart factory applications are applied to 

new facilities. 

Due to the implementation of predictive maintenance 

technology in smart factories, it is anticipated that the 

emergence of breakdowns caused by aging will be delayed 

in newly established facilities. As a result, tangible 

outcomes may take longer to manifest. Given the challenges 

of collecting defective data in this complex environment, it 

is imperative to undertake individualized efforts to advance 

the algorithm. 

 

7.7. Abnormal signal problems, such as simple line 

failure 

In practice, numerous irregular signals may be present 

alongside the established patterns. These signals may 
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include something as basic as a line fault interruption and 

can be leveraged in detecting abnormalities due to their 

distinct data format. In instances with misleading 

performance data, it is crucial to classify it in a manner that 

recognizes it as one of the typical states rather than 

categorizing it as an anomaly. 

 

7.8. Types of failure problems that do not tend to increase 

gradually 

Our team oversees an algorithm designed to identify 

anomalies by monitoring gradual increases in their score 

compared to a standard value. However, we recognize that 

certain types of failures may not exhibit gradual increases, 

requiring a distinct model for prediction. While we can 

currently diagnose failures that have already occurred, we 

strive to advance our technology to enable predictive 

foresight and prevent these failures altogether. 

 

8. CONCLUSION 
As the demand for predictive maintenance in automated 

facilities grows alongside the expansion of smart factories, 

a new study introduces a necessary PHM (Prognostics and 

Health Management) system and abnormality detection 

framework method. The system includes a MEMS vibration 

sensor, Edge CMS device, and PHM platform, while the 

anomaly detection framework addresses various challenges 

such as cycling techniques, preprocessing, and AI algorithm 

development. This methodology effectively addresses data 

imbalances, learning model limitations, complex equipment 

patterns, and real-time processing issues commonly faced in 

manufacturing plants. It also improves upon the problems 

that arise when deploying such systems in the field, 

including central server concentration, cycling, 

classification of various equipment, and algorithm operation 

problems. 

Cutting-edge anomaly detection technology employs an 

AI-based vibration detection algorithm to collect data at a 

high sampling rate. It uses edge computing to analyze this 

data and make real-time decisions. This approach minimizes 

latency compared to cloud-based analysis and eliminates 

server capacity issues. The system monitors standard 

performance data of equipment, learns from it, and provides 

practical solutions to mitigate issues, ultimately reducing 

equipment failure and minimizing downtime. 

The study has yielded an impressive outcome with the 

development of abnormality detection technology and PHM 

systems that are anticipated to enhance the efficiency and 

sustainability of smart factories. The new smart factory has 

already achieved mass production, and the challenge of data 

imbalance in algorithm development has been overcome 

through data verification. By replacing the reducer of an 

aging robot in a domestic factory, the technology has proven 

to be effective. Additionally, the domestic production of 

these systems can significantly reduce technology 

investment costs compared to foreign products while 

allowing for the internalization of HMG's technology. The 

technology's potential is not limited to smart factories and 

can be deployed in new facilities such as wireless logistics 

carriers. 

Moving forward, we aim to demonstrate and enhance the 

efficiency of predictive maintenance in domestic and 

international automobile factory production line facilities. 

This vital technology is the backbone of smart and software-

defined factories and is poised to assist numerous companies 

in their pursuit of intelligent automation. Our strategy 

involves ongoing data monitoring and algorithmic 

refinement, paving the way for an optimal production line 

experience. 
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