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ABSTRACT

Data-driven approaches are highly reliant on the representa-
tiveness of the dataset used for training the algorithms. For
Prognostics and Health Management (PHM) applications, a
lack of representativeness will result in detecting new oper-
ating conditions (that have not yet been observed during the
period used for training) as faults. This is particularly a chal-
lenge for PHM in critical systems, for which long and consis-
tent datasets with all operating conditions are generally not
available.

Among the many data-driven approaches applied to PHM,
Deep Learning has recently brought promising results, en-
abling an automation of traditional PHM tasks, including sig-
nal processing, feature engineering and signal monitoring.
Yet, as the parameters to optimize in a Deep Neural Network
are numerous, the training requires also huge datasets: an-
other quality often missing in critical system datasets.

When a fleet of systems is monitored, however, a solution to
compose more representative and bigger training datasets is
to combine condition monitoring data from systems with sim-
ilar operating conditions. Identifying similar operating con-
ditions would, traditionally, require comparing the distances
and the distributions of multi-dimensional time series, a com-
putationally intensive task worsened by the curse of dimen-
sionality.

In this paper, we propose to use a deep neural network, de-
signed for measuring similarities between the training and
the testing datasets: a Hierarchical Extreme Learning Ma-
chine (HELM). HELM has demonstrated excellent abilities to
jointly learn features and monitor deviations from the train-
ing data. Training first this network on individual systems,
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HELM can be used to identify other systems with similar
operating conditions. Afterwards, the same network can
be trained again with this representative dataset composed
of condition monitoring data of several systems, to monitor
more efficiently the health of the individual systems. Any de-
viation in the algorithm output would signify that the system
is not anymore in operating conditions seen in the training
fleet, and is likely experiencing a fault.

The novelty of the proposed approach lies in the usage of the
same architecture twice in a bi-level framework: first, for se-
lecting the representative datasets from a fleet of systems and
second, using the selected datasets to train the health monitor-
ing algorithm. This approach achieves good performances on
both tasks. Learning from the fleet attenuates the impact of
changing operating conditions (e.g., summer/winter trends),
and improves the reliability of the fault detection.

The approach is tested on a fleet of 112 power plants, some
of which experienced a stator vane failure.

1. INTRODUCTION

1.1. Fleet Approaches for PHM Applications

The increased availability and decreased cost of condition
monitoring data has fostered the application of data-driven
PHM applications. One of their limitations in practical ap-
plications is the high dependence on the representativeness
of data used for training the algorithms. A lack of repre-
sentativeness of the training dataset will result in detecting
operating conditions that have not yet been observed by the
condition monitoring system as faults. Since the operating
conditions of an asset can change over time, a particular care
needs to be taken to distinguish between the evolving or not
yet observed operating conditions and potential faults.

For condition monitoring systems that are newly taken into
operation, collecting a representative dataset may require a
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substantial time period enabling to cover the specific operat-
ing and environmental conditions of the monitored asset. The
longer it takes to collect a dataset with representative operat-
ing conditions, the longer it will take to provide reliable de-
tection and diagnostics results. This delay may influence the
acceptance of the PHM applications by their users in practice.

However, if not only one asset is monitored but a fleet of
assets, the operational experience of several monitored as-
sets can be exploited for composing a representative training
dataset.

Fleets can generally be considered from two different per-
spectives: either that of an operator or that of a manufacturer.
From the perspective of a single operator, a fleet of assets is
defined as “a group of machines or assets organized and oper-
ated under the same ownership for a specific purpose” (Jin et
al., 2015). The purpose of the assets makes them a fleet, not
the operating conditions, but as they are used in similar ways,
they are likely to have relatively homogeneous operating and
environmental conditions.

In the context of this research, we choose the perspective of
a manufacturer and define a fleet as a set of homogeneous
systems with corresponding characteristics and features, op-
erated under different conditions, not necessarily by a single
operator (Giacomo Leone, Cristaldi, & Turrin, 2017). This
broader perspective typically results in larger fleets with more
variability in operating conditions and requires, for the fine
analysis of the fleet, to form sub-fleet of similar operating sys-
tems. In this research, we consider a fleet of 112 gas turbines
of a single manufacturer with similar configurations, operated
under very different conditions and in different environments.

Several approaches have been proposed for fleet PHM
(González-Pri Da et al., 2016; Lapira, 2012; Giacomo Leone
et al., 2017; Liu & Zio, 2016; Zio & Di Maio, 2010). Most
of the proposed approaches aim to transfer either the fault
patterns or the degradation paths between the single assets of
a fleet. Some of the proposed approaches aim at developing
models valid at fleet level with subsequent adaptations to the
specific operating conditions of a single asset (Liu & Zio,
2016).

One of the challenges to be solved for fleet PHM applica-
tions is typically the selection of similar assets within a fleet
and thereby creating sub-fleets with a homogenous system
behaviour. In some of the proposed applications, the simi-
larity is assessed by diversity indices (González-Pri Da et al.,
2016) based on the characteristics of operating hours, operat-
ing conditions, and usage profiles. However for large fleets,
this approach may result in large sub-fleets and the selected
characteristics may still not be sufficiently distinctive to com-
pose a sub-fleet with homogeneous system behaviour.

The problem of sub-fleet selection is that of multi-
dimensional time series comparison. However, most of

the proposed approaches, have either focused on comparing
one-dimensional usage and degradation patterns (G. Leone,
Cristaldi, & Turrin, 2016), or alternatively on comparing sim-
ilarities between single multi-dimensional condition monitor-
ing measurements (Zio & Di Maio, 2010). In the first case,
degradation rates for one selected parameter are computed,
without taking multi-dimensional signals into consideration
(Giacomo Leone et al., 2017), in the second case, time series
information are not taken into consideration.

In Lapira, 2012, a two-step approach is proposed for sub-fleet
selection: in the first step a global clustering is performed, in
the second step a local clustering is performed based on a
peer-to-peer comparison of the units.

Typically, selecting sub-fleets based on multi-dimensional
condition monitoring time series requires comparing the dis-
tances and the distributions of multi-dimensional time series,
a computationally intensive task worsened by the curse of di-
mensionality.

To overcome these challenges, we propose a bi-level deep
learning approach for fault detection. The deep learning
approach is based on a deep neural network which was
designed to measure similarities between the training and
the testing datasets: a Hierarchical Extreme Learning Ma-
chine (HELM). HELM has demonstrated excellent abilities to
jointly learn features and monitor deviations from the train-
ing data (Michau, Palmé, & Fink, 2017). At the first level,
the network is trained on individual systems. Designed to
distinguish between similar and dissimilar operating condi-
tions, it can be used to identify other assets within the fleet
with similar operating conditions. Thereby, a sub-fleet with
assets exhibiting the most similar system behaviour can be se-
lected. At the second level, this enlarged dataset comprising
the condition monitoring data of the sub-fleet is used to re-
train the neural network to learn the representative operating
conditions that are the most defining for the selected asset.
Enlarging the operating experience of a single system to that
of a sub-fleet in this way enables more efficient and more re-
liable health monitoring systems.

1.2. Introduction to the Stator Vane Case Study

The proposed approach is applied to a case study of a fleet
comprising 112 power plants. While about 100 gas turbines
have not experienced identifiable faults during the observa-
tion time period (approximatively one year), 12 units have
experienced a stator vane failure.

A vane in a compressor redirects the gas between the blade
rows, leading to an increase in pressure and temperature. The
failure of a compressor vane in a gas turbine is usually due to
a Foreign Object Damage (FOD) caused by a part loosening
and travelling downstream, affecting subsequent compressor
parts, the combustor or the turbine itself. Fatigue and impact
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from surge can also affect the vane geometry and shape and
lead to this failure mode. This is particularly due to the fact
that parts are stressed to their limits to achieve high opera-
tional efficiency with complex cooling schemes to avoid their
melting, especially during high load.

Stator vane failures are undesirable due to the associated high
costs, including repair costs and operational costs due to the
unexpected shutdown of the power plants. Even though such
mechanical failures are not frequent, they have severe con-
sequences. Therefore, an early detection is a real challenge
today.

So far, the detection of compressor vane failures mainly relies
on analytics stemming from domain expertise. Yet, if the al-
gorithms are particularly tuned for high detection rates, they
often generate too many false alarms. False alarms are very
costly, each raised alarm is manually verified by an expert
which makes it a time- and resource-consuming task.

Because of the various different factors that can contribute
to the source of the failure mode, including assembly, ma-
terial errors, or the result of specific operation profiles, the
occurrence of a specific failure mode is considered as being
random. Therefore, the focus is nowadays on early detection
and fault isolation and not on prediction.

However for the considered case study, due to the limited
observation time period of one year, the gas turbines have
not experienced all relevant operating conditions and simply
training the algorithms on the condition monitoring data of a
single turbine, will either result in false alarms or in missed
detections. Applying the proposed bi-level approach enables
to clearly separate between the new operating conditions that
have not yet been observed by the asset and faulty system
conditions.

The rest of the paper is organized as follows: Section 2 gives
a first introduction to HELM neural networks. HELM is ap-
plied to individual turbines. Section 3 gives a detailed ac-
count of the fleet approach. The proposed approach is tested
and quantified with the fleet of 112 turbines.

2. INDIVIDUAL HELM APPROACH

2.1. From Single Layer Neural Networks to HELM

Hierarchical Extreme Learning Machines are a deep version
of Extreme Learning Machines. Extreme Learning Machines
are a very specific kind of neural networks. They actually
are very similar to single layer feed forward neural networks
and take advantage of a mathematical proof stating that given
enough neurons, any function can be approximated by a sin-
gle layer neural network for which only the weights between
the hidden layer and the output are learned. The weights be-
tween the inputs and the hidden neurons are drawn randomly.
This has led to a broad interest in such random networks as

the learning process is much easier than for traditional neural
networks: it consists in minimising a relatively simple convex
function. They are therefore very fast to train and easy to use.

This result is however a priori not useful for traditional
deeper architecture. Applying a succession of randomly
drawn weights is not likely to improve the accuracy on the
output approximation. A solution to take advantage of Ex-
treme Learning Machines in deeper architecture is the use of
stacked architectures: it consists of a succession of unsuper-
vised ELM (auto-encoders most of the time), where each hid-
den layer is used as the input of the next ELM, and of one last
supervised ELM, trained to perform the task of interest.

In PHM, such Hierarchical architectures (HELM) are attrac-
tive. By training successive auto-encoders, the information
contained in the signal is concentrated in hidden layers that
could directly be interpreted as representative features. The
last layer is, therefore, using these features to perform the task
of interest. From a conceptual perspective it mimics, thus, the
traditional PHM system design: feature engineering to have a
concise description of the system and feature monitoring for
identifying behavioural changes. Such framework for PHM
is illustrated in Figure 1.

Figure 1. PHM framework for Fault Detection and Isola-
tion. It consists of a first layer for feature learning and of a
second layer, using the feature for health monitoring. Fea-
tures are used for identification once abnormalities have been
detected.

2.2. Health Indicator Monitoring Framework based on
One Class Classifier

Among the many challenges in applying machine learning to
PHM problems, one of the most common is the unbalanced
dataset problems. There is very often a lack of representa-
tive data for faults that one wishes to distinguish from the
healthy system conditions and to distinguish between the dif-
ferent fault types. For complex and critical system it is par-
ticularly true and this is the consequence of several inherent
particularities:

• Similar faults can impact the system differently depend-
ing on the operating conditions.

• Local faults can impact the whole system in unpre-
dictable ways (chaotic consequences).
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• For complex systems, one does not necessarily know all
faults that can happen, much less observe them.

• For robust systems, faults are rare.
• For critical systems, faults cannot be afforded and are

usually prevented with preventive maintenance opera-
tions. This results in a lack of data representative of
faulty conditions.

Regular data-driven classification, as usually performed in
machine learning tasks, is therefore not very adapted to the
case of fault detection: the most naive model, which would
classify everything as healthy would achieve almost perfect
accuracy when faults are rare. Yet, the model would be use-
less. The one-class classifier is a solution to that problem:
it is trained on a single class, which in this case, would be
the healthy class. The output of the classifier is the confi-
dence that the current data points belong to the healthy class,
that is, to some extent the distance to the healthy class. It is
conveniently interpretable as a Health Indicator. A validation
dataset is used to estimate what fluctuations of that output are
acceptable for healthy data points and thus helps in defining
a threshold above which the data would be considered as ab-
normal. Experiments performed in (Michau, Yang, Palmé, &
Fink, 2018) have shown that a good threshold is

δ = 1.5 · percent99(|1− Yvalid|) (1)

where, percent99 is the 99th percentile function and Yvalid
the output of the one-class classifier for the validation dataset.

2.3. The Integrated Fault Detection and Diagnostics Ar-
chitecture

Figure 2. HELM architecture. The HELM consists of an
arbitrary number of stacked unsupervised auto-encoder ELM
and of one last layer trained for the task at hand. In our case
it is a one-class classifier ELM.

The complete architecture of the HELM is summarised

in Figure 2. The auto-encoders ELM are trained with
a regularisation term encouraging sparse connections (`1-
regularisation). The idea is to use as few features as possible
to reconstruct each dimension of the input (maximising in-
formation provided by the features). The one-class classifier
is trained with a more traditional `2-regularisation preventing
over-fitting only.

More details on the HELM equations, training and testing
algorithm can be found in (Michau et al., 2017; Michau et
al., 2018). Extensive experiments have been conducted to
demonstrate the good abilities in fault detection, and in fault
isolation, compared to traditional tools used in PHM applica-
tions.

2.4. Application of the Single Asset Approach to a Fleet
of Gas Turbines

The one-class classifier HELM has been tested on a set of 112
datasets gathered on stator some of which experienced a fault.

Each dataset consists of nine variables sampled every five
minutes for approximatively one year. These variables are
ISO variables, that is that they correspond to measured vari-
ables, modified by a model, to the value they should have had
in standard operating conditions (15oC, 1 atmosphere).

The datasets are cleansed from missing or nonrealistic values
(negative and null) and from values measured when the tur-
bine was in a non-running or unstable state (e.g., , startup and
shutdown). Each dataset is also rescaled such that the vari-
ables are centred and that the first and 99th percentiles would
be −1 and 1 respectively. Then each dataset is split in two
parts: a first part from which training and validation points
are randomly sampled and a second part used for testing. For
the datasets corresponding to “faulty” stators, the testing is
again split in three: The data-points after the detection of the
fault by the experts are labelled as unhealthy and will be used
for True Positive (TP) quantification. Up to two months be-
fore the fault, the data-points are labelled as “unknown”, as
the fault could have started before it has been detected by the
experts, and the data-points are not used for quantification.
The remaining data-points are labelled as healthy and will be
used to quantify the False Positives (FP).

By reducing the training and validation datasets to few thou-
sand points only, it is possible to simulate the case of a newly
installed stator, or a stator that experienced major mainte-
nance: cases with a limited number of condition monitoring
data samples and a limited number of observed operating con-
ditions.

Figure 3 gathers some representative results of the HELM
applied to individual turbines. More quantified results are
presented in the following section for comparison with the
fleet approach. Figure 3 illustrates the HELM output, that
is, the absolute distance to the healthy class. The output has
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(a) (b)

(c) (d)

Figure 3. HELM Output: (a) and (b) for a faulty dataset, (c) and (d) for a dataset without detected fault. (a) it looks like a fault
is developing during the last two months, with maximal output value at detection time given by the expert (vertical black line).
(b) with smaller training, most of the dataset is detected as abnormal, in particular in winter. (c) for the healthy sets, there are
few false positive (few outliers) but (d) with smaller training (3 months), again, most of the dataset is detected as abnormal.

5



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2018

been rescaled such that the detection threshold as per Equa-
tion (1) is 1. The two upper sub-figures 3a and 3b represent
the HELM output for an “unhealthy” set, where the HELM
has been trained with 80 000 and 12 000 points respectively.
In the first case, the HELM is trained with as many healthy
data-points as possible (Fig. 3a) and it looks like, in the
last two months, the turbine behaviour is diverging from the
learned system behaviour. With only three months of train-
ing (Fig. 3b), most of the dataset is detected as abnormal.
Two peaks are particularly interesting to mention, the first
one, around November to January 2011 corresponds to win-
ter months, the second one, starting in march corresponds
to what looked like a fault in Figure3a. Yet without the ex-
periment with longer training, this potential fault would have
been impossible to differentiate from changing operating con-
ditions (winter), even when moving the detection thresholds.
This problem of changing operating conditions is also illus-
trated with the “healthy” dataset experiments in Figures 3c
and 3d. With long training, there are very few false positives
in the testing, but with only three months of training, most
of the dataset is detected as abnormal, with a peak centred 6
months after the last training points.

If with 10 months of training, faults could actually be detected
for some of the faulty datasets, these results are unsatisfactory
for mainly two reasons. First, all faults could not be detected,
for some datasets the training was clearly not representative
enough of the turbine behaviour. Second, the need for up to
10 months of training is, from the operator point of view, too
long to wait for the implementation of a condition monitoring
system. In addition, from this case study point of view, if
more than 75% of the data is used for training, there is not
much left to observe.

To address these limitations, we propose a fleet approach, that
will use data from other turbines of a selected sub-fleet to
constitute a training dataset adapted to the monitoring of each
turbine.

3. FRAMEWORK FOR FLEET PHM BASED ON HELM

3.1. Motivation

One of the limitations of HELM, as it has been applied in the
previous section, is the need of an extensive healthy dataset
representative of all operating conditions in order to train the
HELM. It is in fact a problem for most machine learning ap-
proaches to be able to perform detection on a new system,
a system for which not much data are available or a system
operated under new conditions.

As such, using data stemming from many similar systems (a
fleet) seems a natural way to expand the training dataset. Yet,
within fleets, systems can operate quite differently. The sys-
tems could have different configurations, the operating con-
ditions could be different (different location, different envi-

ronment, different requirements), the systems could also be
of different age, with different maintenance history. Some
parts might also have changed or been replaced with newer
components. For the preparation of a good training dataset, it
is therefore important to identify similar systems: if the sys-
tem behave similarly, then we can assume their data could be
combined for the training of a more robust model.

To achieve this objective, we propose here to use the HELM
as a similarity measurement tool. As presented above, the
HELM output is actually a value that can be directly inter-
preted as a distance between tested data points and the train-
ing dataset. We propose here to take advantage of that in-
terpretation of the HELM output to identify similar datasets:
Two systems are assumed to be similar if an HELM trained
with one and tested on the other outputs low values.

3.2. HELM as Similarity Measure

In the fleet of gas turbines case study, for each dataset i we
applied the following methodology:

1. To simulate a system with limited data availability (e.g.,
a recently installed turbine), we select the first three
months of data in i. These three months are compared
to all other healthy datasets in a two-way comparison:
(a) A first HELM is trained1 with data from the dataset

of interest, i, and tested on every healthy dataset
hj , j ∈ N , where N is the number of healthy
datasets in the case study. The ratio rhj

i of points
in hj above threshold is computed.

(b) Then, for each healthy dataset hj , an HELM is
trained1 on hj , randomly selecting a number of
points corresponding to three months of data (but
without temporal constraints). The HELM is tested
on the data selected in i. Similarly, the ratio rihj

of
points in i above threshold is computed.

2. The average

d =
r
hj

i + rihj

2
(2)

is the dissimilarity measure between i and hj . The
datasets hj for which d is below a given threshold are
selected as similar datasets to i.

Overall, the assessment of the fleet of turbines reveals that
the fleet has a very high variability and each turbine has very
strong specificities (even if the measured variables are con-
verted to ISO conditions). The threshold on d needs to be
above 30% in order to have 90% of the datasets with at least
one similar turbine, as illustrated in Figure 4. Figure 4 rep-
resents the number of datasets with at least one other similar
one as a function of the threshold on the similarity measure
d.
1When training an HELM, 95% of the data available is used for training and
the 5% remaining are used for validation (particularly for computing the
threshold as per Equation (1)).
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Figure 4. Dataset Similarities. For each dataset pair in
the case study, mutual HELM are trained and tested on each
other. The ratio of points detected as abnormal gives the dis-
similarity. A threshold on this dissimilarity defines “similar”
datasets. The number of datasets with at least one similar
dataset is plotted as a function of the threshold for the whole
fleet (plain blue) and for “faulty” datasets (dashed orange).

This means that in most cases, a large portion of the test-
ing datasets are above threshold, but this is a priori not a
bad thing: first it could have been expected that, with only
three month of training, the HELM output still has a lot of
variability. Second, we look for datasets that are similar but
which could also bring new information to the training dataset
for slightly different operating conditions. Thus, a relatively
low number of points above threshold means that even if the
datasets are quite similar, some so far unseen operating con-
ditions are present in the testing dataset. The underlying idea
is that by including those operating conditions in the train-
ing dataset, the representativeness and the robustness of the
trained model will be adequately enlarged.

3.3. Results of the Proposed Fleet PHM Framework
(HELM Trained on Similar Sub-fleets)

Once, for a turbine of interest, similar turbines have been
identified with the above-presented methodology, we sample
randomly training points from each similar turbine, including
the first three months of the turbine of interest. This consti-
tutes the training dataset of our final monitoring HELM for
this specific turbine.

Once trained, the HELM can be tested on the remaining part
of the dataset, that is, the next 9 months. For unhealthy tur-
bines, this consists of healthy, unknown and unhealthy state
data. Healthy and unhealthy state data are used for the com-
putation of false positives and true positives, while unknown
state data are let for future analysis (e.g., early detection). For
healthy turbines, the remaining data is in healthy state only.

Figure 5a illustrates the impact over the fleet of this approach.
Three indicators are presented in the Figure:

1. the ratio of datasets for which the number of False Posi-
tives has decreased

2. this same ratio for unhealthy datasets only

3. the ratio of datasets for which the number of True Posi-
tives has increased.

It should be pointed out that for any threshold and for almost
100% of the datasets, the number of false positives decreases,
which is currently one of the major concerns in gas turbine
condition monitoring. In addition, for a threshold up to 0.3,
more than half of the unhealthy datasets have increased num-
ber of true positives. Yet, when the threshold increases, the
method is less and less beneficial. This behaviour is expected:
a higher threshold corresponds to less similar datasets and in-
dicates a training dataset that is less and less specific to the
turbine of interest. The training consists of operating con-
ditions further and further away from the one of the turbine
of interest, which increases the likelihood of missing major
changes in behaviour.

In Figure 5b, the average ratio of removed false and true pos-
itives against the individual approach is plotted against the
similarity threshold. Overall, using the fleet approach re-
moves in average 80% of the false positives, a very encourag-
ing result. The number of true positives decreases on average.
If this is, a priori not a positive result, this is mitigated by two
points: First, in the individual approach, as seen in Figure 3,
most of the testing is above threshold. The ratio of true pos-
itives might be high, but these are not useful true positives
as it is dwarfed by the number of false positives. With the
fleet approach, by reducing the number of false positives by
more than 80%, the meaning of true positives is reinforced.
Second, it is normal that, in the fleet approach, as the training
dataset fluctuates more and is representative of more operat-
ing conditions, the number of points above threshold dimin-
ishes both for false and true positives. Yet, it is important to
notice in Figure 5b, that the decrease in true positives is far
below that of the false positives.

Combining all these results, taking a similarity threshold at
0.3 appears to be a good compromise between number of
datasets with at least one similar other turbine, the reduced
number of false positives and the number of true positives.
Another choice could have been 0.1, which is much better in
terms of true positive statistics but it has not been chosen here
due to the small number of datasets with at least one similar
turbine. For the same dataset as that presented in Figure 3,
the results of the fleet approach are presented in Figure 6. In
Figure 7, the results of two additional turbines, one “faulty”
and one healthy, are presented. Very similar as results can be
drawn. Yearly changes impact the results from individually
trained HELM but are mitigated by the fleet approach.
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(a) (b)

Figure 5. Fleet Approach: FP and TP. Applying the fleet approach, (a) the ratio of dataset for which the number of false
positive decreased is plotted against the similarity threshold in plain blue. For unhealthy datasets, this same ratio is plotted
in dashed orange and the ratio of datasets with more true positives is plotted in dotted green. (b) Removed FP and TP when
applying the fleet approach as a function of the similarity threshold. Applying the fleet approach removes around 80% of the
false positives. It removes also some true positives but in smaller proportion, giving stronger meaning to the true positives that
are left.

(a) (b)

Figure 6. HELM Output: (a) for the faulty dataset, (b) for the dataset without detected fault. (a) The fleet approach confirms
the developing fault as observed first in Figure 3a, with a maximum output value at detection time given by the expert (black
vertical line). (b), the dataset is now detected as healthy.
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(a) (b)

(c) (d)

Figure 7. HELM Output: (a) and (b) for a faulty dataset. The HELM has been trained (a) on three months of data, (b) with
the fleet approach. Similarly as in Figure 3a, winter conditions are detected as unhealthy in the individual approach, but not in
the fleet approach. A fault is confirmed at detection time given by the expert (vertical black line). (c) and (d) for an healthy
turbine. The HELM has been trained (c) on three months of data, (d) with the fleet approach. Similar conclusion can be drawn
as in Figure 6b.
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4. CONCLUSION

In this paper, we presented a bi-level framework for a fleet
approach in PHM. Fleet approach is challenging as it re-
quires the combination of two difficult tasks: First, identify-
ing a sub-fleet of assets with similar characteristics. Second,
training a condition monitoring model for each system. The
representativeness of the training data for the different op-
erating conditions is crucial, while improper training would
increase the likelihood of missing important changes in the
system behaviour. We proposed a single tool to solve these
two problems in a bi-level approach based on the recent en-
couraging results obtained with HELM. This approach, how-
ever, is technologically agnostic and could be applied with
other health monitoring approaches. First the health monitor-
ing tool is used on pair of systems: if they mutually detect
each other as healthy, then they are likely to be similar. Then,
these similar systems are used to train the health monitoring
tool again and to monitor individual systems.

We demonstrated here that such approach greatly improves
the results compared to the approach based on individual
training, in particular with strong data constraints on the his-
tory of the system. The fleet approach can be used either for
systems newly taken into operation or newly equipped with
a condition monitoring system and is highly beneficial in the
case of evolving fleets. If the systems are subject to regular
maintenance or if the fleet changes often, historic fleet data
can help to improve the monitoring of individual systems.

Yet, particularly in our case study, the fleet approach is still
not enough for the condition monitoring of every single tur-
bine. For a non-negligible number of cases, similar turbines
could not be identified while the individual approach was
also not working. Consequently, the choice of the similarity
threshold is actually crucial. If too low, the method is efficient
but only for the few systems that are extremely close. If set
higher, more systems will be similar but the fleet-training data
will be less representative of the system of interest specificity
and might miss some important changes. In future research,
this point might be solved by changing the way similar data
are found. Rather than looking for other turbines whose en-
tire dataset is similar, one could try to iteratively find small
batches of data from the whole fleet that would be beneficial
for the training dataset.
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