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ABSTRACT 

In recent industry, hybrid vehicles are gaining more 

recognition as a practical means for future transportation due 

to the longer distance, reduced charging time, and less 

charging stations dependency. The batteries in the hybrid 

vehicles, however, undergo more complex operation of 

charge depleting and sustaining modes alternately, which 

may need more accurate battery state estimation. In this 

study, a model based method is explored for the Li-ion 

batteries in the hybrid electric vehicles to estimate State-of 

Charge (SOC) and State-of-Health (SOH) accurately. While 

there have been widespread studies for this topic in the 

batteries research, not many are found that have investigated 

hybrid operation modes. Also the estimations are mostly 

limited to normal batteries or shallow degradation with the 

SOH higher than 90%. In this study, an algorithm based on 

the dual extended Kalman filter (DEKF) and enhanced self-

correcting (ESC) model is developed for the simultaneous 

estimation of the SOC and SOH. Degradation data for plug-

in hybrid vehicle (PHEV) are taken for the study, which 

undergo the deep degradation of 30%.  In order to maintain 

the accuracy such that the root mean square error (RMSE) of 

the SOC is within 5% over the entire degradation cycles, two 

practical methods are proposed: First, the SOH is estimated 

separately during the battery charging, and is used as a 

constant in the SOC estimation in the discharging cycles. 

Second, battery modeling is conducted and the parameters are 

reset in every intermittent cycles at which the SOH is reduced 

by 10% initially and by 5% thereafter. 

1. INTRODUCTION 

Lithium-ion batteries have been applied extensively in 

various fields, including portable electronic devices, road 

transportation, and power supply systems, expecting their 

future role in energy sustainability (Zubi et al., 2018). As 

battery-powered vehicles such as pure electric and hybrid 

electric vehicles gain popularity, the development of battery 

management systems (BMS) estimating the state-of-charge 

(SOC) and state-of-health (SOH) of the batteries becomes 

crucial to ensure reliable and efficient battery operation 

(Mishra et al., 2021). In the BMS research, most SOC and 

SOH estimators have been developed for pure electric 

vehicles that primarily operate in charge-depleting (CD) 

mode. However, there is an increasing demand for hybrid 

vehicles that can handle higher loads and longer distances, 

which involves switching between CD and charge-sustaining 

(CS) mode during the operation. This can make the SOC 

estimation more difficult than those in the CD mode alone. 

Therefore, SOC and SOH estimation under combined mode 

is necessary for improved accuracy (Yoo et al., 2023).  

Fundamentally, it is impossible to measure the SOC and SOH 

of batteries directly, thus methods are designed for estimating 

them based on measurable data such as current, voltage and 

temperature. Among the many achievements, Kalman Filter-

based algorithms, which belong to the model-based 

approach, have proven their effectiveness and account for 

more than half of the SOC estimation methods (Shrivastava 

et al., 2019). Nevertheless, it is a challenge to estimate SOC 

for degraded batteries, which requires the SOH estimation as 

well (Hannan et al., 2017). Investigations into the 

simultaneous estimation of SOC and SOH, in view of both 

the effectiveness and efficiency, have remained relatively  
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insufficient (Wang et al., 2021). Even in the simultaneous 

estimation of SOC and SOH, substantial portion have 

targeted normal batteries (Campestrini et al., 2016; H. Guo et 

al., 2017; R. Guo & Shen, 2022; Hossain et al., 2022; C. Hu 

et al., 2012; Lee et al., 2008; Plett, 2004, 2006; Shrivastava 

et al., 2022; Ye et al., 2023; Zhang et al., 2016)  

Model-based SOC and SOH estimation for aged battery can 

be categorized into two groups. The first involves updating 

the model's parameters to account for battery aging (Li et al., 

2019; Sepasi et al., 2014; Shrivastava et al., 2019; Xu et al., 

2022). While it is possible to update the model through 

optimization, using which the SOC is estimated, it comes at 

the cost of high computational burden. Additionally, there is 

a challenge in determining an appropriate updating period. 

The second approach involves co-estimation of the states and 

parameters of a battery model (X. Hu et al., 2018; Ma et al., 

2022; Wassiliadis et al., 2018; Wu et al., 2019; Xiong et al., 

2014). While this can be achieved using the dual filter 

algorithms (Yoo et al., 2023), it presents a significant 

challenge due to the substantial number of parameters in the 

model. This is further compounded by the fact that the only 

directly measurable output is the voltage under the given 

currents. Consequently, only a few parameters such as the 

capacity, i.e., the SOH,  and internal resistance are estimated, 

while the others are held at fixed values. However, this 

approach may result in a less accurate model of aged battery. 

 Upon the survey of relevant literature, it follows that the 

approaches on the co-estimation of SOC and SOH by the dual 

filters need a comprehensive discussion in various aspects: 

battery model, type of filters, specific settings of these filters, 

initial values of state and parameters, and the level of 

degradation. Regarding the battery model, used models are 

Thevenin model with first-order (1RC) (Xiong et al., 2014) 

or second-order (2 RC) (Wassiliadis et al., 2018; Wu et al., 

2019), or fractional second-order model (X. Hu et al., 2018; 

Ma et al., 2022). While the extended Kalman filter (EKF) is 

usually used, other filters such as adaptive extended Kalman 

filter (AEKF) or unscented Kalman filter (UKF) have 

sometimes been used, and there is a case where a dual filter 

has different time intervals considering the characteristics of 

state and parameter. Regarding the settings of filter (such as 

error, noise and measurement covariance), many did not 

specify values and conditions, except (X. Hu et al., 2018; 

Wassiliadis et al., 2018).This may make the results less 

trusted in terms of practical  application. In view of the 

degradation levels, only one paper (Wassiliadis et al., 2018) 

has explored capacity fade over 50%, but the results are given 

without confidence intervals. As a result, despite the 

abundance of literature, these limitations pose challenges in 

adopting a practical approach to BMS development. Table 1 

summarizes the representative papers in terms of model, 

methods, results of estimation, and level of degradation. 

This study presents a more practical methodology to co-

estimate the SOC and SOH by the dual Kalman filter for the 

batteries undergoing hybrid operations. Two key insights are 

applied for this research. First, it is observed that the co-

estimation of SOC and SOH may yield inaccurate results due 

to the poor observability of the capacity. To mitigate this, a 

Table. 1. Literature using model-based SOC and SOH estimation with aged battery data. 

Author Year Battery Model 
Methods 

(SOC-SOH) 

Estimation 

Factor 

Results of 

Estimation 

Level of 

Degradation 

R. Xiong 2014 1 RC model EKF-EKF 

(multi-scale) 

SOC, 

All 

Parameters 

SOC, 

Capacity 

100%, 82.6%, 

82.1% and 

72.1% 

N. Wassiliadis 2018 2 RC model EKF-EKF SOC, 

Capacity, 

Resistance 

SOC, 

Capacity, 

Resistance 

100%, 97%, 

85%, 78% and 

49% 

J. Wu 2019 2 RC model AEKF-KF SOC,  

Resistance 

SOC 96.5%, 93.9%, 

and 92.4% 

X Hu 2018 fractional second-order 

model 

EKF-EKF SOC, 

Capacity, 

Resistance 

SOC, 

Capacity, 

Resistance 

86.1%, 81.7% 

and 74.5% 

L. Ma. 2022 fractional second-order 

model 

MIUKF-UKF 

(multi-scale) 

SOC,  

Capacity,  

Resistance 

SOC,  

Capacity 

98.1%, 94.7%, 

and 91.5% 
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practical solution is developed by separating the SOC and 

SOH estimation, namely, estimating the SOC using the Dual 

Extended Kalman Filter (DEKF) in the discharging phase 

while estimating the SOH using the Fixed-Point Iteration 

Method (FPIM) in the charging phase. The reason is that the 

capacity estimation during the charging process is generally 

standardized and exhibit less dynamics as opposed to the 

discharging process. Second, when the batteries degrade by 

more than 10% in capacity, even the performance of this 

approach falls below acceptable level. Therefore, remedial 

action is applied by updating the parameters of battery model 

periodically.  

The approach is validated by utilizing thirty battery cell 

datasets. These datasets are obtained through tests conducted 

under three distinct dynamic profiles representing plug-in 

hybrid electric vehicles (PHEVs), captured at ten points 

throughout the cycles ranging from 0% to 30% of capacity 

fade. Section 2 outlines the experimental method to measure 

temperature, voltage and current, and three types of dynamic 

profiles in charging phase. In Section 3, two battery models: 

Thevenin and Enhanced Self-Correcting (ESC) are 

addressed, which is to estimate voltage from the measured 

data. Section 4 explains the procedure of SOC and SOH 

estimation by the DEKF and FPIM respectively. An 

overview of the key methodology proposed in this paper can 

be found in Figure 1. Finally, key findings are summarized in 

Section 5, providing comprehensive insights and limitations. 

2. BATTERY CELL TEST 

In this study, the same battery cell and equipment described 

in the literature (Yoo et al., 2023) are used for the test, which 

is a Samsung SDI, 18650-35E lithium-ion battery cell with 

nominal capacity of 3.5 Ah and a nominal voltage of 3.7 V. 

The battery is operated by a DC electronic load (Kikusui, 

PLZ1004W), a DC power supply (Kikusui, PWR800L) and a 

charge-discharge system controller (Kikusui, PFX2512) as 

shown in Figure 2. The test profiles are divided into dynamic 

test and aging test. The dynamic profiles comprise of three 

scenarios of Plug-in Hybrid Electric Vehicles (PHEV) as 

shown in Figure 3: City, Highway, and High-speed. City and 

Highway profiles consist of charge-depletion (CD) mode and 

charge-sustaining (CS) mode, while High-speed has CD 

mode only. 

 

Figure 2. Experimental setup 

 
Figure 3. Voltage response to the current profiles adopted: 

(a) City, (b) Highway, and (c) High-speed 

Figure 1. An overview of the core methodology 
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Aging test is performed to acquire aged battery data, by 

repeating charging and discharging cycles up to the capacity 

degradation of 30% as shown in Figure 4. Once the battery 

cell exhibits a noteworthy degree of capacity fade, three 

different dynamic profiles are applied. Before proceeding the 

aging test, static test is conducted to obtain the relation 

between the open circuit voltage (OCV) and SOC as shown 

in Figure 5. In the aging test, 2100 cycles are used to make 

capacity fade of 30%.  Dynamic tests are conducted at 10 

time points with the intervals of every 100 cycles during the 

period from the initial to the 300th cycles, and with the 

intervals of every 300 cycles from the 300th to the end of the 

cycles, which is depicted in Figure 6. The failure threshold 

for SOH is given at the 80% of initial capacity as shown in 

the dotted horizontal line in the figure. The capacity 

decreases mostly in linear fashion, except from 1200 to 1500 

cycles where it is constant. The dynamic test data at each 

cycle, which are 0, 300, 1200 and 2100 cycles, are presented 

in Figure 7. For each cycle, three dynamic profiles are applied 

with the initial SOC set at approximately 0.9 (90%). As the 

degradation proceeds, each profile exhibits an abrupt 

termination because the cutoff voltage is reached earlier, 

indicating that the capacity has faded. 

 
Figure 4. Aging test profiles 

 
Figure 5. OCV-SOC relationship 

 
Figure 6. Capacity degradation in the aging test 

 

 

(a) 

 

 
(b) 

 

 
(c)  

Figure 7. Voltage response to the current profiles adopted at 

each cycle: (a) City, (b) Highway, and (c) High-speed 

3. BATTERY MODEL 

In this study, Thevenin and Enhanced Self-Correcting (ESC) 

models are reviewed to select a suitable battery model based 

on the gathered test data. The Thevenin model, one of the 

most widely utilized equivalent circuit models (ECMs) for 

model-based estimation of batteries, describes battery 

behavior by accounting for voltage drop through a resistor 

element and time-varying polarization voltages through one 

or more parallel resistor-capacitor (RC) elements. 
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The ESC model, proposed by Plett (2015), extends the 

Thevenin model by incorporating a hysteresis term to 

describe the hysteresis voltage of batteries with empirical 

modeling. Its configuration is shown in Figure 8, where 𝑣𝑇 is 

terminal voltage, 𝑣𝑜𝑐  is open-circuit voltage, 𝑧  is 𝑆𝑂𝐶 , 𝑖  is 
current (current bias ib is ignored in this study) flowing 

through 𝑅0  (ohmic resistance), 𝑖𝑅  is the current flowing 

through 𝑅𝑗  and 𝐶𝑗  (polarization resistance and capacitance), 

h is hysteresis, 𝑀  is maximum hysteresis voltage, 𝑀0  is 

instantaneous hysteresis voltage, and s is sign function of 𝑖. 

 

Figure 8. Circuit schematic for the ESC model which is the 

same as the Thevenin model except the addition of 

hysteresis voltages (in blue) 

This study considers cases with 1 or 2 RC pairs for both the 

Thevenin and ESC models, denoted as Thevenin 1RC/2RC, 

and ESC 1RC/2RC. In order to estimate the model 

parameters, method by Plett, (2015) and Yoo et al., (2023) is 

employed, using the dynamic data for each cycle. 

Consequently, the models enable calculation of terminal 

voltage under the given current. The performance of each 

model is summarized in Figure 9 by the root mean square 

error (RMSE) between measured and estimated voltage. It is 

noteworthy that the ESC model outperforms the Thevenin 

model consistently for all the collected data. This superiority 

becomes more remarkable as the battery is aged. It is found 

that the hysteresis term in the model is useful to describe 

aging of the battery. Another observation is that the 

incorporation of additional RC pairs primarily yields a 

positive effect in the case of the Thevenin models, whereas it 

does not in the ESC model. This is from the fact that the 

hysteresis term diminishes the relative influence of additional 

RC pairs in the ESC model. This observation supports that 

adding the hysteresis term is better than adding the number 

of RC pairs. Therefore, the ESC 1RC model is chosen in this 

study. However, it is important to note that even the 

performance of the ESC model experiences accuracy loss in 

the aged batteries, which means that the model error increase 

is inevitable as the battery ages. 

 

(a) 

 

(b) 

 

(c) 

Figure 9. Modeling performance of each model:  

(a) City, (b) Highway, and (c) High-speed 

4. SOC AND SOH ESTIMATION 

In this section, the procedure of SOC and SOH estimation by 

the DEKF and FPIM are outlined along with the 

corresponding result. The initial step involves the application 

of a general DEKF as reviewed in Section 1, based on the 
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ESC 1 RC model as determined in Section 3. Subsequently, 

the inherent weak observability of capacity in the DEKF 

algorithm is identified. To address this, the FPIM, a capacity 

estimation technique, is integrated into the DEKF framework. 

However, despite this integration, there exsists a decline in 

estimation performance for deep degraded battery cells. 

Therefore, remedial solution is proposed: an initial parameter 

estimation update is recommended after a 10% capacity loss 

to enhance estimation performance. Estimation results are 

summarized in each step of this process. In summary, the 

contribution of this study is to improve and validate 

methodologies to estimate SOC and SOH for test datasets 

with various dynamic profiles, including hybrid operation 

modes, and various degradation levels, up to 30% of capacity 

loss of battery cells. 

The dual extended Kalman filter (DEKF), one of the 

approaches to generalize the extended Kalman filter (EKF) 

for simultaneous estimation of state and parameters, 

comprises of two filters: one for estimating the state and the 

other for estimating the parameters (Plett, 2005, 2015). Each 

filter executes the steps, and they are linked by exchanging 

information during the time update sequence. In this research, 

we propose a hybrid approach incorporating the DEKF and 

the capacity estimation technique to overcome the inherent 

weak observability of the capacity in the DEKF algorithm 

(Wassiliadis et al., 2018). The capacity estimation is 

implemented by the fixed-point iteration method (FPIM) 

during battery charging, and the estimated capacity value is 

used as a known value in the DEKF during the battery 

discharging (Sung & Lee, 2018). 

At first, the DEKF is applied for the co-estimation of SOC 

and SOH, and the results are evaluated by the RMSE in the 

case of SOC and the last estimated value in the case of SOH 

in each dynamic profile, whose true values were obtained 

through coulomb counting of current during the conducted 

profiles and capacity testing after the profiles, respectively. 

Then, our proposed approach is applied, where the SOH 

estimation is separated from the DEKF and is made by the 

FPIM during the charging cycle.  

Estimation Results of SOC and SOH using DEKF 

By applying the DEKF based on the ESC 1RC Model to all 

30 datasets, estimation results are obtained for SOC and 

SOH. Regarding the SOC, the RMSE for each profile and 

cycle is illustrated in Figure 10. It was observed that prior to 

600 cycles, the estimation performance exhibits RMSE of 

less than 3% for all datasets. However, beyond 600 cycles, a 

significant degradation in estimation performance become 

evident. As the degradation progresses, it can be observed 

that the error in the initial SOC gradually increases.  

Involving OCV-SOC tests at specific time intervals and 

subsequently updating the battery model can mitigate 

inaccuracies in estimation. Nevertheless, static tests for 

acquiring OCV-SOC lookup tables are time-consuming, and 

selecting suitable test time points poses a challenge. 

 Figure 10. Estimation results of SOC using DEKF 

In this paper, a methodology is explored to mitigate 

inaccuracies in estimation without additional static tests. 

Hence, the inaccurate initial SOC estimation due to the 

battery aging remains as an inherent error in estimation 

without updating the battery model.  

In the SOH estimation, it was observed that, except for the 

early degradation stage, the capacity generally does not 

satisfy the acceptable level of performance. Figure 11 depict 

the results of SOH estimation as the battery ages for each 

profile. It is observed that the capacity has low observability, 

and its estimation depends on the specific profile. This may 

be due to the fundamental issues in estimating various states 

and parameters based on limited measurement data. 

Meanwhile, for internal resistance, overall estimation 

performance was found to be superior when compared to the 

reference values. It is noted that the internal resistance has 

high observability compared to the capacity. Thresholds for 

failure based on each SOH were established at 80% of the 

initial capacity and twice the initial value for the internal 

resistance. Reference values of internal resistance were 

derived from battery modeling results rather than obtained 

through power tests. In this investigation, capacity was 

regarded as the indicator of SOH since the true capacity was 

measured at each time point. Consequently, the failure point 

of the battery is estimated to occur around 1,000 cycles, 

coinciding with the battery's capacity dropping below 80% of 

Table. 2. Initial SOC estimation of each dataset 

Cycle City Highway High Speed 

0 0.88 0.88 0.88 

100 0.88 0.88 0.88 

200 0.87 0.88 0.88 

300 0.87 0.87 0.87 

600 0.85 0.85 0.85 

900 0.84 0.83 0.83 

1200 0.81 0.82 0.82 

1500 0.81 0.82 0.83 

1800 0.79 0.80 0.80 

2100 0.79 0.78 0.78 
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its initial capacity, as shown Figure 12. This failure point 

couldn't be accurately predicted due to the low observability 

of capacity in this estimation algorithm. 

 

(a) 

 

(b) 

 

(c) 

Figure 11. Capacity estimation results of PHEV datasets  

(a) City, (b) Highway and (c) High-speed 

 

(a) 

 

(b) 

 

(c) 

Figure 12. Resistance estimation results of PHEV datasets 

(a) City, (b) Highway and (c) High-speed 

 

Estimation Results of SOC and SOH using DEKF and FPIM 

SOH Estimation 

 To overcome the low performance in capacity estimation, we 

have applied capacity estimation techniques separately using 

the charging profile data. Among various techniques, fixed-

point iteration method (FPIM) was selected to estimate 

capacity during charging. Since there is only one type of 

profile in the charging, we can obtain a single capacity 

estimation result, as shown in Figure 13.  

 
Figure 13. Results of the SOH estimation. 

The  estimation error was confirmed to be within 3%, 

indicating a significant improvement in estimation 

performance compared to the DEKF methodology, which 

estimates simultaneously from each profile. 
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SOC Estimation 

Utilizing the estimated capacity during charging as a fixed 

value for SOC estimation using DEKF, the performance of 

SOC estimation is depicted in Figure 14. Unfortunately, 

despite improvements in capacity estimation performance, 

there is no corresponding enhancement observed in SOC 

estimation. It is observed that the performance significantly 

deteriorates with RMSE exceeding 5% after 600 cycles.  

 
Figure 14. Estimation results of SOC using DEKF and 

FPIM 

The everlasting decrease in the performance of SOC 

estimation as battery ages, despite the capacity being so close 

to the true value, can be attributed to several factors. These 

encompass the initial SOC estimation error and inaccuracies 

in model assumptions, as previously mentioned. 

Additionally, nonlinearities in the battery behavior and 

limitations in the estimation algorithms employed contribute 

to this phenomenon. Moreover, the interaction among these 

factors can exacerbate the complexity of the estimation 

process, further impeding the accurate SOC estimation. In the 

battery modeling of Figure 9, it has been observed that the 

ESC 1RC demonstrates sufficient capability to simulate the 

behavior of aged batteries. Consequently, there is an 

expectation that the SOC estimation would perform well if 

the parameters were estimated to optimal values. However, 

the challenge arises when attempting to simultaneously 

estimate the states and parameters to their optimal values 

within the filter algorithm, especially based on the limited 

measurement data. To address them, the initial parameter 

estimation values were set as the last parameter estimation 

values from the former dataset for each profile. This approach 

aimed to leverage the previous dataset's knowledge and fine-

tune the initial parameter values for improved estimation 

accuracy in subsequent cycles. By initializing the parameters 

with values derived from the previous dataset, it was 

expected that the model could benefit from the accumulated 

insights and trends observed in earlier profiles, thereby 

enhancing the robustness and reliability of the estimation 

process. However, while it has been noted that  internal 

resistance exhibits high observability in the estimation 

algorithm, the majority of parameters display low 

observability. Furthermore, unlike capacity or internal 

resistance, there is no discernible trend for each parameter 

during degradation. This lack of observable trends makes the 

efforts useless in the estimation process. 

Estimation Results of SOC using DEKF, FPIM and initial 

parameter estimation update 

SOC Estimation 

 To address the issue of deteriorating SOC estimation 

performance despite the improvement in SOH estimation 

through separate estimation, a method was applied to conduct 

the battery model at specific time points and reset the initial 

parameter estimation values. 

Based on the degradation threshold of 20% capacity loss as 

the failure point for SOH, the battery modeling was 

conducted using dynamic profiles at intervals of 10% 

capacity loss initially, and 5% capacity loss subsequently. 

This method involved conducting the battery model at 600, 

1200, and 1800 cycles to reset the initial parameter values. 

As a result, the SOC estimation performance was improved 

to within RMSE 5% after 600 cycles. The SOC estimation 

performance and the SOC estimation errors at 0, 600, 1200, 

and 2100 cycles are illustrated in Figure 15. Internal 

resistance estimation showed no significant impact compared 

to the previous method, as confirmed in Figure 16.  

 
Figure 15. Estimation results of SOC using DEKF, FPIM 

and initial parameter estimation update 

 

(a) 
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(b) 

 

(c) 

Figure 16. Resistance estimation results of PHEV datasets 

(a) City, (b) Highway and (c) High-speed 

5. CONCLUSION 

In this study, a methodology is investigated to estimate SOC 

and SOH of the battery  whose capacity degraded from 0 to 

30%. A hybrid approach is proposed that the DEKF and the 

capacity estimation technique are incorporated to overcome 

the inherent weak observability of the capacity in the DEKF 

algorithm. The capacity estimation is implemented by the 

fixed-point iteration method (FPIM) during the battery 

charging, and the resulting estimated capacity value is held 

constant in the process of DEKF during battery discharging. 

However, we observed a decline in estimation performance 

beyond a 10% capacity loss, prompting us to propose an 

initial parameter estimation update to address this issue. As a 

result, the proposed methodology achieves an accurate and 

reliable co-estimation of SOC and SOH, even in the battery 

aging with SOC estimation error lower than 5% and SOH 

estimation error lower than 3%, even for a battery cell with a 

capacity fade of 30% for three profiles including hybrid 

operation modes. 
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