
Bayesian Networks for Remaining Useful Life Prediction
Erik Hostens, Kerem Eryilmaz, Merijn Vangilbergen, and Ted Ooijevaar

Flanders Make, Gaston Geenslaan 8, 3001 Heverlee, Belgium
erik.hostens@flandersmake.be

kerem.eryilmaz@flandersmake.be
merijn.vangilbergen@flandersmake.be

ted.ooijevaar@flandersmake.be

ABSTRACT

Remaining useful life (RUL) prediction is a critical task in the
field of condition-based maintenance. It is important to per-
form RUL prediction in a statistical sound way. However, it is
not straightforward to properly combine multiple information
sources about an asset, such as available statistics, measure-
ments, derived features, and prior knowledge in the form of
mathematical models and relations, including their uncertain-
ties. Bayesian networks (BNs) are a means of graphically rep-
resenting all statistical information in a comprehensible way
and allow for correctly combining all information. BNs allow
for inference in all directions, thereby not merely providing a
RUL prediction with explicit uncertainty, but select the most
informative features, diagnose which degradation mechanism
is manifest if multiple mechanisms exist, provide decision
support in the form of optimal condition-based maintenance
points when combined with a cost model. BNs also explic-
itly quantify the model uncertainty arising from the scarcity
of the training data. We illustrate these benefits on two real-
world industrial examples: solenoids and bearings. We also
provide a method to correctly include the effect of changing
operating conditions.

1. INTRODUCTION

Condition-based maintenance (CBM) has gained a strong in-
terest from the industry in recent years, both driven by the
market-driven necessity of ever-increasing efficiency and sus-
tainability of industrial systems, and the opportunity opened
up by the fast growing industrial digitization and sensoriza-
tion. For an extensive recent literature survey, we refer to
(Quatrini, Costantino, Di Gravio, & Patriarca, 2020). The
prediction of remaining useful life (RUL), which is the time at
which an industrial asset will have been degraded to such ex-
tent that it can no longer perform its intended function, plays
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an important role in CBM to schedule maintenance, optimize
operating efficiency, and above all avoid unplanned down-
time.

Given the intrinsic randomness of the drivers of degradation
leading up to the ultimate failure of the asset, a proper statisti-
cal treatment of these phenomena is required (Sankararaman,
2015). Indeed, because of the costly consequence of an unan-
ticipated failure, even when its probability is small, the ex-
pected cost may become significant and requires early action.
Many performance metrics for RUL prediction focus on the
deviation of mean prediction from the ground truth, but the
decision support for maintenance actions should rather focus
on the tail of the prediction distribution.

In this paper, we aim to present a generic and systematic
method using Bayesian networks (BNs) to incorporate all a-
vailable knowledge and data in the RUL prediction. When
many factors contribute to this prediction, it is a challenge
to manage these relations and correctly calculate the over-
all statistics. BNs, although in essence nothing more than
a representation of the statistics, offer a comprehensible ap-
proach. The explicit modeling and quantification of RUL
prediction uncertainty has been extensively studied in litera-
ture, typically focused on a particular industrial asset, such as
(Mishra, Martinsson, Rantatalo, & Goebel, 2018) for batter-
ies and (Prakash, Narasimhan, & Pandey, 2019) for bearings.

A Bayesian network is a graphical representation of a joint
distribution of a set of variables (Pearl, 1988). The joint
distribution is factorized into root probabilities and condi-
tional dependencies, which are graphically represented by a
directed acyclic graph. BNs are ideal for taking an event that
occurred and assessing the probability that any one of sev-
eral possible known causes was the contributing factor. For
example, a BN could represent the probabilistic relationships
between failure mechanisms and their manifestations in the
sensor data. Given sensor data, the network can be used to
compute the probabilities of the presence of various failure
mechanisms. This is analogous to how medical doctors need
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to diagnose a patient showing symptoms of disease, see for
example Fig. 1. In summary, BNs are a means for graph-

Figure 1. An example of a BN in medicine, analogous to
condition-based maintenance. The intuitive (causal) under-
standing of how stochastic variables relate is well captured:
diseases (failure mechanisms) are caused by behavior and
context (settings and operating conditions) and become mani-
fest in observed symptoms (measurements or features derived
thereof). In this particular example, smoking increases the
probability of bronchitis or lung cancer, whereas if a patient
recently visited Asia, there is a higher probability of having
contracted tuberculosis. The symptoms alone cannot distin-
guish tuberculosis from cancer, therefore an auxiliary vari-
able “Tuberculosis or Cancer” is used to make this explicit.

ically representing complex statistical relations that become
otherwise intractable.

The purpose of this paper is to show the advantages of using
BNs for RUL prediction: (i) BNs naturally combine all prior
knowledge, in the form of models and statistics, and data,
and as such maximally exploit the available information; (ii)
distributions of unknown variables can be inferred from ob-
served variables, in all possible directions, depending on the
application (parameter estimation, diagnostics, prognostics,
decision support); (iii) explicit model uncertainty, which can
be used to assess the (in)sufficiency of the available training
data; (iv) BNs are easily extended with more variables that
affect RUL and its assessment, such as operating conditions.
We will illustrate how BNs are used on two examples of as-
sets widely used in industry, a solenoid-operated valve (SOV)
and a bearing, on which we conducted accelerated life testing.

This paper is organized as follows. In Section 2, we introduce
the two industrial assets, SOVs and bearings, on which we
validated the BN method for RUL prediction. In Section 3,
we explain the methodology of BNs for RUL prediction and
show how they provide the aforementioned advantages. In
particular, we explain (i) how the model is built, trained and
used, (ii) how a cost model can be integrated in the BN to
provide decision support for maintenance, (iii) how model
uncertainty is taken into account in the RUL prediction, and

(iv) how the BN is adjusted to incorporate operating condi-
tions. In Section 4, we illustrate the methodology by the ap-
plication on the two industrial assets in four case studies, cor-
responding to the topics (i)-(iv). Finally, we formulate some
conclusions and future directions of research in Section 5.

2. THE APPLICATION CASES

2.1. Solenoid-operated valves

We have conducted our research on a historic dataset of ac-
celerated life tests (ALT) on a set of 3/2-way normally closed
alternating current powered solenoid operated valves (SOV).
The SOVs were subjected to on-off switch cycles until failure
or end-of-life (EOL), defined as the moment that the sole-
noid’s magnetic force is insufficient to overcome the friction
and move the plunger. This moment is observed both in the
current signal, as the solenoid then behaves as a fixed nonlin-
ear inductance, and in the thermal mass flow detecting leak-
age measured at the outlet ports and blow-off holes of the
valves. The experimental dataset has been used before in
(Tod et al., 2019; Mazaev, Ompusunggu, Tod, Crevecoeur,
& Van Hoecke, 2020), where full details can be found.

In previous work, we have defined a number of features on
the current signal and quantitatively assessed their feature
performance for health monitoring quantitatively. For a de-
tailed description of these features, we refer to (Ompusunggu
& Hostens, 2021, 2023). For our purposes, it suffices to know
that some features can be extracted from the current signal
that contain information on the state of health of the SOV.
Without loss of generality, we do not distinguish between
direct measurement or derived features, we call them both
measurements. Fig. 2 shows an important measurement time-
to-hit, defined as the time between start of induced current
in the solenoid at the beginning of the cycle and the plunger
hitting the end of the shaft stopping its movement. In the in-
duced increasing current signal, this stopping of the plunger
is seen as a small dip in the first period. The time-to-hit in-
creases when the SOV degrades, as it is related to the friction
between plunger and shaft and therefore indicative of health.
Fig. 3 shows the evolution of time-to-hit for 10 SOVs as a
function of the number of past on-off cycles, together with
the corresponding EOLs, except for two solenoids that did
not fail before the end of the ALT. Note the strong increase of
time-to-hit approaching the EOL.

2.2. Bearings

The SOVs were all tested under the same operating condi-
tions. In order to illustrate the BN methodology for RUL pre-
diction under varying operating conditions, we reused data-
sets of ALTs that we have conducted on bearings (Geurts,
Eryilmaz, & Ooijevaar, 2023). These were generated using
the Flanders Make Smart Maintenance living lab, an open test
and development platform that aims to support the adoption
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Figure 2. Definition of time-to-hit measurement in the SOV’s
alternating current signal.

Figure 3. Evolution of time-to-hit for 10 SOVs. Two
solenoids did not reach their EOL during the ALT.

of condition monitoring technologies in industry (Ooijevaar,
Di, et al., 2019). Details of the setup and the tests can be
found in the given references, we restrict ourselves here to
the information required for a self-contained comprehension
of this paper.

Before the start of each ALT, a small initial indentation was
created in the bearing inner race in a repeatable manner. This
serves as a local stress riser emulating a local plastic defor-
mation caused by, for instance, a contamination particle. The
EOL of a bearing is defined as the moment where the mea-
sured vibrations exceed a peak-to-peak acceleration of about
200 m/s2. One set of bearings was subjected to stationary op-
erating conditions, being a radial load of 9 kN and a rotary
speed of 2000 rpm, another set of bearings to the same radial
load but a varying speed going from 1000 to 2000 rpm in a
cyclic saw-tooth pattern with a period of about 10 minutes, as
shown in Fig. 4. Note how the acceleration depends on the
speed, and how it increases exponentially with time near the
EOL, similarly as the time-to-hit for the SOVs.

3. METHODOLOGY

3.1. Building the BN

The BN defines the joint distribution of all considered random
variables Xi as a product of the individual density functions,
conditional on their parent variables pa(i), i.e. the variables

Figure 4. Speed and peak-to-peak acceleration of a bearing
subjected to varying rotary speed.

that point to variable Xi in the graph representation:

p(X) =
∏

i

p
(
Xi|Xpa(i)

)
. (1)

We show how BNs naturally combine all available informa-
tion for RUL prediction. The information we consider com-
prises:

• lifetime statistics,
• a degradation model,
• measurements revealing the underlying level of degrada-

tion.

A lot of research has been spent to each of these elements
of information, either generic or specific to the considered
asset. It is the sole purpose of this paper to show how these
are combined, so we make a few simple assumptions, that
sufficiently fit our example.

• In the following, we will refer to time not in a literal
sense, but rather expressed in a unit that naturally relates
to the usage of an asset. For solenoids, it is the number
of on-off cycles; for bearings, it is the number of rota-
tions. Similarly, lifetime and RUL are expressed in the
same unit.

• For lifetime statistics, we assume a Weibull distribution,
that corresponds to a failure rate that is proportional to a
power of time (Jiang & Murthy, 2011). On top of that,
in cases where the asset has not yet failed, we know that
lifetime is greater than the current time.

• As a degradation model, we assume a hidden dimension-
less degradation state, where the rate of degradation is
proportional to the level of degradation itself. This sim-
ple first order dynamics boils down to an exponentially
increasing degradation, or equivalently an exponentially
decreasing health, which intuitively corresponds to the
well-known P-F curve (Nowlan & Heap, 1978). The
relation between health and measurements is a function
that we will preferably describe with only a few param-
eters so as to keep complexity low, but the method al-
lows any function fitting algorithm, including neural net-
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works. Here we will adopt simple linear relations with
normally distributed random noise, motivated by the ex-
ponential decay of health and the measurement evolution
plots shown in Figs. 3-4.

These relations are captured in the generic BN structure of
Fig. 5. Some of the variables are shown in rectangles, to in-

Figure 5. The generic BN structure for RUL prediction: time
is given, and is a lower bound for the lifetime. Their dif-
ference is the RUL, and also defines the hidden health state.
Measurements M1, . . . ,Mn are function of health.

dicate that they are deterministic, either always observed or a
deterministic function of their parent variables. This simple
model is captured in the following explicit relations:

L ∼Weibull (k, λ) ,

L > T,

RUL = L− T,

H = 1− exp

(
T − L
D

)
,

Mi ∼ N
(
Mi0(1−H) +Mi1H,σ

2
i

)
,

(2)

where L denotes the lifetime, T time, and H health. The lat-
ter starts very close to 1 (at T = 0) and ends on 0 (at EOL, or
T = L). This BN model leverages on expert knowledge cap-
tured in simple relations between the variables and is there-
fore capable of describing those relations using only a few
parameters, as opposed to using e.g. neural network models
that easily have hundreds of free parameters. The free param-
eters are in this case: the Weibull distribution shape k and
scale λ, the degradation time D, which approximately corre-
sponds to the time between onset of degradation and end-of-
life, and for each measurement Mi the spread σi and the lin-
ear coefficients Mi0,Mi1, which are the mean measurement
values at start and at EOL, respectively. One could wonder
why health H is made a deterministic variable, and not a ran-
dom variable. We motivate this by the fact that by defining
lifetime L and the measurements Mi as random variables, all
real stochasticity is already captured. Indeed, as H is never
observed directly, it can be considered merely as an auxiliary
variable linking the Mi with L and T . Its actual value is of
no importance, unless it would have an impact on the (ob-
served) performance, but here we only consider the EOL and
the prediction thereof.

3.2. Training and prediction

The purpose of training the BN model is to fit the parame-
ter values to the data from the ALTs. We can then use this
model to predict RUL for new data of another asset. To this
end, we have used PyMC, a probabilistic programming li-
brary for Python that allows users to build Bayesian models
and fit them using Markov chain Monte Carlo (MCMC) meth-
ods (Patil, Huard, & Fonnesbeck, 2010). Essential to PyMC
is that there is no distinction between parameters and vari-
ables, there are only (random) variables, including the param-
eters. This enables Bayesian hierarchical modeling, a type of
Bayesian modeling where information is available on differ-
ent levels (Allenby & Rossi, 2006). In our case, we assume a
single set of parameters k, λ, Mi0, Mi1, D, σi for the entire
population, but we have a different L for each asset, and H ,
RUL, Mi are different for each asset and each time T .

MCMC is used for both training and prediction, they only
differ in which variables are observed and which not. This is
graphically explained in Fig. 6, showing all variables includ-
ing the parameters (but only one measurement, to not over-
load the picture), and marking their being observed as gray
shading. In training, the parameters are unknown and are fit-

Figure 6. The BNs for training (left) and prediction (right).
Gray shading represents known/observed variables, whereas
white represents unknown/unobserved variables.

ted to the data on lifetime and measurements. In prediction,
the parameters are known, but the unknown lifetime distri-
bution is to be inferred from the lifetime statistics and the
measurements.

The MCMC algorithm updates the distributions of all unob-
served random variables given their prior distributions and
the data, through the likelihood of the data. The prior distri-
butions, also called prior beliefs, quantify the uncertainty in
the prior knowledge before data is acquired. It is based on
previous data campaigns or physical and statistical knowl-
edge of the asset’s behavior and degradation. For instance,
the shape parameter k is related to the trend of the failure
rate, typically going up (k > 1) as the asset ages. If little is
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known beforehand, prior beliefs should be chosen sufficiently
wide, so-called weakly informed priors. The updating of prior
beliefs into posterior distributions when new data comes in
is the central paradigm of Bayesian statistics. Therefore, it
is important to note that the BN for prediction in Fig. 6 is
an oversimplification: the parameters do not become exactly
known by the training, but if their posterior distributions be-
come sufficiently narrow, their low remaining uncertainties
can be ignored in their contribution to the total uncertainty of
the RUL prediction.

Another important nuance to make about Fig. 6 is the fact
that, as we saw in Section 2, some of the assets’ EOL is never
observed, simply because their ALT is stopped early. So not
all L-nodes in the left graph (training) of Fig. 6 should be
gray shaded (observed). Such censoring is quite common in
statistical analysis of survival data in medicine (Kalbfleisch
& Prentice, 2011). Because some of the lifetimes L are not
observed, their values cannot be directly used to infer the
Weibull parameters. This is exemplary for why the BN frame-
work is powerful: although L is not observed, the uncer-
tainty on its unknown value can nonetheless be significantly
reduced through its relation with the measurements and the
time during which it did not fail. Therefore this information
still contributes to the fitting of the Weibull parameters. The
BN truly leverages on all the available information combined.

3.3. Decision support for maintenance scheduling

We explain how the BN for prediction, shown in Fig. 6, is ad-
justed to provide decision support for maintenance schedul-
ing. We only consider asset replacement as the maintenance
action, but an analogous reasoning can be followed for other
maintenance actions. The BN prediction yields a probability
distribution of RUL. This is more useful than a single RUL
expected value, because it allows to better balance the risk of
unanticipated failure with the economic loss of early replace-
ment. The BN allows the integration of a cost model and eval-
uate the prediction of cost given the replacement scheduling
strategy. We illustrate this with a simple cost model. We as-
sume the asset’s cost CA in the normal situation. This is for
instance the sum of the costs of purchase and installation, the
latter coinciding with the scheduled replacement of its used
predecessor. If the asset fails before its scheduled replace-
ment, there will be an extra cost of failure CF . This cost is
very dependent on the application: it can be very high for high
impact failures, such as significant production loss or damage
to other equipment, but it can also be low or even zero. In that
case, the asset should only be replaced after EOL.

Another parameter we assume in this example is the predic-
tion horizon TPH, defined as the time required to schedule the
replacement up front, for instance because it takes some time
to send a maintenance engineer to the asset’s remote location.
If it is decided at time T to replace the asset, the actual re-

placement can take place at time T +∆T , where ∆T ≥ TPH.
This is schematically depicted in Fig. 7.

Figure 7. Replacement is scheduled at time T , and takes place
at time T + ∆T , which is T + TPH at the earliest. T + ∆T
should precede T +RUL to avoid the cost of failure.

Let T +∆T be the asset’s replacement time in the future, de-
cided at the scheduling time T hence depending on the RUL
prediction at time T . The resulting total cost depends on the
actual RUL:

total cost = CA if RUL ≥ ∆T , or

= CA + CF if RUL < ∆T.
(3)

To balance the extra cost CF with the cost of early replace-
ment, where more assets are used in the long run, we have to
evaluate the cost per used time unit CT :

CT =
CA

T +∆T
if RUL ≥ ∆T , or

=
CA + CF

T +RUL
if RUL < ∆T.

(4)

Note that CT is a deterministic function of other variables.
We include it in the BN for prediction, shown in Fig. 8. Along-
side the RUL prediction at scheduling time T , we can use this
model to calculate the distribution of the cost CT (∆T ) corre-
sponding to the replacement time T+∆T , for multiple values
of ∆T . Replacement should then be scheduled as soon as the

Figure 8. The BN for prediction, including the simple cost
model.

expected value of this cost E[CT (∆T )] reaches a minimum
for ∆T = TPH, or if:

E[CT (∆T )] > E[CT (TPH)], ∀∆T : ∆T > TPH. (5)
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3.4. Model uncertainty

As we mentioned in Section 3.2, the training of the BN will
result in a posterior distribution of all non-observed random
variables, including the model parameters. If these parameter
posteriors are sufficiently narrow, we may consider the re-
maining uncertainty insignificant and select the means of the
posteriors as fixed known parameters for the prediction BN,
as was shown in Fig. 6. However, if training data is scarce, the
remaining posterior uncertainty cannot be ignored and should
be included in the prediction. This is achieved by making the
parameter nodes in the prediction BN stochastic and unob-
served, and using the posterior distribution after training as
its prior. It is important to note that, in many cases, the pa-
rameter distributions will be mutually dependent after train-
ing. Therefore, one should use a single joint prior distribution
for the parameters in the prediction BN.

MCMC does not output explicit posterior distributions, but
a sample thereof, due to the way it works. To include it in
the prediction, there are two options: either combine training
and prediction in one MCMC run, or approximate the pos-
terior parameter distribution. The former option is the most
correct, since in this way we are combining all information at
once, both of the past ALTs and the running one. However,
this requires a lot of calculations and all data need to be kept,
so this approach may become cumbersome. The latter op-
tion is most practical, since there is only one run of MCMC
involving the training data, after which they are not longer
needed. For approximating the posterior joint distribution of
the parameters, in most cases a multivariate normal distribu-
tion is suited, motivated by the fact that, if the model is well
designed, it is expected that the parameter estimates will con-
verge. To this end, PyMC also supports automatic differentia-
tion variational inference (ADVI) as an alternative to MCMC
followed by the approximation of the posterior distribution
from the sample. ADVI turns this around by up front assum-
ing a parameterized approximation of the posterior distribu-
tion and reformulating its calculation as an optimization prob-
lem (Kucukelbir, Tran, Ranganath, Gelman, & Blei, 2017).

3.5. Varying operating conditions

In our original BN model of Section 3.1, we assumed the
asset’s degradation as the sole driver of further degradation.
This works fine if other influences do not have a significant
contribution to degradation. However, in most cases, the op-
erating conditions (OC) do have a strong impact on degrada-
tion, and should be taken into account. Secondly, the OC also
influence the measurements. This is clearly seen in Fig. 4 for
the bearings. This influence further complicates the analysis,
as the measurements serve as indicators for degradation, so
we need to distinguish whether changes in the measurement
are resulting either by changed OC, or by degrading health,
or both.

Inquiring the effect of OC on degradation is particularly dif-
ficult, since the OC consist of multiple variables that often
have a combined effect where one OC variable strengthens or
weakens the effect of another. In such cases, on the one hand
a detailed understanding is needed of how the asset’s health
evolves under given OC, in the form of engineering laws or
physical models. On the other hand, a sufficient amount of
ALT data is required to validate and quantify these models.
However, ALT data are typically scarcely available because
they are costly to generate. Again, maximally leveraging on
all available knowledge and data is key. We show how the
original BN for RUL prediction is adjusted such as to account
for OC.

Let us first address the simpler case of stationary operating
conditions. When the OC are stationary over the entire life-
time, even when they are different for different assets, train-
ing and using a BN for prediction of RUL is not a lot more
complicated than before. Given sufficient ALT data for each
OC, one can simply retrain another BN for each different OC.
Of course it is more useful to leverage on knowledge of how
OC affect lifetime, ideally in the form of a relation with the
OC adding few free parameters, such as the empirical ba-
sic rating life model for bearings of (ISO281, 2007). Such
knowledge is integrated in the BN by adding a relation from
the OC to the lifetime and the measurements. The generic
BN for RUL prediction, previously shown in Fig. 5, is then
updated to the BN structure of Fig. 9.

Figure 9. The generic BN structure for RUL prediction under
stationary operating conditions.

For varying operating conditions, the relation between OC
and lifetime is more complicated. One could interpret the re-
lation between OC and lifetime in Fig. 9 as the aggregated
effect of OC on lifetime, but as such the combined effect of
the OC with health is overlooked. For instance, a higher load
might have a larger damaging effect if the asset was already
in a degraded state. Therefore, the OC effect should be ag-
gregated in such a way that it takes that aspect into account,
which it does not in the BN structure of Fig. 9.
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We resolve this issue by assuming nominal parameters for a
single nominal OC defined up front. We relate all other OC
to this nominal OC, and express lifetime and RUL as their
equivalent lifetime and RUL under the nominal OC. To deal
with varying OC, we locally compress and stretch time into
an equivalent time under the nominal OC. This idea is shown
in the BN structure of Fig. 10. The variables Health, Lifetime
and RUL are all expressed in the Equivalent Time correspond-
ing to nominal OC. For the nominal OC, Equivalent Time and
Time progress at the same rate. Note that Equivalent Time is
defined as a stochastic variable (ellipse), because the relation
between OC, Time and Equivalent Time might be uncertain.
This BN structure also includes the immediate effect of OC
on the measurements. The RUL that this model predicts is
expressed as the equivalent RUL under nominal OC. Deci-
sion support should take the expected future OC into account
for predicting the actual RUL. Note that such BN can also be
used to recommend to change the future OC, if the applica-
tion allows it, in order to delay potential failure.

Figure 10. The generic BN structure for RUL prediction un-
der varying operating conditions.

4. APPLICATION ON CASE STUDIES

In this section, we illustrate the methodology by the applica-
tion on either SOVs or bearings in four case studies, corre-
sponding to the topics explained in the previous section: (i)
training and prediction, (ii) decision support for maintenance,
(iii) model uncertainty, and (iv) varying operating conditions.

4.1. BNs for RUL prediction on SOV

We have trained the BN model of Fig. 6 on the ALT data of
the 10 SOVs, whose time-to-hit measurement evolution was
shown in Fig. 3, with 2 ALTs censored. For simplicity, we
have only incorporated the time-to-hit measurement. Includ-
ing other measurements would only reduce the prediction un-
certainty, although not significantly since time-to-hit is the
most informative on the hidden health. The BN automati-
cally weighs the measurement contributions according to the
amount of information they provide on the health. As such,

it is an implicit form of feature extraction. We then used the
fitted model parameters to predict the RUL of an SOV not
used in the training, over its entire lifetime. The prediction
yields a distribution of RUL, the evolution of which is shown
in Fig. 11, compared to the RUL ground truth. Note the sud-

Figure 11. RUL prediction for one SOV (probability density
in grayscale) compared to the ground truth RUL (white line).

den decrease of uncertainty around 1.5 million cycles. This
decrease is due to the fact that at that point, the time-to-hit
measurement starts increasing, thus providing crucial infor-
mation on the imminent EOL. Before, the measurement re-
veals little on the SOV’s health, so the prediction is mainly
based on the Weibull statistics, truncated at the current cycle.
This transition is naturally taken care of by the BN because it
combines all information sources available and automatically
weighs their uncertainties in the statistical posterior, as op-
posed to an explicit switching such as the one used in (Geurts
et al., 2023).

The RUL prediction shown in Fig. 11 is based on the last
measured time-to-hit at the present cycle. However, the time-
to-hit measurement itself displays stochastic fluctuations, as
can be clearly seen in Fig. 3. Therefore, it makes sense to
include the full history of the measurement in the RUL pre-
diction, so that this inherent stochasticity is filtered. Yet it
is important to note that the fluctuations are not white noise,
rather colored noise, which means the measurements are cor-
related over time. Mi should then no longer be defined as
separate univariate normal random variables like in Eq. 2,
but as a single multivariate normal random vector with the
same mean and the measurement autocovariance as covari-
ance. The resulting prediction (5%− 95% quantiles near the
EOL) is shown in Fig. 12, for both the last measurement only
and the full history prediction, illustrating the advantage of
the latter: it is more consistent and accurate compared to the
true RUL.

4.2. BNs for maintenance decision support on SOV

For the SOV example of Fig. 11, we show a detail of the RUL
prediction approaching EOL and the corresponding expected
relative cost E[CT (TPH)]/CA in Fig. 13, for arbitrary cost
model parameters CF /CA = 10 and TPH = 2e4. Note that
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Figure 12. 5%−95% quantiles for RUL predictions from only
the last measurement or from the full measurement history.

Figure 13. Top: RUL prediction. The dashed horizontal line
marks the prediction horizon TPH. Bottom: expected relative
cost of replacement time T + TPH at scheduling time T . The
dashed vertical line marks the optimal scheduling time T ∗.

at the optimal scheduling time T ∗, the RUL prediction distri-
bution still has the most part above the TPH line. The optimal
maintenance scheduling strategy therefore involves probing
the tail of the RUL prediction distribution, which emphasizes
the importance of correctly calculating this distribution.

4.3. Model uncertainty in BNs on SOV

We have redone the prediction of the SOV of Fig. 11, now
using 40 SOVs in the training set instead of only 10. Both
are compared in Fig. 14 through their 5% − 95% quantiles.
In the RUL predictions, we have now included the posterior
parameter uncertainty after training. Clearly, more training
data results in a more accurate RUL prediction. It can be
seen that this effect is most manifest in the healthy phase of
the SOV, where the RUL prediction is mainly based on the
EOL statistics and not on the measurement. This is to be
expected from a statistical perspective. However, approach-
ing the EOL, where the prediction accuracy is more important
for optimal maintenance scheduling, both predictions become
very close. This illustrates the power of BNs for RUL predic-
tion, as in this case it suffices to have a training set of only 10
ALTs, two of which are censored, and a simple degradation
and measurement model.

Figure 14. 5%−95% quantiles for RUL predictions including
parameter uncertainty, where the BN parameters are trained
either on 10, or on 40 SOVs.

4.4. BNs for varying OC on bearings

The bearing ALT dataset introduced in Section 2.2 is insuf-
ficiently rich to validate the proposed BN for RUL predic-
tion under varying OC of Fig. 10. Indeed, because of the
very uniform saw-tooth pattern of speed (Fig. 4) in the vary-
ing speed ALT, its long-term influence on degradation effec-
tively corresponds to a stationary OC, albeit different from
the stationary speed ALT. As a consequence, we have only
two different long-term aggregated OC. We therefore use a
combination of the BN structures of Figs. 9-10 for stationary
OC and varying OC, respectively: we assume the long-term
effect of OC on lifetime as equivalent to stationary, but the
immediate effect of OC on the P2P measurement as varying.
The resulting BN for training, now including the parameters,
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is shown in Fig. 15. There are two extra variables SET and

Figure 15. The BN for training of bearing RUL prediction,
either under stationary or under varying RPM.

RPM, that relate to the aggregated effect of speed on lifetime
and to the immediate effect of speed on the P2P acceleration
measurement, respectively. The binary variable SET defines
to which dataset the bearing belongs, either subjected to sta-
tionary speed ALT or to varying speed ALT. This variable es-
sentially selects either one of two values for the parametersD
and λ. The shape parameter k was fixed up front to a value of
1.3 building on historical knowledge on bearing fatigue life-
time statistics (NSWC, 2011). Extending Eq. 2 defining the
relations between all variables, we define the distribution of
the P2P measurement as:

P2Pnom ∼ N
(
P2P0(1−H) + P2P1H,σ

2
P2P

)
, (6)

P2P = c P2Pnom RPMα. (7)

The expression in Eq. 7 with parameters c and α was estab-
lished through a qualitative inspection of P2P data, both in
healthy and degrading state as shown in Fig. 4, by comparing
P2P values to the corresponding nominal P2P values around
the nearest time where the speed is 2000 rpm. All 7 parame-
ters of the BN model are simultaneously fitted to the training
data.

We have trained this BN model on a set of 48 ALT, of which 7
were subjected to the varying speed profile. Bearings to vali-
date the resulting RUL prediction were left out of the training
data. As a benchmark, we also trained and validated the orig-
inal model of Fig. 6 on the same data. An example of the re-
sulting RUL prediction for both models on the same varying
speed bearing is shown in Fig. 16. The RUL prediction with
the original model is clearly disturbed by the varying condi-
tions, emphasizing the need for including them. The same
problem was manifest in the work of (Geurts et al., 2023).

A single asset’s prediction may illustrate the added value, yet
a proper comparison should be built on adequate RUL pre-
diction performance metrics. A thorough overview and ana-

Figure 16. The RUL prediction for a varying speed bearing,
both for the benchmark model (top) and the new model that
includes the effect of varying OC (bottom), compared to the
true RUL (white line).

lysis of metrics is given in (Saxena, Celaya, Saha, Saha, &
Goebel, 2010). To keep things simple, we have compared
the benchmark model and the varying OC model by the log-
likelihood evaluated at various relative locations in the life-
time and averaged over the varying speed bearings, as shown
in Fig. 17. The log-likelihood is a straightforward general-

Figure 17. The average log-likelihood for the benchmark
model and the new model, as function of relative time within
the ALT.

ization of mean squared error (MSE) that also covers the un-
certainty of the prediction. The evaluation at multiple relative
locations in the lifetime, similar to the alpha-lambda perfor-
mance metric, addresses the application-specific prediction
horizon as explained in Section 3.3.
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5. CONCLUSION

We have shown a method for building, training and using
Bayesian networks for RUL prediction. Next to the advantage
of its comprehensibility, even when many factors contribute
to the prediction, we have focused on the extension of RUL
prediction with decision support for maintenance and the ex-
plicit inclusion of model uncertainty arising from the scarcity
of training data. We have shown how the BN is adjusted to
allow for RUL prediction under varying operating conditions.

This work is part of a larger study on the application of BNs
for CBM and for maintaining quality in industry. We see the
following open challenges and future research topics:

• Our current ALT datasets on SOVs and bearings do not
allow for a proper validation of the generic method of
Section 3.5. To this end, we are currently conducting a
new ALT data campaign on SOVs under varying opera-
tion conditions.

• The inclusion of model uncertainty and its propagation
to the RUL prediction is still lacking a quantified deci-
sion support for further data campaigns and design-of-
experiments (DoE). We will investigate a practical me-
thod to assess the need for more training data and DoE,
for instance through a criterion on the trend of a suit-
able performance metric such as the average leave-one-
out log-probability.

• Investigate more complex degradation mechanisms, aris-
ing from multiple root causes that have different degra-
dation dynamics.

• Instead of focusing on RUL which assumes the asset’s
quality as a binary variable and the EOL as a specific
moment in time, we will shift towards the prognostics
of a more nuanced application-oriented quality condition
and corresponding decision support, such as condition-
aware control.
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