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ABSTRACT 

Electro-Mechanical Actuators (EMAs) are projected to 

revolutionize the flight control actuator paradigm, potentially 

replacing hydraulic-powered systems in the future. 

Consequently, the functioning of EMAs is destined to 

become critical for the safe and reliable operation of aircraft. 

Abnormal conditions of the mechanical components of 

EMAs can lead to their failure. The objective of this work is 

to develop a method for the early detection of abnormal 

conditions of the components of EMAs. The proposed 

method is based on a signal reconstruction model that 

estimates the motor position of EMA as expected in normal 

conditions of its components. Then, the presence of an 

abnormal condition is identified when the difference between 

the motor position and its reconstructed position in normal 

conditions exceeds a preset threshold. The signal 

reconstruction model employs a Physics-Informed Long 

Short-Term Memory network (PILSTM), whose architecture 

combines a physics-informed cell for the solution of the 

differential equations governing the EMA operation, and a 

data-driven Long Short-Term Memory (LSTM) cell which 

receives in input the output of the physics-informed cell and 

reconstructs the position expected in normal conditions. The 

proposed method is applied to data simulated by a high-

fidelity model of EMAs. The results show that PILSTM is 

able to provide accurate, physics-consistent estimates of the 

motor position of EMA in normal conditions and the missed 

and false detection alarms are lower than those of other state-

of-the-art methods. 

1. INTRODUCTION 

In Prognostics and Health Management (PHM), fault 

detection amounts to the identification of abnormal 

conditions in the monitored structure, system and 

components (SSCs). A common approach relies on signal 

reconstruction models that give in output the signal values in 

normal conditions of the SSC (Hines, Uhrig, & Wrest, 1998). 

The difference between the actual signal measurements and 

the reconstructed signal values (so-called residual) is 

analyzed for detecting the presence of abnormal conditions: 

the larger the residuals, the more the SSC behaviour deviates 

from that in normal conditions. 

Signal reconstruction methods can be classified in model-

based and data-driven (Yang, Ling, & Bingham, 2013). 

Model-based approaches typically use numerical simulators 

which code the specific laws of physics. They require a 

limited amount of data for model parameter calibration and 

retain the physical interpretability of the model output. In 

(Zhang, Foo, Don Vilathgamuwa, Tseng, Bhangu, & 

Gajanayake, 2013), a method combining physics-based 

model and extended Kalman filter has been developed to 

perform fault detection of induction motors. In (Sarikhani, & 

Mohammed, 2012), a back electromotive force estimator has 

been built using only laws of physics and the fault detection 

is performed by comparing the signal estimates and the 
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nominal values. The main limitations of model-based 

approaches are the difficulty of representing with a model the 

complexity of modern SSCs, the inevitable approximations 

made to build and solve the model and the computational 

efforts needed for numerical simulation. On the contrary, 

data-driven methods are typically simpler to implement since 

they do not require knowledge on the physics of the system 

and are able to discover complex nonlinear patterns in data. 

Recently, deep learning-based methods have gained 

popularity. In (Qi, Jang, Cui, & Moon, 2023), a data-driven 

model based on the use of gated recurrent units has been built 

to reconstruct the dynamic behaviour of stirred tank reactors 

in normal conditions. In (Xu, Baraldi, Lu, & Zio, 2022), a 

Generative Adversarial Network and an auxiliary encoder 

have been developed to detect anomalies in the operation of 

automatic doors of high-speed trains. Some limitations of 

data-driven methods are their difficulty of extrapolation 

outside the region covered by the training data and the lack 

of interpretability of their outputs, due to their black-box 

nature. 

Hybrid methods combining model-based and data-driven 

methods have also been proposed. In (Chao, Kulkarni, 

Goebel, & Fink, 2022), sensor readings and estimates of 

unobservable parameters inferred by physics-based models 

have been used as input of a deep learning method for 

predicting the remaining useful life of turbofan engines. In 

(Shen, Lu, Sadoughi, Hu, Nemani, Thelen, ... & Kenny, 

2021), a physics-informed deep learning approach has been 

developed for fault detection of bearings, in which the loss 

function contains a term that incorporates physical 

knowledge on the envelop spectrum. In (Yucesan, & Viana, 

2021), recurrent neural networks embedded with physics-

based models of fatigue and grease degradation have been 

developed to predict grease damage. In (Li, & Deka, 2021), a 

physics-informed autoencoder integrating the laws of physics 

relating current and voltage in the loss function is developed 

to detect high impedance faults in distribution grids. In (Chen, 

Rao, Feng, & Zuo, 2022), a physics-informed strategy for 

setting the hyperparameters of a Long Short-Term Memory 

(LSTM) network is developed for fault detection of 

gearboxes. It is based on the maximization of the discrepancy 

between healthy and simulated faulty patterns. Physics-

informed methods have shown their capability of improving 

performance in fault detection, diagnostics and prognostics, 

while enhancing consistency with the law of physics, which 

can enhance trustability. Yet, their use for developing signal 

reconstruction models is still challenged by the difficulty of 

considering variable operating conditions and highly 

nonlinear relationships. 

In this context, this work presents the development of a novel 

signal reconstruction method based on the use of Physics-

informed LSTMs (PILSTMs) to perform fault detection. The 

basic idea behind the developed PILSTM is the combination 

of a physics-informed and a data-driven layers. The former 

solves the differential equations of the model of the system in 

normal conditions, whereas the latter layer receives in input 

the output of the physics-informed layer and reconstructs the 

signals in normal conditions. The developed approach is 

applied to data simulated using a high-fidelity model of 

EMAs, and its performance is compared to those of other 

state-of-the-art methods. The problem of fault detection in 

EMAs has been previously addressed in (Yang, Guo, & Zhao, 

2019), where a LSTM-based model is developed for signal 

prediction and the residuals between predictions and 

measurements are used to detect abnormal conditions. In 

(Zhang, Tang, & Chen, 2021), a model based on an improved 

Gate Recurrent Unit (GRU) is developed to predict signal 

evolutions, which are then used to classify faults with a 

similarity measure. The two methods have been developed 

and verified considering a small set working conditions and 

command signals, which limits their applications to the real 

scenarios. 

The rest of this paper is organized as follows. Section 2 

formulates the problem. Section 3 presents the proposed fault 

detection method. Section 4 discusses the application of the 

proposed method to EMAs. Finally, the conclusions of the 

work are presented in Section 5. 

2. PROBLEM STATEMENT 

We consider the motor of an EMA, which is its most critical 

component, considering the frequency of its failures and their 

potential severity. The function of the motor is to provide the 

torque needed to actuate the aircraft aerodynamic surface 

(Berri, Dalla Vedova, & Maggiore, 2019). It is here modelled 

as a component that receives in input the three-phase current 

signals, [𝑥𝜏,1, 𝑥𝜏,2, 𝑥𝜏,3] , and provides as output the motor 

position, 𝑦𝜏  (Baldo, Bertone, Dalla Vedova, & Maggiore, 

2022) (Figure 1). 

 

Figure 1. Input and output signals of the motor of an EMA. 

We assume to have the available dataset 𝒟𝑡𝑟𝑎𝑖𝑛 =
{𝑋𝑟 , 𝑦𝑟}𝑟=1,...,𝑅  containing 𝑅  input-output time-series of 𝑇 

time instants, 𝑋𝑟 ∈ ℝ𝑇×3 and 𝑦𝑟 ∈ ℝ𝑇 , collected during the 

operation of an EMA in normal conditions. The generic 

vector �⃗�𝑡
𝑟 = [𝑥𝑡,1, 𝑥𝑡,2, 𝑥𝑡,3] of 𝑋𝑟  contains the value of the 

𝑛th phase current signal at the 𝑡th time instant, whereas 𝑦𝑡
𝑟  

indicates the value of the motor position signal. Each input-

output time series {𝑋𝑟 , 𝑦𝑟}  corresponds to different 

operational conditions of the EMA. 

The objective is the development of a fault detection method 

for the early identification of abnormal conditions in the 

EMA motor. The method is based on the development of a 
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signal reconstruction model 𝑓 : �̂�𝜏 = 𝑓(𝑋𝜏)  that gives in 

output the value �̂�𝜏  that the motor position would have in 

normal conditions at the time 𝜏, given the values of the input 

signals 𝑋𝜏 = [�⃗�𝑡]𝑡=1:𝜏 measured from time 0 until the time 𝜏. 

An anomaly indicator is, then, built considering the residual, 

𝑑𝜏 = �̂�𝜏 − 𝑦𝜏, between the motor position reconstructed by 

the model and the actual measurement. The norm of 𝑑𝜏  is 

small if EMA is in normal conditions and large in case of 

abnormal conditions: therefore, the detection of an anomaly 

condition can be obtained by statistical analysis of the 

residuals. 

3. METHOD 

The signal reconstruction model, �̂�𝜏 = 𝑓(𝑋𝜏) is a PILSTM, 

which is capable of dealing with large non-linearities in the 

dynamics of the time-series. The first layer is a physics-

informed (PI) layer that implements numerical methods to 

estimate the motor position. The second layer is a traditional 

LSTM cell. Fully-connected (FC) layers are used to map the 

extracted hidden features to the output signal (motor position). 

The complete architecture of the signal reconstruction model 

is shown in Figure 2. 

Section 3.1 describes the PI layer and Section 3.2 describes 

the LSTM layer of the PILSTM. Section 3.3 defines the 

anomaly indicator used for the detection of abnormal 

conditions. 

 

Figure 2. Architecture of the proposed PILSTM. 

3.1. Physics-informed layer 

The differential equation used to describe the operation of the 

EMA motor and transmission in normal conditions is (Baldo, 

Bertone, Dalla Vedova, & Maggiore, 2022): 

𝐹 = (𝐽𝑚 + 𝐽𝑢
∗)�̈�𝑡 + 𝐶𝑢�̇�𝑡 + 𝐶𝑚(±√|�̇�𝑡|) (1) 

where 𝑦𝑡 is the motor position, 𝐹 is the motor torque, 𝐽𝑚 is 

the motor inertia, 𝐽𝑢
∗  is the inertia of the gearbox following 

the motor and 𝐶𝑢 is the viscous friction of the gearbox. 𝐹 is 

computed from the current signals 𝑥𝑡,1, 𝑥𝑡,2 and 𝑥𝑡,3 as: 

𝐹 = ∑ 𝑥𝑡,𝑛 ∙ 𝑘𝑛
𝑛=1,2,3

 (2) 

with  

𝑘1 = −𝑘𝐸 ∙ sin⁡(𝜃𝑒) (3) 

𝑘2 = −𝑘𝐸 ∙ 𝑠𝑖𝑛⁡(𝜃𝑒 −
2

3
𝜋) (4) 

𝑘3 = −𝑘𝐸 ∙ 𝑠𝑖𝑛⁡(𝜃𝑒 −
4

3
𝜋) (5) 

𝜃𝑒 = 2𝜋(
𝑃 ∙ 𝑦𝑡
2𝜋

− 𝑓𝑙𝑜𝑜𝑟(
𝑃 ∙ 𝑦𝑡
2𝜋

)) (6) 

where 𝑘𝑛  is the 𝑛th-phase back-electromotive force (EMF) 

coefficient, 𝑃 is the number of pole pairs and 𝑘𝐸 is the back-

EMF motor constant. 

The EMA motion in normal conditions is, then, formulated 

as a 2-order differential equation: 

�̈�𝑡 = 𝑔(�⃗�𝑡 , �̇�𝑡 , 𝑦𝑡) (7) 

which is numerically solved by resorting to the 4-stage 

Runge–Kutta method (RK4) (Butcher, 1987). More details 

about the RK4 method are reported in Appendix 1. The 

customized RK4 cell solves Eq (1) by computing 

(Nascimento, Fricke, & Viana, 2020):  

[𝑦𝑡 , �̇�𝑡] = 𝑝𝑖(�⃗�𝑡 , 𝑦𝑡−1, �̇�𝑡−1) (8) 

The obtained 𝑦⁡and �̇�  are hidden features ℎ⃗⃗(1)  fed to the 

LSTM layer. To distinguish the estimates provided by the 

physics-informed layer and the actual measurements, the 

motor position and its first derivative computed by the 

physics-informed layer are indicated as 𝑦𝑝ℎ𝑦⁡ and �̇�𝑝ℎ𝑦 

(Figure 3). 

 

Figure 3. Architecture of the physics-informed layer. 

3.2. LSTM layer 

In the second layer of the PILSTM, data-driven LSTM cells 

are used to reconstruct the signal values. The cells receive in 

input the signal estimates ℎ⃗⃗(1)  (Figure 4) and control the 

information flow using input, forget and output gates to 

remember, when needed, information for long periods of time.  
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Figure 4. Architecture of LSTM layer. 

Specifically, at time 𝑡, the LSTM cells receive in input 𝐡𝑡
(1)

, 

which is the concatenation of 𝑦𝑡 ⁡and �̇�𝑡, process the temporal 

behaviour of the time-series and provide in output the vector 

of hidden features ℎ⃗⃗𝑡
(2)

 and cell states 𝑐𝑡
(2)

. The following FC 

layers map the extracted features ℎ⃗⃗𝑡 into the estimates of the 

motor position �̂�𝑡. The structure and detailed operation of the 

LSTM cells are reported in Appendix 2. 

The objective of the training of PILSTM is to identify the 

optimal combination of parameters values (weights and 

biases) that minimizes the error between the actual values of 

𝑦𝑡  and the estimates �̂�𝑡 . To this aim, the following loss 

function is minimized on the training data in 𝒟𝑡𝑟𝑎𝑖𝑛: 

ℒ =
1

𝑅 ∙ 𝑇
∑∑‖𝑦𝑡

𝑟 − �̂�𝑡
𝑟‖2

𝑇

𝑡=1

𝑅

𝑟=1

 (9) 

3.3. Definition of the anomaly indicator 

The test time-series 𝑋𝑡𝑒𝑠𝑡 = {𝑥𝑡,𝑛
𝑡𝑒𝑠𝑡}

𝑡=1,…,𝜏,𝑛=1,2,3
, contains 

the measurements of the phase current signals until the 

present time 𝜏, and it is rearranged in a set of 
𝜏−𝑙

𝑠𝑠
+ 1matrices 

𝑋𝑡𝑘
𝑡𝑤 ∈ ℝ𝑙×3 , 𝑡𝑘 = (𝑘 − 1) ∗ 𝑠𝑠 + 𝑙⁡with 𝑘 = 1, . . . ,

𝜏−𝑙

𝑠𝑠
+ 1 , 

each one containing the current signals [𝑥𝑡,1, 𝑥𝑡,2, 𝑥𝑡,3] in a 

time window of 𝑙  time steps. Between one matrix and the 

following, a sliding step of 𝑠𝑠  time steps is applied. At 

present time 𝜏 , the residuals 𝐷 = [�̂�𝜏−𝑙+1, �̂�𝜏−𝑙+2, … , �̂�𝜏] −
[𝑦𝜏−𝑙+1, 𝑦𝜏−𝑙+2, … , 𝑦𝜏] are computed and used to define the 

anomaly indicator (AIND): 

𝐴𝐼𝑁𝐷 = ‖𝐷‖𝐿2
2  (10) 

Finally, a threshold 𝑇ℎ𝑟 for 𝐴𝐼𝑁𝐷 is defined: considering a 

validation set, and the occurrence of an abnormal condition 

is detected if 𝐴𝐼𝑁𝐷 exceeds 𝑇ℎ𝑟. 

4. CASE STUDY 

The functioning of an EMA working in normal conditions has 

been simulated using the high-fidelity (HF) simulator 

described in (Berri, Dalla Vedova, & Maggiore, 2019). 

Specifically, 𝑅 = 60 time-series with time length 𝑇 = 50s of 

EMA operation in normal conditions have been generated for 

training the PILSTM model and verifying the signal 

reconstruction performance. Wavelet denoising has been 

applied to measured signals. The time series has been 

obtained at a frequency of 100Hz. 

4.1. Signal reconstruction in normal conditions 

The dimensionality of ℎ⃗⃗𝑡
(2)

 is 10. The FC layers consist of 2 

hidden layers with 10 and 5 neurons and 1 output layer with 

1 neuron. The learning rate is set equal to 0.01 and the epoch 

is 250. The Adam optimizer is used to optimize the 

parameters of the LSTM layer and FC layers. 

The 𝑅 = 60 time-series in normal condition are divided into 

a training set containing 30 time-series and a validation set 

containing the other 30 time-series. 

The performance of the proposed PILSTM is compared to 

two state-of-the-art methods: (1) a pure physics-based 

approach based on the solution of Eq. (13) with RK4 to 

compute the motor position; (2) a pure data-driven method, 

which uses a traditional LSTM to estimate the motor position. 

The most critical hyperparameters of the LSTM (number of 

layers, number of hidden states, learning rate) are optimized 

performing a grid-search with the objective of maximizing 

the reconstruction accuracy evaluated on a subset of the 

training set not used for the loss computation (Eq. (9)) during 

training. The optimal configuration is found to be 2 layers, 16 

hidden states and a learning of 0.001. The Root Mean 

Squared Error (RMSE) is used as metric to evaluate the 

reconstruction performance. 

Table 1. Comparison of the accuracy in the reconstruction 

of the motor position for EMA working in normal 

conditions. The RMSE is computed with respect to the time 

series of the validation set. 

 

 PILSTM 
Physics-based 

method 
LSTM 

RMSE 0.7087 0.9621 14.6087 

 

Table 1 reports the obtained reconstruction accuracy on the 

validation data. An example of motor position estimates is 

shown in Figure 5. Note that: (1) the pure data-driven method 

provides the worst performance, which indicates that the 

training data are not providing enough information for the 

reconstruction of the input-output relationship; (2) the 

proposed PILSTM method provides the best performance, 

which is obtained by reducing the systematic error of the pure 

physics-based model in the position reconstruction when the 

motor is operating reversely (Figure 5). Due to the 

remarkably worst performance of the LSTM model, which 

makes reconstruction errors more than one order of 
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magnitude larger than the other approaches, the generated 

residuals by LSTM are not shown in Figure 5 (b). 

4.2. Fault detection 

A test set containing normal and abnormal conditions data 

has been generated by simulator. The set contains 9 time-

series in normal conditions and 20 time-series in abnormal 

conditions obtained by assuming a dry friction of 20%, 35% 

and 50%, respectively, for a time interval of 50s. With respect 

to the anomaly indicator setting, the length of the time 

window is set equal to 100, which is the number of 

measurements collected in 1s, and the sliding step 𝑠𝑠 is set 

equal to 10 steps. An example of reconstruction of the motor 

position for an EMA operating in abnormal conditions is 

shown in Figure 6. As expected, the values of the residuals 

tend to be larger than the residuals in normal conditions 

(Figure 5 (b)) for both the physics-based model and the 

proposed method. Also, the residuals of the proposed method 

are remarkably larger than zero, which confirms its capability 

of distinguishing between normal and abnormal conditions. 

 

(a) 

 

(b) 

Figure 5. (a) reconstructions of the motor position and (b) 

corresponding residuals for an EMA in normal conditions. 

 

(a) 

 

(b) 

Figure 6. (a) reconstructions of the motor position and (b) 

corresponding residuals for an EMA in abnormal 

conditions. 

Figures 7, 8, 9 show the Receiver Operating Characteristic 

(ROC) curves obtained by varying the threshold of the 

anomaly indicator for the detection, considering the three 

levels of fault severity, separately. The x-axis reports the 

False Positive Rate (FPR), i.e., the rate of time windows in 

normal conditions identified as abnormal conditions and the 

y-axis reports the True Positive Rate (TPR), i.e., the rate of 

time windows in abnormal conditions identified indeed as 

abnormal conditions. The ideal performance is represented 

by the upper left corner point [0,1]. An overall measure of 

anomaly detection performance is the AUC (Area under the 

ROC Curve) whose most satisfactory value is 1, which 

indicates that all normal and abnormal time series are 

correctly identified. 

Table 2. AUC considering the three levels of fault severity. 

 

Fault severity 

Proposed 

method: 

PILSTM 

Physics

-based 

method 

Pure data-

driven method 

LSTM 

20% dry friction 0.7211 0.4590 0.4056 
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35% dry friction 0.7661 0.4637 0.5468 

50% dry friction 0.9971 0.4892 0.4628 

 

 

Figure 7. ROC curve made by normal condition data and 

20% dry friction abnormal condition data in the test set. 

 

Figure 8. ROC curve made by normal condition data and 

35% dry friction abnormal condition data in the test set. 

 

Figure 9. ROC curve made by normal condition data and 

50% dry friction abnormal condition data in the test set. 

From Table 2, it is seen that the developed PILSTM provides 

the best performance in all fault severities and the pure LSTM 

model shows the worst performance due to its poor capability 

of reconstructing the signals. As expected, the performance 

of PILSTM becomes better as the fault severity increases. 

5. CONCLUSION 

The present work has addressed the problem of fault 

detection in industrial components. A novel method for 

signal reconstructions has been developed based on a 

PILSTM model. Specifically, the PILSTM integrates an RK4 

solver of the differential equation governing the EMA 

operation in normal condition into a LSTM hidden layer. A 

case study considering a simulated dataset of EMA operation 

has been considered. The proposed method has shown a more 

satisfactory accuracy in the signal reconstruction than pure 

data-driven and physics-based methods. The residuals 

between reconstructed and measured signals have, then, been 

used for the detection of abnormal conditions. The results 

show that the method is capable of detecting abnormal 

conditions of smaller severity than other comparison methods. 

Future work will be devoted to optimally setting the threshold 

used for detecting the occurrence of abnormal conditions, 

with the objective of balancing false and missed alarms for 

fault detection according to the user demand. Also, the 

obtained results will be compared with those of other state-

of-the-art methods for unsupervised abnormal condition 

detection, such as Deep Semi-supervised Anomaly Detection. 
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APPENDIX 1: 4-STAGE RUNGE–KUTTA METHOD 

With the available physical knowledge of industrial 

components, a generalized form of 2-order differential 

equation that governs the industrial component can be 

defined: 

�̈� = 𝑔(�⃗�, �̇�, 𝑦) (11) 

where �⃗� is the vector of input signals, 𝑦 is the vector output 

signals, �̇�  and �̈�  are first and second derivatives of 𝑦 , 

respectively. 

Considering the step-size ℎ between time 𝑡 and time 𝑡 + 1, 

RK4 is used to numerically integrate Eq. (11) over time with 

step ℎ: 

[
�̇�𝑡+1
𝑦𝑡+1

] = [
�̇�𝑡
𝑦𝑡
] +

ℎ

6
∙ [
𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4
𝑙1 + 2𝑙2 + 2𝑙3 + 𝑙4

] (12) 

𝑘1 = 𝑔(�⃗�𝑡 , �̇�𝑡 , 𝑦𝑡) (13) 

𝑘2 = 𝑔 (�⃗�𝑡+ℎ/2, �̇�𝑡 +
ℎ

2
∙ 𝑘1, 𝑦𝑡 + ℎ ∙

𝑙1
2
) (14) 

𝑘3 = 𝑔 (�⃗�𝑡+ℎ/2, �̇�𝑡 +
ℎ

2
∙ 𝑘2, 𝑦𝑡 + ℎ ∙

𝑙2
2
) (15) 

𝑘4 = 𝑔(�⃗�𝑡+ℎ, �̇�𝑡 + ℎ ∙ 𝑘3, 𝑦𝑡 + ℎ ∙ 𝑙3) (16) 

𝑙1 = 𝑦𝑡  (17) 

𝑙2 = 𝑦𝑡 +
ℎ

2
∙ 𝑙1 (18) 

𝑙3 = 𝑦𝑡 +
ℎ

2
∙ 𝑙2 (19) 

𝑙4 = 𝑦𝑡 + ℎ ∙ 𝑙3 (20) 

APPENDIX 2: LSTM CELL 

LSTM cell structure at time t is shown in Figure 9. We 

differentiate output and states of LSTM cell denoted as ℎ⃗⃗𝑡 
and 𝑐𝑡, respectively. Vector size of the output and states is the 

same and it is defined by number of hidden states in the cell. 

Let denote 𝑝 as number of hidden states, so ℎ⃗⃗𝑡 ∈ ℝ𝑝×1 and 

𝑐𝑡 ∈ ℝ𝑝×1 . The ℎ⃗⃗𝑡−1  and 𝑐𝑡−1  of LSTM cell at time 𝑡 − 1 

will serve as an input to LSTM cell at time 𝑡, whereas the 

other input is �⃗�𝑡 . There are three gates that control the 

information flow within cell: (1) input gate ti  ∈ ℝ𝑝×1 

controls what information based on output ℎ⃗⃗𝑡−1 and �⃗�𝑡 will 

be passed to memory cell, (2) output gate �⃗�𝑡 ∈ ℝ𝑝×1 controls 

what information will be carried to the next time step and (3) 

forget gate 𝑓𝑡 ∈ ℝ𝑝×1  controls how memory cell will be 
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updated. All LSTM cells that are used in the models are 

implemented as follows:  

ti = 𝜎(𝑊𝑖�⃗�𝑡 + 𝑈𝑖 ℎ⃗⃗𝑡−1 + �⃗⃗�𝑖)
 (21) 

�⃗�𝑡 = 𝜎(𝑊𝑜�⃗�𝑡 + 𝑈𝑜 ℎ⃗⃗𝑡−1 + �⃗⃗�𝑜) (22) 

𝑓𝑡 = 𝜎(𝑊𝑓�⃗�𝑡 + 𝑈𝑓 ℎ⃗⃗𝑡−1 + �⃗⃗�𝑓) (23) 

�⃗�𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐�⃗�𝑡 + 𝑈𝑐 ℎ⃗⃗𝑡−1 + �⃗⃗�𝑐) (24) 

𝑐𝑡 = 𝑓𝑡 ∘ 𝑐𝑡−1 + 𝑖𝑡 ∘ �⃗�𝑡 (25) 

ℎ⃗⃗𝑡 = �⃗�𝑡 ∘ 𝑡𝑎𝑛ℎ⁡(𝑐𝑡) (26) 

where variable weights and bias to be computed during 

training process are 𝑊𝑖 , 𝑊𝑜 , 𝑊𝑓 , 𝑊𝑐 ∈ ℝ𝑝×𝐿 , 𝑈𝑖 , 𝑈𝑜 , 𝑈𝑓 , 

𝑈𝑐 ∈ ℝ𝑝×𝑝 , �⃗⃗�𝑖 , �⃗⃗�𝑜 , �⃗⃗�𝑓 , �⃗⃗�𝑐 ∈ ℝ𝑝×1 . ∘  is element-wise 

multiplication of two vectors (Hadamard product). 𝜎  is 

element-wise logistic sigmoid activation function. 

Connection between different layers of LSTMs is achieved 

such that the output of former layer is as an input to the next 

layer. 

 

Figure 9. Single LSTM cell structure. 
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