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ABSTRACT 

In the construction of health indicator for electromechanical 

equipment, selecting features that exhibit monotonicity, trend 

characteristics, and a strong correlation with equipment 

health is paramount to accurately reflect these indices. With 

the advent of numerous libraries and models for time-series 

data feature extraction, the range of potential features has 

expanded significantly. Despite this proliferation, there is a 

lack of extensive research on effective feature selection. This 

paper investigates the efficacy of the Maximum Information 

Coefficient (MIC) method in extracting features that align 

with the monotonicity and trend-related requirements of 

electromechanical equipment health indicator. Our 

experiments indicate that the MIC method adeptly identifies 

pertinent features for the construction of these indices, 

underlining its utility in the field of health monitoring for 

electromechanical systems. 

1. INTRODUCTION 

The construction of health indicator is essential for evaluating 

the current health status of engineering systems and their 

critical components, playing a pivotal role in inferring their 

Remaining Useful Life (RUL). The accuracy of RUL 

predictions hinges on the ability to develop health indicator 

that precisely reflect the condition of these components. 

Gears, for instance, are key elements in transmission systems. 

Damage to gears can lead to severe economic losses and 

potential personnel injuries. Therefore, accurately assessing 

their health status is crucial to prevent accidents caused by 

gear failures. This underlines the importance of reliable 

health indicator construction as a preventative measure 

against unforeseen mechanical breakdowns. 
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Currently, in the fault diagnosis and predictive analysis of 

gears, the application of vibration signals collected by 

accelerometers is the most widespread. Compared to other 

types of signals, such as temperature and pressure, vibration 

signals exhibit a higher sensitivity in detecting changes in 

gear health status [1]. The typical process for constructing 

health indicator, as illustrated in Figure 1, comprises four 

distinct stages: data acquisition, feature extraction, feature 

selection, and feature fusion, culminating in the construction 

of the health indicator. This structured approach ensures a 

comprehensive analysis, leveraging the sensitivity of 

vibration signals to accurately reflect the health status of the 

gears. 

 

Figure 1. Typical Process for Health Indicator Construction. 

In the construction of health indicator, feature extraction 

methods predominantly yield three types of features [2]-[3]. 

The first type, statistical domain features, are derived through 

statistical analysis to capture key characteristics of the data. 

They describe central tendencies, distribution ranges, and 

deviations in data shape. The second type, temporal domain 

features, focus on analyzing changes and dynamic properties 

in time series data. Finally, spectral domain features are 

identified through frequency analysis, uncovering periodic 
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components and spectral distributions within the data. 

Techniques like Fourier transform and other spectral analysis 

methods are employed to extract frequency components, 

which are crucial for understanding oscillatory patterns and 

frequency-related characteristics in the data. These three 

feature types compress information carried by the original 

signal from different perspectives. In health indicator 

construction, they play pivotal roles, complementing and 

interrelating with each other to provide a robust feature 

foundation for a comprehensive assessment of health 

conditions. 

In the context of constructing health indicator, three principal 

methods are employed for feature selection: filter methods, 

wrapper methods, and embedded methods [4]. Filter methods 

involve selecting features based on specific metrics, with the 

selection process operating independently of the health 

indicator construction algorithm. This approach prioritizes 

features based on their statistical properties. In contrast, 

wrapper methods iteratively utilize the algorithm to assess the 

impact of different feature sets on the performance of the 

health indicator. This process iteratively evaluates and selects 

features based on their contribution to the model's 

effectiveness. Finally, embedded methods integrate feature 

selection directly into the algorithm's internal structure. This 

approach leverages the intrinsic properties of the algorithm to 

optimize feature selection concurrently with model training, 

leading to a more cohesive and efficient feature selection 

process. 

Filter methods operate independently of any health indicator 

construction algorithms. In the context of health indicator 

construction, filter methods generally rely on a single metric 

for feature evaluation or employ an average of 2-3 metrics to 

determine the ranking. Medjaher et al. [5] introduced a novel 

hybrid feature significance ranking metric in their feature 

evaluation, incorporating monotonicity, correlation, and 

robustness for Health Indicator selection. Sun et al. [6] 

proposed the TWM-U2PL, consisting of a teacher model and 

a student model. The teacher model includes two independent 

classifiers that assist in extracting and categorizing wear 

features. Hu et al. [7] presented a method using minimum 

Redundancy Maximum Relevance (mRMR) to measure the 

similarity between features and the correlation between 

features and categories, facilitating the selection of 

dimensionless indices. Anil Kumar et al. [8] extracted 

statistical features from time-domain, frequency-domain, and 

time-frequency domain signals. They identified important 

features by calculating feature scores based on the differences 

in feature values between nearest neighbor pairs of instances. 

In the process of constructing health indicator, information 

theory has been applied to enhance the effectiveness of fault 

feature extraction and health indicator formulation. Akhand 

Rai et al. [9] utilized multiscale fuzzy entropy extracted from 

vibration signals as fault features. These multiscale fuzzy 

entropy feature vectors form probability distributions. The 

Jensen-Rényi divergence technique is then applied to 

differentiate the probability distributions of degraded and 

healthy multiscale entropy feature vectors, thereby 

establishing the desired health indicator. Sui et al. [10] 

proposed a bearing RUL prediction method using Mutual 

Information (MI) and Support Vector Regression (SVR) 

models to accurately assess the degradation state of 

mechanical equipment and comprehend bearing RUL 

information. Ekhi Zugasti et al. [11] introduced feature 

selection methodologies using Principal Component 

Analysis (PCA), Uniform Minimum Redundancy Maximum 

Relevance (UmRMR), and a combination of both, aimed at 

resolving the damage detection problem. These approaches 

demonstrate the value of information-theoretic techniques in 

creating more accurate and reliable health indicator for 

mechanical systems. 

Selecting features based on criteria such as monotonicity and 

correlation poses a challenge in effectively gauging the 

relative importance of each metric. This paper introduces a 

feature selection method for health indicator utilizing the 

MIC ranking, which is adept at identifying features that 

encapsulate a comparatively higher quantity of degradation 

information. The structure of the remainder of this paper is as 

follows: Section 2 details the proposed MIC-based health 

indicator feature selection method. Section 3 describes the 

experimental setup and data acquisition process. 

Experimental results are presented in Section 4. Conclusions 

are drawn in Section 5. 

2. METHODOLOGY 

In the construction of health indicator, feature selection 

constitutes a crucial aspect. Given the plethora of feature 

extraction methods available, it is imperative to selectively 

identify features that accurately represent the state of 

degradation. Such features typically necessitate possessing 

two key attributes: monotonicity and correlation. These 

attributes are quantifiable and can be effectively measured 

using specific formulas, designated as Eq. (1) for 

monotonicity and Eq. (2) for trendiness, as detailed in the 

referenced literature [12]. 

Monotonicity primarily measures the trend of a feature, 

whether it is consistently increasing or decreasing. A feature 

with the higher monotonicity indicates the better degradation 

with an increasing/decreasing trend. The calculation of 

monotonicity is conducted as follows: 

𝑀𝑜𝑛(𝑓𝑖) = |
#(∆𝑓𝑖 ≥ 0)

𝐿 − 1
−

#(∆𝑓𝑖 < 0)

𝐿 − 1
| (1) 

where 𝑀𝑜𝑛(𝑓𝑖) is the monotonicity value for the 𝑖𝑡ℎ feature 

𝑓𝑖 with length of 𝐿. ∆𝑓𝑖 = 𝑓𝑖+1 − 𝑓𝑖 is the difference between 

consecutive elements. #(∆𝑓𝑖 ≥ 0) represents the number of 

non-negative differences in the 𝑓𝑖  sequence. #(∆𝑓𝑖 < 0) 

represents the number of negative differences in the 𝑓𝑖 

sequence. 
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Correlation as a metric primarily reflects the degree of 

correlation between a feature and the time of degradation. 

The formula for calculating correlation is as follows: 

𝐶𝑜𝑟𝑟(𝑓𝑖, 𝑇𝑖) = |
𝑐𝑜𝑣(𝑓𝑖, 𝑇𝑖)

𝜎𝑓𝑖 ∙ 𝜎𝑇𝑖

| (2) 

where 𝑐𝑜𝑣 is the covariance of 𝑖𝑡ℎ  feature 𝑓𝑖  with the time 

vector 𝑇,and 𝜎 is the standard deviation. 

An effective understanding of the concepts of monotonicity 

and correlation in feature analysis can be easily achieved by 

referring to Figure 2. This figure is divided into two parts: the 

left side depicts the behaviors of four distinct features, 

labeled F1 through F4, across their entire lifecycle. The right 

side, in contrast, illustrates the corresponding Monotonicity 

Score and Correlation Score for each of these features. By 

examining these graphical representations, one can clearly 

discern how different features exhibit varying levels of 

monotonicity and correlation over time. 

 

Figure 2. Four representative features. F1 represents high 

Monotonicity and high Correlation, F2 represents low 

Monotonicity and high Correlation, F3 represents high 

Monotonicity and low Correlation, and F4 represents Low 

Monotonicity and Low Correlation. 

The feature selection method for gear health indicators with 

MIC proposed in this paper is able to complete the feature 

selection quickly and, at the same time, ensure the 

monotonicity and trend of the features to a certain extent. 

2.1. Basic theory of The MIC 

The calculation of the MIC [13] necessitates the computation 

of mutual information values between variables. Mutual 

information is a concept in information theory that quantifies 

the degree of mutual dependence between two random 

variables. It serves as a measure of the amount of information 

one variable contains about another. The greater the mutual 

information value, the stronger the interdependence between 

the two variables. When considering two random variables, 

𝑋 and 𝑌 , their mutual information, denoted as 𝐼(𝑋, 𝑌) , is 

defined as follows: 

 

𝐼(𝑋, 𝑌) = ∑ 𝑝(𝑥, 𝑦)
𝑥∈𝑋,𝑦∈𝑌

log (
𝑝(𝑥, 𝑦)

𝑝(𝑥)𝑝(𝑦)
) (3) 

Where 𝑝(𝑥, 𝑦) represents the joint probability distribution of 

𝑋  and 𝑌 , 𝑝(𝑥)  and 𝑝(𝑦)  denote the marginal probability 

distributions of 𝑋 and 𝑌. 

Unlike mutual information, the MIC demonstrates 

heightened sensitivity to a broader range of relationship types 

between variables. It is adept not only at identifying linear 

and non-linear functional relationships, such as exponential 

and periodic, but also at detecting non-functional 

relationships, including combinations or overlays of 

functional relationships. The aim of MIC is to provide a 

unified measure of similarity for various types of 

relationships. MIC builds upon the concept of mutual 

information. It operates by exploring all possible grid 

partitions of the data, seeking the partitioning that maximizes 

the mutual information. The value of MIC ranges between 0, 

indicating no relationship, and 1, signifying a perfect 

correlation. This range provides a clear and quantifiable 

indication of the strength and nature of the relationship 

between the variables. The MIC functions by calculating 

mutual information across a range of different grid partitions, 

with the objective of identifying the partition that maximizes 

this mutual information. Specifically, for a given dataset, the 

MIC algorithm evaluates various grid sizes and 

configurations. It systematically computes the mutual 

information for each of these configurations. The 

configuration that yields the highest mutual information is 

then selected, and its corresponding mutual information value 

is designated as the MIC value. 

In a dataset comprising data points with two attributes, X and 

Y, these points are distributed within a two-dimensional 

space. To analyze these data, an 𝑚 × 𝑛  grid is utilized to 

partition this space. The frequency of data points falling 

within a specific row 𝑥 of the grid is used to estimate the 

marginal probability 𝑝(𝑥). Similarly, the frequency of data 

points in a particular column 𝑦 is used as an estimate for the 

marginal probability 𝑝(𝑦) . Furthermore, the frequency of 

data points located within a specific cell (𝑥, 𝑦) of the grid 

provides an estimate for the joint probability 𝑝(𝑥, 𝑦). 

𝑝(𝑥, 𝑦) =
𝑁(𝑥, 𝑦)

∑ ∑ 𝑁(𝑖, 𝑗)𝑛
𝑗=1

𝑚
𝑖=1

 (4) 

By altering the method and arrangement of the grid 

partitioning, a range of mutual information values can be 

generated. This variation is crucial in the process of 

calculating the MIC. 

𝑀𝐼𝐶(𝑋, 𝑌) = max
𝑚∗𝑛≤𝑛𝑎

𝐼(𝑋, 𝑌)

log2 min (𝑚, 𝑛)
 (5) 

Where 𝑛 represents the scale of the data. The value of the 

constant 𝑎  can be set based on experience or scale. The 

condition 𝑚 ∗ 𝑛 ≤ 𝑛𝑎 is to limit the size of the grid for the 

purpose of dividing regions. Dividing by log2 min (𝑚, 𝑛) 
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completes the normalization of data in different dimensions, 

ensuring that their values fall within the interval [0,1]. 

2.2. Features Selection in Health indicator Utilizing MIC 

Ranking 

This paper primarily investigates feature extraction and 

selection from vibration signals. The features extracted in this 

study are listed in the accompanying table. For detailed 

explanations of each feature's significance and technical 

definitions, readers are referred to literature [2], as this paper 

focuses on the application rather than the detailed 

descriptions of these features. It is important to note that some 

features yield multiple output values. In such cases, each 

distinct output is assigned a unique Feature ID to facilitate 

clear identification and analysis. 

Table 1. Feature List. 

ID 

Statistical 

Domain 

Features 

ID 

Temporal 

Domain 

Features 

ID 

Spectral 

Domain 

Features 

1 
Absolute 

energy 
2 

Area under 

the curve 
9 

Fundamental 

frequency 

4 
Average 

power 
3 

Autocorrelati

on 
23 

Max  

power 

spectrum 

6-7 
ECDF 

Percentile 
5 Centroid 33 

Median 

frequency 

8 Entropy 24 
Maximum 

frequency 
39 

Power 

bandwidth 

10- 

19 
Histogram 27 

Mean 

absolute diff 
43 

Spectral 

centroid 

20 
Interquartile 

range 
28 Mean diff 44 

Spectral 

decrease 

21 Kurtosis 31 
Median 

absolute diff 
45 

Spectral 

distance 

22 Max 32 Median diff 46 
Spectral 

entropy 

25 Mean 35 
Negative 

turning points 
47 

Spectral 

kurtosis 

26 

Mean 

absolute 

deviation 

36 

Neighbourho

od 

peaks 

48 

Spectral 

positive 

turning 

points 

29 Median 38 
Positive 

turning points 
49 

Spectral 

skewness 

30 

Median 

absolute 

deviation 

41 
Signal 

distance 
50 

Spectral 

slope 

34 Min 54 
Sum absolute 

diff 
51 

Spectral 

spread 

37 
Peak to peak 

distance 
56 

Zero crossing 

rate 
52 

Spectral 

variation 

40 
Root mean 

square 
    

42 Skewness     

53 
Standard 

deviation 
    

55 Variance     

In the context of feature selection for health indicators, it is 

necessary to first construct a progressively growing sample 

sequence 𝑻 =  [1, 2, . . . , 𝑁] based on the sampling interval. 

The feature set composed of features in TABLE I is denoted 

as 𝑭 =  {𝑭𝟏, 𝑭𝟐, . . . , 𝑭𝑳} . The pseudocode for feature 

selection is as follows: 

Table 2. Based on MIC Health Indicator Feature Selection. 

Input:𝑻, 𝑭 

output: 𝑭 are sorted by MIC 
1: for each feature 𝑭𝒊  ∈  𝑭 do 

2:     MIC of 𝑭𝒊 = 0 
2:     for (𝑚, 𝑛) such that 𝑚 ∗ 𝑛 ≤ 𝑛𝑎 do 

3:           Divide 𝑻, 𝑭𝒊 according to 𝑚, 𝑛 to form a grid 𝐺 

4:           Calculate the mutual information 𝐼(𝑭𝒊, 𝑻) of 𝑭𝒊 and 𝑻  

            on grid 𝐺 

5:           Normalized mutual information 

6:           if Normalized mutual information> MIC of 𝑭𝒊 

7:                MIC of 𝑭𝒊 = Normalized mutual information 

7:      Add MIC of 𝑭𝒊 in MIC list 

8: Sort 𝑭𝒊 in 𝑭 by MIC list 

The two principal characteristics of the MIC offer significant 

advantages in the context of feature selection for health 

indicator. 

Generality: The MIC demonstrates a high degree of 

applicability across a wide array of relationship types, 

encompassing linear, non-linear, monotonic, and non-

monotonic associations. This Generality enables the selection 

of features that are representative of diverse functional 

relationships, thereby facilitating more effective feature 

fusion in reflecting health indicator. 

Equitability: MIC exhibits a relatively consistent sensitivity 

across different types of relationships. This means that 

whether the relationship between variables is linear, 

curvilinear, or follows other complex patterns, MIC can 

identify it with similar efficacy, provided the relationship is 

sufficiently strong.  Consequently, MIC is capable of 

selecting features that are most relevant and informative, 

enhancing the accuracy and reliability of the resulting health 

indicator. 

3. EXPERIMENTAL PROCEDURE 

In this study, the experimental data set was collected through 

accelerated degradation tests conducted on gears. The 

experimental platform consisted of a two-stage parallel-axis 

gearbox. The torque applied to the gearbox was generated by 

a load motor attached to the output end. An accelerometer 

was mounted at the output cover to capture vibration signals 

along the Z-axis of the gearbox. The data collection was 

conducted with a high sampling frequency of 12,800 Hz, 

ensuring detailed capture of the vibration characteristics. The 

input frequency to the gearbox was set at 40 Hz. The platform 

for accelerated degradation tests conducted on gears is shown 

in Figure 3. The position relationship of each transmission 

gear in the gearbox is shown in Figure 4. 
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Figure 3. Experimental Platform. 

 

Figure 4. Position Relationship of Each Transmission Gear 

in the Gearbox 

For detailed specifications of the basic gear parameters, 

readers are directed to Table 3. Additionally, the data set 

encompasses real-life operational data of gearboxes 

throughout their entire lifecycle, recorded under three 

different load conditions. For a more comprehensive 

understanding of these data sets, including the specific 

conditions and parameters, please refer to Table 4. 

Table 3. Gearbox Parameters. 

Parameters 
Primary 

Gear Units 

Secondary 

Gear Units 
Number of small gear teeth 29 36 

Number of large gear teeth 95 90 

Pinion tooth width/mm 15 15 

Large gear tooth width/mm 15 15 

Modulus/mm 1.5 1.5 

Pressure angle/° 20 20 

Table 4. Experimental Data Set. 

Gear 

ID 
torque load 

Total Working 

Hours (H) 

Sample 

Size 
𝐺_1 50% 110 3303 

𝐺_2 60% 102 3079 

𝐺_3 70% 34 1022 

Figure 5 provides a graphical representation of the vibration 

signals from the tested gearbox, labeled G_1, over its entire 

lifecycle. The temporal progression of these signals is 

distinctly illustrated, with noticeable variations becoming 

evident as time progresses. This variation in the vibration 

signals is indicative of changes in the gearbox's condition, 

suggesting a correlation with the performance degradation of 

the gear. 

 

Figure 5. The Z-axis Vibration Signals Over Entire 

Lifecycle of G_1. 

4. RESULT AND DISCUSSION 

The study involved extracting a comprehensive set of 56 

features from the full lifecycle experimental data of three 

distinct gear sets. Following the extraction, the feature 

selection process, as detailed in Section 2.2 of this document, 

utilized the MIC algorithm. This algorithm was applied to 

each feature to calculate its MIC value, assessing the strength 

of the relationship between the feature and the gear's health 

status. Subsequently, the features were sorted based on the 

average MIC values computed across the three gear sets, 

providing a comparative view of their significance. The 

results of this feature selection and sorting process are 

illustrated in the Figure 6, offering insights into the relative 

importance of the various features in the context of gear 

health monitoring.

 
Figure 6. MIC Values for 56 Features of Three Gears. 
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Figure 7. Lifecycle Curves of the Top Six Features Ranked by MIC Score. 

 

Figure 8. Lifecycle Curves of Features Ranked in the Bottom Six by MIC Score

It is observed that some features exhibit MIC Scores nearing 

1 in Figure 6, indicating a significant non-linear relationship 

between these features and the equipment's degree of 

degradation. To analyze this further, the features with the top 

six and bottom six MIC Scores were normalized and their 

lifecycle variation curves were plotted in Figure 7 and Figure 

8. The analysis reveals that the features ranked in the top six 

display pronounced trendiness and a certain degree of 

monotonicity, suggesting a strong correlation with the 

equipment's degradation process. Conversely, the features 

ranked in the bottom six show little to no discernible trend or 

pattern. This contrast underscores the efficacy of MIC Scores 

in distinguishing features that are strongly indicative of 

equipment health from those that are less informative. 

Utilizing Eq. (1) and (2), the monotonicity and trendiness 

indices of the features were calculated. The analysis revealed 

a discernible positive correlation between the MIC values and 

these indices in Figure 9. Specifically, it was observed that 

features with higher MIC values tend to exhibit more 

pronounced monotonicity and trendiness. Conversely, 
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features with lower MIC values generally show weaker 

performance in these aspects. This correlation indicates that 

the MIC can be a reliable indicator of a feature's relevance, 

particularly in terms of its monotonic and trend-based 

behavior, which are critical attributes in assessing the health 

and degradation of equipment.

 
Figure 9. MIC Score, Monotonicity Score and Correlation Score.

5. CONCLUSION 

The application of the MIC algorithm in this study has proven 

to be highly effective in selecting features that correlate 

closely with gear health. This approach ensures that the 

resultant health indicator exhibit enhanced monotonicity and 

trendiness, thereby providing a more accurate reflection of 

the gear's condition. Notably, MIC also effectively 

compensates for the shortcomings of mutual information by 

offering a more comprehensive quantification of the 

correlation between features and equipment health. 

However, it is important to acknowledge a key limitation of 

the MIC algorithm: its reliance on large datasets for 

meaningful computation. The efficacy of MIC is significantly 

reduced when applied to smaller datasets. Recognizing this 

constraint, future research efforts will focus on modifying 

and improving the algorithm to better suit applications 

involving smaller data samples. Such advancements will 

broaden the applicability of this method, allowing for more 

versatile and reliable gear health assessments across a wider 

range of data scenarios. 
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