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ABSTRACT

The integration of particle or Kalman filters with machine
learning tools like support vector machines, Gaussian pro-
cesses, or neural networks has seen extensive exploration in
the context of prognostic and health management, particu-
larly in model-based applications. This paper focuses on the
Multi-Layer Perceptron Particle Filter (MLP-PF), a data-driven
approach that harnesses the non-linearity of MLP to describe
degradation trajectories without relying on a physical model.
The Bayesian nature of the particle filter is utilized to update
MLP parameters, providing flexibility to the method and ac-
commodating unexpected changes in the degradation behav-
ior.

To showcase the versatility of MLP-PF, this work demon-
strates its seamless integration into diverse use cases, such
as lithium-ion battery analysis, virtual health monitoring for
turbofans, and the assessment of fatigue crack growth. We
illustrate how it effortlessly accommodates various contexts
through slight parameter modifications. Adjustment includes
variation in the number of neurons or layers in the MLP,
threshold adjustments, initial training refinements and the adap-
tation of the process noise. Addressing different degrada-
tion processes across these applications, MLP-PF proves its
adaptability and utility in various contexts.

These findings highlight the method’s versatility in adapting
to diverse use cases and its potential as a robust prognostic
tool across various industries. MLP-PF offers a practical and
efficient means of estimating remaining useful life and pre-
dicting degradation in complex systems, with implications for
advancing prognostic tools in diverse applications.

Francesco Cancelliere et al. This is an open-access article distributed un-
der the terms of the Creative Commons Attribution 3.0 United States Li-
cense, which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited.

1. INTRODUCTION

Prognostic and Health Management (PHM) plays a crucial
role in engineering by aiming to estimate the health state, de-
tect early failures, and predict the remaining useful life of sys-
tems or components (Zio, 2022). Implementing PHM algo-
rithms allows for condition-based or predictive maintenance
strategies, ultimately optimizing maintenance frequency and
reducing operational costs (Bailey, Sutharssan, Yin, & Stoy-
anov, 2015). Traditional physics-based methods in PHM rely
on known equations, and demand extensive domain knowl-
edge while generally being computationally expensive, lim-
iting their real-time applicability (Chang, Fang, & Zhang,
2017).

In contrast, the rise of data availability in recent years co-
incides with the exploration of data-driven methods such as
neural networks, random forests, and support vector machines
(Wang, Jin, Deng, & Fernandez, 2021; Hu, Xu, Lin, & Pecht,
2020; Vanem et al., 2023). However, these methods often
face challenges related to data quantity, quality, and general-
ization across unseen conditions. To overcome these hurdles,
hybrid approaches have been proposed (Cancelliere, Girard,
Bourinet, & Broggi, 2023; Li et al., 2024), aiming to combine
the strengths of data-driven and physics-based methods.

Among the hybrid approaches, a common one consists of
integrating particle or Kalman filters with machine learning
tools like neural networks or support vector machines (Dong,
Jin, Lou, & Wang, 2014; Jha, Bressel, Ould-Bouamama, &
Dauphin-Tanguy, 2016). In these frameworks, machine learn-
ing tools act as surrogates for physics-based models, reducing
the need for extensive domain expertise. Meanwhile, Bayesian
filters allow to quantify the uncertainties associated with the
prediction, enhancing the robustness of the approach. Other
works, such as (Ma, Karkus, Hsu, & Lee, 2020) or (Ge, Sun,
& Ma, 2019) proposed combination of PF with, respectively,
recurrent neural network (RNN) and long-short term memory
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network (LSTM). A more comprehensive review of combina-
tion of PF and data driven techniques can be found in (Reza
et al., 2024).

A combination of radial basis functions with particle filters,
initially proposed by (Sbarufatti, Corbetta, Giglio, & Cadini,
2018), presented a novel approach to estimate the state of
charge of lithium-ion batteries, which was later extended to
predict the end of life for batteries by replacing the surrogate
model with a Multi-Layer Perceptron (MLP) neural network
(Cadini, Sbarufatti, Cancelliere, & Giglio, 2019). This adap-
tation, called Multi-Layer Perceptron Particle Filter (MLP-
PF), capitalizes on the non-linear nature of MLPs to describe
system degradation trajectories and leverages the Bayesian
framework of particle filters to adjust to incoming measure-
ments.

The primary contribution of this work lies in the application
of the MLP-PF to three different case studies. By demon-
strating the versatility of MLP-PF, this study showcases its
seamless integration into diverse applications, starting from
the case of lithium-ion batteries, then changing to the esti-
mation of a virtual health indicator for turbofans, and the as-
sessment of fatigue crack growth. Through minor parameter
modifications such as variations in MLP architecture, thresh-
old adjustments, initial training refinements, and adaptation
of process noise levels, MLP-PF effortlessly accommodates
various contexts.

Differing from conventional data-driven approaches, this study
adopts a single historical degradation trajectory as training
for the MLP neural network. The training serves merely as
a starting point for the (PF) to explore the state-space, rely-
ing on its Bayesian nature to discern the hidden degradation
dynamics. This approach furnish the algorithm with excep-
tional adaptability while significantly mitigating the need for
extensive historical data, a primary drawback of traditional
data-driven methods.

To evaluate the algorithm’s performance, various metrics in-
cluding Relative Accuracy, Confidence Interval Coverage (Jules,
Cancelliere, Mattrand, & Bourinet, 2023), and the β Metric
(Lall, Lowe, & Goebel, 2013) are employed. These metrics
assess not only accuracy and precision but also consider the
uncertainty associated with the predictions, providing a com-
prehensive evaluation framework.

Addressing various degradation processes across different ap-
plications highlights the adaptability and utility of the MLP-
PF. These findings emphasize the method’s versatility in ac-
commodating diverse use cases and underscore its potential
as a robust prognostic tool across multiple industries. MLP-
PF provides a practical and efficient means of estimating re-
maining useful life and predicting degradation in complex
systems, thereby advancing prognostic tools across a broad
spectrum of applications.

The structure of this paper is the following: Section 2 briefly
describes the proposed method and the metrics used to eval-
uate performance. Following this, Section 3 introduces the
three use cases addressed in this study, while Section 3.1,
Section 3.2 and Section 3.3 present the results correspond-
ing to each case. Finally, Section 4 draws conclusions and
provides perspectives on this work.

2. MULTI LAYER PERCEPTRON PARTICLE FILTER

The method employed in this work was first proposed by
(Sbarufatti et al., 2018), where a combination of radial basis
function neural networks and particle filters was used to esti-
mate the state of charge of lithium-ion batteries. The method
was later improved by (Cadini et al., 2019), where it was ex-
tended to estimate the state of health of the battery. In this
work, the method is applied to three different use cases to
showcase its ability to adapt to different contexts with slight
changes in the hyperparameters.

The multi-layer perceptron neural network is used as a sur-
rogate for the given degradation model, such as the turbofan
VHI or the batteries’ capacity. In all cases, it consists of a
single input, which is the discrete time step k, and a single
output g̃, representing the predicted value at the given time
step. The decision to use a simple neural network, such as an
MLP, is driven by the necessity for flexibility and the desire
to minimize the number of parameters estimated by the PF.
Despite its simplicity, an MLP remains capable of capturing
the nonlinearities inherent in the data. This choice strikes a
balance between model complexity and computational effi-
ciency, enabling effective integration with the PF framework.

The internal architecture of the network (number of layers,
number of neurons per layer, and the activation functions) is
case-dependent, particularly on the shape of the degradation
trajectories and to ensure computational times are compati-
ble with the given context (higher the network complexity,
higher the computational time). The parameters of the net-
work, meaning its weights and biases, are then packed into a
vector xk. The starting parameters x0 are obtained by training
the network based on a known run-to-failure degradation pro-
cess, as can be observed in the (a) figures of the three cases.

The particle filter (Arulampalam, Maskell, Gordon, & Clapp,
2002) is a sequential Monte-Carlo algorithm that generates a
set of particles which are used to estimate the posterior prob-
ability density function (PDF) of a hidden state, which in our
case are the parameters xk. Hence, a set of Ns copies (i.e
particles) of x0 is generated based on:

xik = xik−1 + ωk−1 (1)

where i is the index of the particles and ω is the process
noise, which is an hyperparameter that has to be carefully
tuned. Each xik contains the parameters of a MLP, which,
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when propagated through the network, generates a predic-
tion of a possible degradation trajectory. The PF operates by
applying a prediction-update recurrence. The predictions at
time step k − 1 serve as the prior PDF, which is updated at
each subsequent time step k upon the arrival of new observa-
tions. The update of the particles is performed by computing
their likelihood, which indicates how close the ith degrada-
tion trajectory is to the actual observations. The likelihood
Li
k of each particle i is computed as:

Li
k = p(z0:k|xik) = ((2π)k+1|Ση|)−0.5

exp

{
−1

2

(
z0:k − g̃(xik, 0 : k)

)T
Σ−1

η

(
z0:k − g̃(xik, 0 : k)

)}

(2)
where z0:k are the observations from 0 to k, g̃(xik, 0 : k) is
the prediction of the network for the ith particle and Ση is the
diagonal covariance matrix, with diagonal element equal to η,
representing the measurement noise and assumed Gaussian.
Li
k is the probability of obtaining the measurement zk given

the ith prediction g̃k, and it is used as importance weight wi
k

for the particles.

To finally construct the posterior pdf the sampling importance
resampling (SIR) algorithm is employed (Doucet, Godsill, &
Andrieu, 2000): the weights are normalized, and the parti-
cles are resampled based on the normalized weights w̃k. The
closer the prediction is to the measurements, the higher the
normalized importance weight of that particle, meaning that
the particle is more likely to be resampled, which signifies
that it is closer to the actual degradation trajectory of the ob-
served process.

The importance weights of the particles are also utilized to
enforce specific conditions, ensuring that particles adhere to
desired behaviors. One example is imposing the monotonic-
ity of the trajectory or setting bounds on the output value (e.g.,
ensuring it is always greater than 0). If a particle violates the
specified condition, its weight is set to zero, indicating that it
will not be resampled. Instead, it is replaced by a particle with
a higher importance weight, thereby maintaining compliance
to the desired conditions.

The collection of normalized particles at time step k, each
representing a potential degradation trajectory, enables the
computation of the posterior probability density function of
the degradation state in future time steps. Consequently, it
becomes possible to calculate statistics related to predictions,
such as the mean and relative uncertainties. Additionally, by
establishing a threshold for the end of life of the system, it
becomes feasible to determine the distribution of the End of
Life p(EOLk|z0:k), and consequently the RULk as:

RULk = EOLk − k (3)

To evaluate the performance of the algorithm we use three

different metrics. The first one is the cumulative relative ac-
curacy, defined as:

CRA =
1

Tfail

Tfail∑

k=0

(
1−

∣∣∣∣∣
RULactual

k − RULpred
k

RULactual
k

∣∣∣∣∣

)
(4)

where Tfail is the time step at which the system fails. This
represents the distance of the prediction to the actual EOL,
evaluated at each time step. A perfect prediction has a value
of 1.

The second metric is the confidence interval coverage (Jules,
Cancelliere, et al., 2023), which is used to assess the predic-
tion considering the confidence interval, and is defined as:

CIC =
1

Tfail

Tfail∑

k=0

1
RULactual

k ∈ĈIk
(5)

where 1
RULactual

k ∈ĈIk
is the indicator function that takes one

if the actual RUL lies in the predicted confidence interval,
0 otherwise. If the prediction at each time step include the
RULactual, the CIC is going to be 1, while 0 if the true RUL
is always outside the confidence interval.

The last indicator is called the β metric (Lall et al., 2013),
which represent the area of the predictions that falls inside
the α bound.

βk =
1

Tfail

Tfail∑

k=0

∫ RULk+α

RULk−α

PDF(RUL) dRUL (6)

The α bounds are defined as RULactual ± α. The β metric
evaluates the accuracy of predicted RUL bounds compared
to true RUL bounds, considering a specified uncertainty level
(α). It quantifies the overlap between predicted and true RUL
bounds normalized by the true RUL length. Higher values
indicate better agreement between predicted and true bounds,
reflecting improved prediction accuracy.

3. USE CASES

The proposed approach will now be applied to three use cases:
estimating the end of life of lithium-ion batteries based on
their decreasing capacity, propagating a virtual health indi-
cator developed to estimate the state of health of turbofans,
and modeling the growth of a fatigue crack in a panel. Al-
though these cases share a time-dependency, their degrada-
tion processes differ significantly in terms of shape and ra-
pidity. Therefore, we employ three different MLP network
architectures, each tailored to the specific characteristics of
its respective case.

For consistency and comparison, in each cases we use the
same number of particles, Ns = 1000, and the same number
of epochs for the initial training (epochs = 500). Additionally,
we employ a decreasing variance, defined as:
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(a) Training and testing dataset for Li-Ion batteries. The red line
is the output of the trained MLP.

(b) Architecture of the MLP neural network used for the Li-Ion batter-
ies case.
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(c) Two instant of time of the simulation. The grey dotted line
is the end of life threshold.

0 25 50 75 100 125 150 175 200
Cycles

0

50

100

150

200

RU
L

True RUL alpha bounds
True RUL
Mean Predicted RUL
Predicted RUL bounds
Beta Metric

(d) Remaining Useful Life prediction in terms of mean and uncertainty
bounds.

Figure 1. Lithium-Ion Battery case.

ωk = σ0e
− k

σ1 + σ2 (7)

Here, ω perturbs the MLP parameters, as described in Eq. (1).

The use of a decreasing process variance is crucial for the
convergence of the algorithm. Initially, a higher variance
(which practically signifies a higher perturbation of xk in
Eq. (1)) is necessary to explore the state space and adapt to
the first incoming observations, especially if these are signifi-
cantly different from the training data. As more observations
become available, the variance is reduced to reflect the in-
creased information about the actual system. This reduction
in variance helps prevent a single observation, especially a
noisy one, from excessively perturbing the prediction. This
strategy ensures a balanced adaptation process, enabling the
algorithm to remain robust against noisy observations while
gradually refining its predictions.

Given that the complexity of the network correlates with the
number of parameters, using the same ω value for different
architectures will lead to different perturbation. Specifically,
higher complexity requires lower perturbation (i.e. lower ω)
to prevent degeneration. If the MLP parameters change too
rapidly, they may lose meaning and connection with prior in-
formation. Hence, the σ parameters and the measurement
noise η, responsible for computing the particule likelihood in
Eq. (2), vary across different cases.

Furthermore, in all three cases, we opt to use a single trajec-

tory for the initial training. This choice aims to demonstrate
the algorithm’s ability to adapt to varying conditions and its
capacity to achieve satisfactory performance in predicting the
RUL without requiring a large amount of data. The proposed
metrics are evaluated throughout all the degradation process
and in the last 25% of life. This evaluation demonstrates that
the algorithm’s performance improves over time as more in-
formation becomes available, and it converges to the target
data even when the initial training data differ significantly.

3.1. Lithium-ion Batteries

The dataset used for the first use case is the one developed
by NASA for the prognostic and diagnostic analysis of bat-
teries (Saha & Goebel, 2007). The capacity of batteries de-
creases over time due to usage and electrochemical reactions
occurring inside the battery. The end of life of batteries is
typically defined when the capacity drops below 80% of the
initial capacity. However, to make the most of the dataset, in
this work, we set a threshold of 1% higher than the last point,
which is 1.42 Ah. In Fig. 1(a) the two batteries used for the
initial training of the network (battery 18 of the dataset) and
for testing (battery 7) are shown.

The architecture of the network consists of a single hidden
layer with 3 neurons, where the activation functions are a sig-
moid for the hidden layer and linear for the output layer. The
network structure is depicted in Fig. 1(b). This results in a to-
tal of 6 weights and 4 biases, which, after training, are stacked
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(a) Training and testing dataset for VHI. The red line is the output
of the trained MLP.

(b) Architecture of the MLP neural network used for the VHI case.
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(c) Two instant of time of the simulation. The grey dotted line
is the end of life threshold.
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(d) Remaining Useful Life prediction in terms of mean and uncertainty
bounds.

Figure 2. Virtual Health Indicator case.

in the vector x0, resulting in 10 parameters. The output of the
trained network with these parameters is represented by the
red line in Fig. 1(a).

The initial process noise is taken as σ0 = 5×10−2, while the
floor value is set to σ2 = 10−5, with a decreasing rate σ1 of
50. The measurement noise is set to 10−2. Due to the sim-
plicity of the network, the initial value σ0 is relatively high,
providing more flexibility to the algorithm. Furthermore, the
adaptability of the algorithm is necessary due to the intrinsic
nature of lithium-ion batteries, which can perform differently
from one another, as observed in Fig. 1(a). The initial pertur-
bation, obtained by applying Eq. (1) to each of theNs particle
can be observed in Fig. 1(c) as the grey lines.

The results of the simulation are presented in Fig. 1(c) and
Fig. 1(d). In the first, two instances of time, at the beginning
and about the end of the simulation, are shown, highlight-
ing the adaptability of the algorithm. Starting from the initial
training, the algorithm adapts to incoming measurements and
estimates the new degradation behavior. The last figure shows
the results in terms of remaining useful life estimation. Ini-
tially, the predictions were more related to the training data,
which has a faster end of life, while converging to the actual
RUL at about the halfway point of the battery’s lifetime. The
evaluation of the algorithm’s performance is reported in Ta-
ble 1, where it can be observed that all the metrics improved
when evaluated in the last 25% of the lifetime. Particularly,
the Confidence Interval Coverage 25 has a value of 1, indicat-

ing that the actual RUL has always been inside the predicted
bounds.

3.2. Virtual Health Indicator

The second use case proposed here involves the estimation of
the future behavior of a virtual health indicator developed for
estimating the state of health of turbofans (Jules, Mattrand, &
Bourinet, 2023). This VHI measures the degradation of tur-
bofans, thus, opposite to the batteries case, it exhibits an up-
ward trajectory, where a higher value indicates higher degra-
dation. Similarly to the previous case, the end-of-life thresh-
old has been set to utilize the maximum available number of
cycles from the test dataset.

Upon observing the historical data of the VHI, it can be noted
that initially, it exhibits a flat trajectory, remaining nearly
at zero until the degradation process begins, after which it
adopts an exponential-like trajectory. To accommodate this,
the proposed network for this case consists of two hidden lay-
ers with 3 neurons each. The first layer employs a scaled
exponential linear unit (SELU) activation function, while the
second layer employs an exponential activation function. The
output layer uses a linear activation function. The structure of
this network (see Fig. 2(b)) is thus more complex, consisting
of a total of 22 parameters (15 weights and 7 biases).

As mentioned in Section 2, certain conditions can be enforced
on the particles to help them meet specific constraints. In this
case, since the VHI has been designed to be greater than 0
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(a) Training and testing dataset for FCG. The red line is the output
of the trained MLP.

(b) Architecture of the MLP neural network used for the FCG case
with 20 neurons in the hidden layer.
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(c) Two instant of time of the simulation. The grey dotted line
is the end of life threshold.
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(d) Remaining Useful Life prediction in terms of mean and uncertainty
bounds.

Figure 3. Fatigue Crack Growth case.

and monotonous, these two conditions have been enforced by
eliminating particles at each iteration that did not adhere to
them. With more parameters, the initial process noise had to
be slightly reduced, and particularly, we set the value of σ0 =
10−2. The other values (floor noise σ2 and the measurement
noise η) remained unchanged.

Fig. 2(a) displays the training and test data, as well as the
output of the trained network. It can be observed that the
shape of the two trajectories is similar; however, the rate of
degradation varies notably, with the training dataset exhibit-
ing a slower trend. Additionally, the initial flat plateau adds
complexity to the prediction task since the algorithm receives
measurements close to the expected values, resulting in high
likelihood. This behavior is illustrated in Fig. 2(d), where
initially, the predicted RUL decreases almost constantly, in-
dicating little variation in prediction. Once the measurements
from the VHI start to increase, signaling the onset of degra-
dation, the algorithm quickly adapts to the new degradation
behavior and converges to the actual RUL.

Even in this case, all metrics improved when evaluated in the
last quarter of the lifetime. We note a relatively low CIC in
this case, which can be attributed to the narrow prediction
bounds. On the other hand, this led to a relatively high value
of the β Metric of the last quarter.

3.3. Fatigue Crack Growth

The last use case concerns the propagation of a crack in a rect-
angular plate of commercial 316L steel (Langlois Raphael,
2018) subjected to a fatigue load. The dataset comprises two
tests of identical plates, with a cycling tensile loading applied
with a frequency of 10 Hz and a R ratio of 0.1. The first
one is subjected to a maximum force of 15 kN (test data,
see Fig. 3(a)) and the second to a maximum force of 22.5
kN (training data, also in Fig. 3(a)), with a As expected, the
higher the applied force, the faster the crack propagates.

The trajectories follow an exponential-like function. There-
fore, the proposed architecture for this problem consists of
a single hidden layer with an exponential activation function
(see Fig. 3(b)). To enforce the exponential behavior of the
MLP (and also to challenge the algorithm), the hidden layer
consists of 20 neurons, nearly tripling the number of parame-
ters to 61.

Due to the higher number of parameters, the values of σ0 and
σ2 have to be significantly decreased. For this simulation,
they have been set to σ0 = 5 × 10−4 and σ2 = 10−6. As
in the VHI case, the monotonicity of the curve is enforced,
particularly since this is a physical constraint.

In contrast to the VHI case, we use the faster degradation
as training data while attempting to estimate the slower tra-
jectory. This poses a challenge for the algorithm since ex-
trapolating future data without prior examples is inherently
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Table 1. RUL Evaluation Metrics.

Li-Ion VHI FCG
CRA 0.703 0.474 0.489
CRA 25 0.772 0.762 0.240
CIC 0.475 0.140 0.425
CIC 25 1.000 0.294 1.000
β 0.326 0.277 0.273
β 25 0.465 0.737 0.404

complex for data-driven algorithms. Nonetheless, even in
this case, we observe that the algorithm adapts quite rapidly,
with the remaining useful life initially remaining constant
(see Fig. 3(d)), indicating that the algorithm recognized early
on that the training degradation was faster. As the correct
RUL is approached around the halfway point of the lifetime,
the algorithm is able to capture the new trajectory and remains
consistent with the prediction.

In terms of metric, we note that the CRA is low, especially
in the last 25%. This is mainly due to the relative error in
the very last points, where even a small error in the average
predicted RUL leads to a significant penalization of the CRA,
as the actual RUL is a small number. In contrast, we observe
a perfect coverage in the last quarter, as the actual RUL has
always fallen within the predicted bounds during that period.

4. CONCLUSIONS

The proposed methodology, combining multi-layer percep-
tron neural networks and particle filters, demonstrated its adapt-
ability and effectiveness in estimating the remaining useful
life across diverse engineering systems. By applying the method
to three distinct use cases – estimating the end of life of lithium-
ion batteries, predicting the behavior of a Virtual Health In-
dicator in turbofans, and analyzing the propagation of fatigue
cracks in steel plates – we showcased its versatility and ac-
curacy in capturing degradation processes. The utilization
of a single training history for each case underscores the ro-
bustness of the algorithm and its adaptability even when lim-
ited data about the target system are available. Evaluation
metrics such as Cumulative Relative Accuracy (CRA), Con-
fidence Interval Coverage (CIC), and the β metric provided
valuable insights into the accuracy, coverage, and uncertainty
of predicted RUL bounds. These findings emphasize the prac-
tical implications of accurate RUL estimation in predictive
maintenance, enabling proactive decision-making to optimize
maintenance schedules and reduce operational costs. Further
research can explore enhancements to the methodology and
its application to additional use cases beyond time-dependent
applications, thus enhancing its utility and effectiveness in
real-world scenarios

ACKNOWLEDGMENT

The project leading to this application has received funding
from the European Union’s Horizon 2020 research and in-
novation program under the Marie Skłodowska-Curie grant
agreement No 955393

REFERENCES

Arulampalam, M. S., Maskell, S., Gordon, N., & Clapp,
T. (2002). A tutorial on particle filters for online
nonlinear/nongaussian bayesian tracking. IEEE Trans-
action on Signal Processing, 50(2), 174–188. doi:
10.1109/9780470544198.ch73

Bailey, C., Sutharssan, T., Yin, C., & Stoyanov, S. (2015).
Prognostic and health management for engineering
systems: a review of the data-driven approach and
algorithms. The Journal of Engineering(July). doi:
10.1049/joe.2014.0303

Cadini, F., Sbarufatti, C., Cancelliere, F., & Giglio, M.
(2019). State-of-life prognosis and diagnosis of
lithium-ion batteries by data-driven particle filters.
Applied Energy, 235(June 2018), 661–672. doi:
10.1016/j.apenergy.2018.10.095

Cancelliere, F., Girard, S., Bourinet, J.-M., & Broggi, M.
(2023). Grey-box Approach for the Prognostic and
Health Management of Lithium-Ion Batteries. An-
nual Conference of the PHM Society, 15(1), 1–8. doi:
10.36001/phmconf.2023.v15i1.3506

Chang, Y., Fang, H., & Zhang, Y. (2017). A new hybrid
method for the prediction of the remaining useful life
of a lithium-ion battery. Applied Energy, 206, 1564–
1578. doi: 10.1016/j.apenergy.2017.09.106

Dong, H., Jin, X., Lou, Y., & Wang, C. (2014). Lithium-ion
battery state of health monitoring and remaining use-
ful life prediction based on support vector regression-
particle filter. Journal of Power Sources, 271, 114–123.
doi: 10.1016/j.jpowsour.2014.07.176

Doucet, A., Godsill, S., & Andrieu, C. (2000). On sequen-
tial Monte Carlo sampling methods for Bayesian fil-
tering. Statistics and Computing, 10, 197–208. doi:
10.1023/A:1008935410038

Ge, Y., Sun, L., & Ma, J. (2019). An Improved PF Remain-
ing Useful Life Prediction Method Based on Quantum
Genetics and LSTM. IEEE Access, 7, 160241–160247.
doi: 10.1109/ACCESS.2019.2951197

Hu, X., Xu, L., Lin, X., & Pecht, M. (2020). Battery
Lifetime Prognostics. Joule, 4(2), 310–346. doi:
10.1016/j.joule.2019.11.018

Jha, M. S., Bressel, M., Ould-Bouamama, B., & Dauphin-
Tanguy, G. (2016). Particle filter based hy-
brid prognostics of proton exchange membrane
fuel cell in bond graph framework. Computers
and Chemical Engineering, 95, 216–230. doi:

7

Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN – 978-1-936263-40-0

Page 300



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

10.1016/j.compchemeng.2016.08.018
Jules, E., Cancelliere, F., Mattrand, C., & Bourinet, J.-M.

(2023). Remaining useful life prediction of turbofans
with virtual health indicator: A comparison of parti-
cle filter-based approaches. , 75-82. doi: 10.1109/IC-
SRS59833.2023.10381439

Jules, E., Mattrand, C., & Bourinet, J.-M. (2023). Similar-
ity learning for predictive maintenance: health indica-
tor construction based on siamese neural networks and
contrastive loss. [Under Review].

Lall, P., Lowe, R., & Goebel, K. (2013). Prognostic health
monitoring for a micro-coil spring interconnect sub-
jected to drop impacts. PHM 2013 - 2013 IEEE Inter-
national Conference on Prognostics and Health Man-
agement, Conference Proceedings(June 2013). doi:
10.1109/ICPHM.2013.6621458

Langlois Raphael, R. J., Coret Michel. (2018, Novem-
ber). Fatigue Crack Propagation Benchmark,
GDR 3651 FATACRACK. Retrieved from
https://doi.org/10.5281/zenodo.1478472
doi: 10.5281/zenodo.1478472

Li, T., Chen, J., Yuan, S., Zarouchas, D., Sbaru-
fatti, C., & Cadini, F. (2024). Particle filter-
based fatigue damage prognosis by fusing mul-
tiple degradation models. Structural Health
Monitoring, 0(0), 14759217231216697. doi:
10.1177/14759217231216697

Ma, X., Karkus, P., Hsu, D., & Lee, W. S. (2020). Particle fil-
ter recurrent neural networks. AAAI 2020 - 34th AAAI
Conference on Artificial Intelligence, 5101–5108. doi:
10.1609/aaai.v34i04.5952

Reza, M. S., Mannan, M., Mansor, M., Ker, P. J., Mahlia,
T. M., & Hannan, M. A. (2024). Recent advancement
of remaining useful life prediction of lithium-ion bat-
tery in electric vehicle applications: A review of mod-
elling mechanisms, network configurations, factors,
and outstanding issues. Energy Reports, 11(April),
4824–4848. doi: 10.1016/j.egyr.2024.04.039

Saha, B., & Goebel, K. (2007). Battery Data Set. NASA Ames
Prognostics Data Repository.

Sbarufatti, C., Corbetta, M., Giglio, M., & Cadini, F. (2018).
Adaptive prognosis of lithium-ion batteries based on
the combination of particle filters and radial basis func-
tion neural networks. Journal of Power Sources, 344,
128–140. doi: 10.1016/j.jpowsour.2017.01.105

Vanem, E., Liang, Q., Ferreira, C., Agrell, C., Karandikar, N.,
Wang, S., . . . Kandepu, R. (2023). Data-Driven Ap-
proaches to Diagnostics and State of Health Monitor-
ing of Maritime Battery Systems. Annual Conference
of the PHM Society, 15(1), 1–17. doi: 10.36001/phm-
conf.2023.v15i1.3437

Wang, S., Jin, S., Deng, D., & Fernandez, C. (2021).
A Critical Review of Online Battery Remaining
Useful Lifetime Prediction Methods. Frontiers in
Mechanical Engineering, 7(August), 1–19. doi:
10.3389/fmech.2021.719718

Zio, E. (2022). Prognostics and Health Management
(PHM): Where are we and where do we (need to)
go in theory and practice. Reliability Engineer-
ing and System Safety, 218(PA), 108119. doi:
10.1016/j.ress.2021.108119

8

Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN – 978-1-936263-40-0

Page 301


