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ABSTRACT

The introduction of cyber-physical systems with increased
availability of sensor data creates a lot of research interest in
prognostic algorithms for predictive maintenance. Although a
lot of algorithms are successfully applied to benchmark case
studies based on simulated data and experimental set-ups, de-
ployment in industry lags behind. From a comparison between
three benchmark case studies with two real-world case stud-
ies based on prognostic metrics (monotonicity, prognosability
and trendability), two main issues are observed: 1) the lack
of run-to-failures and 2) low prognostic metrics due to a low
signal-to-noise ratio of degradation trends, as a result of un-
explained physical phenomena. To make prognostics feasible,
a hybrid framework is proposed that focuses on improving
system knowledge. The framework consists of a quantitative
diagnostic assessments, guided by (modular) system models
in which damage is induced. This quantitative damage as-
sessment provides input for prognostics based on Bayesian
filtering, enabling prognostics for assets in varying operational
conditions. Implementation and validation of the framework
requires investments, but modularity within the framework
can accelerate development for new systems.

1. INTRODUCTION

During the fourth industrial revolution, cyber-physical systems
are being introduced where sensor data communicates between
machinery and with operators (Pinciroli et al., 2023). This
sensor data can be used to find characteristics of failures within
the systems which can be used to develop models that predict
the remaining useful life (RUL) (Yan et al., 2017), giving new
opportunities for implementation of predictive maintenance.
When failures can be predicted, catastrophic accidents are
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prevented, unexpected downtime can be reduced, components
are used until the end of their actual lifetime and maintenance
logistics can be optimized (Fernandes et al., 2022).

The recent increasing interest in predictive maintenance is
clearly visible by observing the amount of published scientific
papers in this field. Only the number of review papers is
already growing significantly, as the number of counts in the
Scopus database on article titles with (survey or review) and
(predictive maintenance) grew from a total of 20 published
documents up to 2020 to a total of 84 published documents up
to 2023.

The increasing number of sensors and data availability, specifi-
cally increase the interest in data-driven prognostic approaches
(Pinciroli et al., 2023). This type of approach requires suffi-
cient historical run-to-failure data. However, in safety-critical
systems (Chao et al., 2021) or when availability of assets is
more important than costs (Tinga et al., 2021), failures are
sparse and as a consequence the required historical run-to-
failure data are rarely being collected. Also for new types of
machinery, no historical data are available (Calabrese et al.,
2021). If historical data are available, they are often unlabeled
and unorganized, lacking context such as operating conditions
and maintenance recordings (Calabrese et al., 2021; Lukens et
al., 2022).

In contrast to data-driven approaches, physics-based approaches
considering Physics-of-Failure (PoF) models have less strict
data requirements. They provide a relation between usage
and degradation rates (Tinga, 2013b). This yields benefits
compared to purely data-driven approaches, specifically when
failures are rare and when future operating conditions (and
consequently degradation rates) are different from historical
operating conditions (Tiddens et al., 2023). However, these
models are expensive to develop and are component or system
specific (Elattar et al., 2016). Also, the relation between usage
and degradation rates should be known and must not be too
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complex.

To overcome issues with purely data-driven or purely physics-
based prognostics, combinations of them (i.e. hybrid ap-
proaches) are often proposed as a solution (Elattar et al., 2016;
Guo et al., 2020). Still, many hybrid methods use data-driven
models to estimate the degradation behavior (Pugalenthi et al.,
2021; Borutzky, 2020) or only use physics to improve input
parameters of a data-driven prognostic algorithm (Gálvez et
al., 2021; Chao et al., 2022). This yields improved results
compared to purely data-driven approaches, but the relation
between usage and degradation rates are generally not con-
sidered, still limiting applicability in cases of rare historical
failures and varying operating conditions.

Fernandes et al. (2022) described that in many studies, real-
world challenges are often overlooked and additional research
to address these real-world challenges is needed. This sug-
gests a gap between science and industry. This suggestion
is strengthened by a survey in 280 companies in Belgium,
Germany and the Netherlands, showing that only 11% are
actually implementing predictive maintenance techniques in
2017 (Mulders & Haarman, 2017). Although a similar survey
showed that this number increased to 17% in 2023, mainly
attributed to original equipment manufacturers (OEMs) and
sectors with large numbers of the same assets (van der Velde et
al., 2023), a large majority of developed methods is still only
being applied to experimental or simulated data sets (Ferreira
& Gonçalves, 2022) such as C-MAPSS (Saxena & Goebel,
2008).

In this paper, issues with implementation of prognostics in
two real-world cases are pinpointed. The case studies are
performed by two organizations within the Netherlands who
try to implement predictive maintenance for military assets.
The case studies are challenging, as availability of these assets
is more important than costs (Tinga et al., 2021), fleets are
relatively small and the assets operate in varying operational
and environmental conditions. Prognostic metrics defined by
Coble (2010) (monotonicity, prognosability and trendability)
are calculated for the two real-world case studies, and also for
three well-known benchmark cases to compare the potential
for application of prognostic algorithms. Based on observed
issues in the real-world cases, a possible solution is proposed
in the form of a hybrid framework.

The remainder of the paper is organized as follows. Section
2 starts with calculating prognostic metrics of features from
three benchmark cases: the Virkler crack growth data set,
the NASA milling data set and the C-MAPSS data set. Then,
metrics are calculated for features from the two real-world case
studies, concerning condition monitoring of Apache helicopter
engines and a naval main diesel engine respectively. Following
from the issues observed in the case studies, section 3 proposes
a hybrid framework for prognostics. Lastly, section 4 discusses
the results and concludes the paper.

2. PROGNOSTIC POTENTIAL OF CASE STUDIES

2.1. Prognostic Metrics

Coble (2010) developed three metrics to assess the suitability
of features as input for a (data-driven) prognostic algorithm.
The suitability is evaluated based on monotonicity (M ), prog-
nosability (P ) and trendability (T ). The range of the scores
is from 0 (unsuitable) to 1 (perfectly suitable). The weighted
sum of the three metrics gives the prognostic score, and fea-
tures with the highest score are most suitable to be used as
the input for a prognostic algorithm. So, data sets from which
features with high scores can be derived, have high potential
for prognostics.

The first metric is monotonicity, assessing the extent to which
run-to-failure trajectories are purely increasing or decreasing.
It is calculated as follows:

M = mean
(∣∣∣∣
N+ −N−

n− 1

∣∣∣∣
)

(1)

with N+ the number of increments in the run-to-failure trajec-
tory of the feature (i.e. ni+1 − ni > 0), N− the number of
decrements in the trajectory (i.e. ni+1 − ni < 0) and n the
number of data points in the trajectory. The absolute mean
monotonicity of all considered run-to-failure trends yields the
final monotonicity.

Prognosability estimates how similar the start values and the
values at failure are for the features when comparing different
run-to-failure trajectories. It is calculated as follows:

P = exp

(
− std(fend)

mean (|fend − f0|)

)
(2)

with fend a vector with all values of the features at failures
and f0 a vector with all values of the features at the start of the
run-to-failure trajectories. Std refers to the standard deviation.

Trendability describes similarity between the shapes of run-to-
failure trajectories. It is calculated as follows:

T = min
(∣∣ρij

∣∣) (3)

with ρ a vector with the correlation coefficients between each
run-fo-failure trajectory i and j of the feature. For trajectories
with different lengths, linear interpolation is applied such that
the lengths of the correlated trajectories match.

The final score S is calculated by:

S =Wm ·M +Wp · P +Wt · T (4)

with WM , WP and WT the weight factors for monotonicity,
prognosability and trendability respectively. In many appli-
cations they can be set identically, but in some applications
some metrics may be less relevant (Coble, 2010). In the case
studies discussed in the next subsection, the weight factors are
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all set to 1
3 , yielding prognostic scores ranging from 0 to 1.

2.2. Benchmark Data Sets

2.2.1. Virkler Crack Growth

The first benchmark data set considered is the Virkler crack
growth data set. Virkler et al. (1979) performed 68 run-to-
failure fatigue tests of 2024-T3 aluminium and measured the
crack length directly. This yields the run-to-failure trajectories
as shown in Fig. 1.

The data set contains crack lengths at specific numbers of
stress cycles. As crack lengths already provide a direct indica-
tor of the damage severity, no additional features need to be
calculated and the prognostic metrics are directly calculated
on the crack length measurements. As the crack length always
increases monotonically, the monotonicity is 1. All trajectories
have the same end value (50mm) and starting value (9mm),
yielding a prognosability of 1. As all trajectories are mono-
tonically increasing, all trajectories have a perfect positive
correlation, yielding a trendability of 1. Consequently, the
total prognostic score is 1.

A direct measurement of degradation can be considered as a
perfect prognostic metric, as the nature of degradation (an irre-
versible process) makes it monotonic, a proper threshold can
be defined based on system knowledge and the monotonicity
yields also perfect trendability. As the underlying model is
well understood, the Virkler data set is perfectly suitable for
prognostic methods based on Bayesian updating (Sun et al.,
2014; Baral et al., 2023), but also data-driven methods are
well applicable (Eker & Jennions, 2012).

2.2.2. Milling Tool Wear

The Milling Data Set (Agogino & Goebel, 2007) contains data
collected from an experimental setup for tool wear estimation.
There are two operational settings for the Depth of Cut (DOC),
feed rate and material. Two experiments are performed for
each combination of operational settings, yielding a total of

Figure 1. Virkler Crack Growth Data Set Virkler et al. (1979)
(M = 1, P = 1, T = 1, S = 1)

16 experiments. Each experiment consists of a number of
runs, lasting 72s. After each run, the actual tool wear (i.e.
VB: the measured distance from the cutting edge of the tool
to the end of abrasive wear on the flank (Agogino & Goebel,
2007)) is measured with a microscope. Experiments were
terminated at a certain (not further specified) tool wear limit
(and some beyond). As measuring tool wear with a microscope
after each operation is not feasible in practical applications,
measurements are also collected from sensors that can provide
an online estimation of tool wear. A total of six sensor are
installed which measure at a sampling rate of 250Hz: AC and
DC motor current sensors of the spindle, and vibration and
acoustic emission sensors at both the spindle and the table.

The data set is shown in Fig. 2. Fig. 2a shows the offline tool
wear depth (VB) measurements. As most experiments run until
≈ 0.50−0.80mm as shown by the gray band in the figure, it is
expected that the tool wear limit is around this band. The gaps
in the trajectories in Fig. 2a are due to missing measurements
in between some of the runs. Note that only 14 out of the
16 experiments are displayed: for one of the experiments,
only one run is available, making it unsuitable to calculate
prognostic metrics. Both experiments in the corresponding

(a) All tool wear trajectories in milling data set. Each color corresponds to a set of
operational settings

(M = 0.95, P = 0.66, T = 0.78, S = 0.80)

(b) Example (AC motor current) measurements for one run in milling data set

Figure 2. Visualization of the milling data set
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operational conditions are removed from the data set, such
that seven pairs of experiments remain.

The trajectories for the VB measurements yield a monotonicity
M of 0.95, prognosability P of 0.66, trendability T of 0.78
and S of 0.80. Although perfect metrics of 1 are expected
for direct degradation condition measurements, as explained
in subsection 2.2.1, some non-monotonic behavior can be
observed in Fig. 2a (e.g. the dark green line before t = 10), re-
ducing M and T . As wear is irreversible, this non-monotonic
behavior is likely to be due to measurement errors. P is
affected by the fact that some experiments were performed
beyond the tool wear limit. Still, the prognostic metrics are
high, and can be improved by reducing measurement error and
running experiments until a fixed failure threshold.

A challenge is to estimate tool wear from the real-time sensor
data. Fig. 2b shows an example of data from the AC motor
current sensor for one run of an experiment. No clear trend
can be observed in the raw sensor data, so features need to
be calculated. As the start and run of an experiment yield no
stable signal (i.e. magnitude increase and decrease as seen in
Fig. 2b), only the stable period (defined to be 16-50s, indicated
by the vertical dashed bars in Fig. 2b) is considered for feature
calculation. For each sensor and each run, the mean, standard
deviation, maximum, minimum, absolute maximum, absolute
minimum, root mean squared and sum of values are calculated.

The standard deviation from the AC motor current measure-
ments is found to have the highest prognostic score and its
trajectories are shown in Fig. 3. M is 0.74, P is 0.57 and T
is 0.84, yielding a score of 0.72. The different operating con-
ditions clearly yield different feature values, as only the start
and end values of curves with the same operating condition
have approximately the same start- and end values (i.e. the
dark green, black, red and pink pairs). Prognostic scores can
be further improved by compensating for operating conditions,
by calculating the P and T for two experiments with the same

Figure 3. Feature with highest score from milling data set,
color-coded by operating conditions

(M = 0.74, P = 0.57, T = 0.84, S = 0.72)

operating conditions and taking the mean of the separately
calculated P and T (note that M is unaffected). It is found
that in this case, P increased to 0.78 and T increased to 0.86,
yielding a final score of 0.79, which is almost the same score
as for direct VB measurements.

This case shows that by calculating only a simple set of fea-
tures, features with high prognostic potential can already be
obtained. These characteristics make the data set applicable
for prognostics. In literature, mainly quantitative diagnostic
methods are applied, based on e.g. nearest neighbor-based
approaches (Sheng & Zhu, 2020), Recurrent Neural Networks
(Lu et al., 2022), Kernel Extreme Learning Machines (Zhou
& Sun, 2020), particle filters (P. Wang & Gao, 2016) and
Long Short-Term Memory Networks (Kumar et al., 2022).
Subsequently, prognostics can be performed (J. Wang et al.,
2015).

2.2.3. C-MAPSS

The Commercial Modular Aero-Propulsion System Simula-
tion (C-MAPSS) (Saxena & Goebel, 2008) is a very popular
benchmark data set due to the inclusion of sensor noise, differ-
ent operating conditions and multiple fault modes (Ramasso
& Saxena, 2014). Already in 2014, Ramasso & Saxena (2014)
published a review paper on 70 different prognostic methods
utilizing the data set. The data set is still being used and more
recently a new version of this data set (N-CMAPSS) has been
released (Chao et al., 2021). The data is generated with a sim-
ulator built in Matlab and Simulink. The operational settings
are defined by three parameters and 21 (virtual) sensors are
available.

In this paper, the FD001 and FD004 train data sets are eval-
uated. The FD001 set contains 100 degradation trajectories
in one operating condition and one fault mode (High Pressure
Compressor (HPC) degradation). The FD004 set contains 248
degradation trajectories in six operating conditions and two
degradation modes (HPC degradation and fan degradation).
As an example, Fig. 4 shows raw sensor data from one of the
sensors (Φ, a fuel flow ratio) for five run-to-failure trajectories
of FD001 and FD004. In Fig. 4a the degradation trends can
be clearly observed, which is more difficult in Fig. 4b due to
the effect of changing operating conditions on the data.

To reveal the degradation trend for the FD004 data set, a K-
Nearest Neighbors regressor is trained on the first 40 data
points to learn the (nominal) relation between the three opera-
tional settings and measurements. The regressor is built using
the sklearn Python package and uses two neighbors. Fig. 5
shows that the residuals (i.e. difference between measured and
expected measurements) reveal similar degradation trends as
was observed for the FD001 data set.

Although the raw sensor data of FD001, or the residuals for
FD004, already reveal a strong degradation trend, better prog-
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(a) Five run-to-failure trajectores
of Φ in constant operating

conditions (FD001)

(b) Five run-to-failure trajectores
of Φ in varying operating

conditions (FD004)

Figure 4. Five run-to-failure trajectories of Φ in the
C-MAPSS data set

Figure 5. Five run-to-failure residual trajectories of Φ sensor
in varying operating conditions (FD004)

nostic metrics can be found by extracting features. This is done
for both the FD001 raw measurements and the FD004 residu-
als using the Python package tsfresh (Christ et al., 2018) for
automatic feature extraction. It first creates a rolling window
over the data set and for each window, features are calculated.
The window size is a trade-off between noise reduction and
response time to signal changes, and is set to 30 by trial-and-
error. To reduce noise in the calculated features, the prognostic
metrics are calculated for each 5th data point.

The best performing feature for the FD001 and FD004 data set
are shown in 6. For FD001 the sum of Φ measurements in the
rolling window obtained the highest metrics, as shown in Fig.
6a: M=0.69,P=0.94 and T=0.84, yielding a score of 0.84. For
FD004 the root mean square of the Φ residuals gave the highest
metrics, which are significantly lower (i.e. M=0.55,P=0.80
and T=0.06, yielding a score of 0.47) compared to FD001.
This is mainly caused by some outlying trajectories (e.g. the
blue trajectory on the left in Fig. 6b) due to faulty residual
calculations (e.g. because not all operating conditions are ob-
served in the training phase of the KN-regressor). It is found
that the mean of the correlation coefficients of all trajecto-
ries is 0.97, but the fact that T is determined by the lowest

(a) Top feature of C-MAPSS FD001 data set (directly derived from sensor data)
(M = 0.69, P = 0.88, T = 0.94, S = 0.84)

(b) Top feature of C-MAPSS FD004 data set (derived from residuals)
(M = 0.55, P = 0.80, T=0.06, S =0.51)

Figure 6. Best features on CMAPSS data set

correlation coefficient between all trajectories yields the low
trendability. Therefore, higher scores can be obtained when
removing outliers and improving residual generation.

To conclude, it is found to be straightforward to retrieve fea-
tures with high prognostic metrics, mainly for the FD001 data
set. For the FD004 data set it is more challenging due to
the varying operating conditions. However, features could
be extracted which show similar run-to-failures trajectories,
although additional effort is required to remove outliers and
improve prognostic metrics further. The general characteris-
tics of the data set make it feasible for data-driven prognostics,
and methods such as Nearest-Neighbors, Random Forests,
Extreme Gradient Boosting and Multilayer Perceptrons (Alo-
mari et al., 2023), Convolutional Neural Networks-based ap-
proaches, Long-Short-Term-Memory-based approaches (de
Pater et al., 2022) and others are widely found in literature.

2.3. Real-world Case Studies

This subsection introduces two real-world case studies. De-
spite an extensive search, only two cases were found to have
sufficient measurements and meta data available to calculate
metrics of run-to-failure trajectories. Organizations often do
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not have, cannot or do not want to disclose the data necessary
for a proper analysis. The authors thank NLR and the Royal
Netherlands Navy gratefully for making these case studies
available for evaluation.

It should be noted that the case studies concern the most
complex cases for prognostics: they concern monitoring of
individual assets in varying operating conditions, where future
operating conditions can be different from historical operating
conditions. This corresponds to the highest ambition level
an organization can have, with high requirements on data
availability or system knowledge (Tiddens et al., 2023).

2.3.1. Apache ETF Monitoring

The power level of helicopter turboshaft engines decreases
over the lifetime due to wear of seals, vanes and blades or
due to faults in other components (Vos, 2019). Engine per-
formance is measured by the Engine Torque Factor (ETF),
which is the ratio between the actual engine power and the
rated engine power. If the ETF drops below 0.85, or if the
combination of the ETFs of both tail engines of an Apache
helicopter drops below 0.90, the Apache is not allowed to be
used. The Netherlands Aerospace Centre (NLR) developed
an algorithm to calculate the ETF from in-flight parameters,
rather than from time-consuming manual Max Power Checks
(MPCs) (Vos, 2019).

Vos (2019) selected the turbine gas temperature (TGT) as
health indicator, and fitted a polynomial model using data from
the Health and Usage Monitoring System (HUMS) to translate
the in-flight TGT to the TGT at the reference condition (which
in turn allowed to calculate ETF). The considered operational
parameters are gas inlet temperature, outside air temperature,
pressure altitude, speed, and engine torque.

For the development of a prognostic algorithm, run-to-failure
trajectories are required. Although the engine needs an over-
haul when the ETF reaches 85%, the data set does not contain
any trajectory running till this threshold. Therefore, to cal-
culate the prognostic metrics of trajectories, periods between
(documented) engine replacements are selected. This does not
fully represent run-to-failure, but no better option is available.

The rolling mean of these ETF trajectories is calculated over
five ETF measurements, yielding the trajectories in Fig. 7.
The calculated metrics over these trajectories are: M=0.09,
P=0.19 and T=0, yielding the extremely low score of 0.12.
This can be expected from Fig. 7, as the data are covered
in low-frequency noise which make the actual degradation
trend barely visible. This low-frequent wobbling behavior is
caused by physical phenomena not explained by the polyno-
mial model (Vos, 2019), i.e. by confounding factors. This
noise yields a low signal-to-noise ratio (i.e. degradation to
other external influences), and therefore low prognostic met-
rics.

Figure 7. All ETF trajectories considered. Each color
corresponds to the engines of a specific Apache.

(M = 0.09, P = 0.19, T = 0, S = 0.12)

Real-time estimation of the ETF offers potential to replace
expensive MPC by real-time ETF monitoring (i.e. additional
inspections can be performed when the ETF drops below the
threshold). However, the lack of actual run-to-failures and the
low signal-to-noise ratio make the step towards prognostics
extremely complicated.

2.3.2. Marine Diesel Engine Bearing Monitoring

The main diesel engine (MDE) of a naval vessel contains seven
journal bearings that support the crankshaft. Failure of one
of the bearings yields failure of the MDE and is therefore
critical for availability of the vessel. Heek (2021) developed
a monitoring method based on bearing temperature to detect
failures timely. The underlying idea is that damage increases
friction in the bearing and subsequently increases the bearing
temperature.

Because the bearing temperature is also affected by operat-
ing conditions, Heek (2021) fitted data from the Integrated
Platform Management System (IPMS) in a multiple linear re-
gression model. This model estimates the bearing temperature
in nominal conditions based on the RPM of the engine, RPM
of the turbocharger, and the lube oil temperature at the outlet,
which were found to have the highest predictive performance.
Subsequently, the residual between the measured and the pre-
dicted bearing temperature is selected as a health indicator and
is continuously monitored. Alarms can be raised when the
measured temperature is higher than expected. The complete
procedure of data selection and residual generation can be
found in Heek (2021).

Heek (2021) evaluated three case studies, from which two
concerned an actual failure. Cases 1 and 2, which concern
failure cases, are visualized in Fig 8. The regression model
is trained within the shaded areas (until t = 993 and t =
1748 respectively) and the residual monitoring is deployed
after (note that case 2 runs longer than case 1). To evaluate
prognostic metrics of these trajectories, every 10th data point is
selected and the rolling mean over 10 data points is calculated.
The calculated metrics are: M=0.06, P=0.92 and T=0.57,
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Figure 8. Trajectories of diesel engine temperature residuals
with failure at the end

(M = 0.06, P = 0.92, T = 0.57, S = 0.52)

yielding a score of 0.52.

The monotonicity of the trends is extremely low due to low-
frequency oscillations over time. According to Heek (2021),
this is caused by unobserved effects in the engines, probably
caused by “minor maintenance actions”, which again can be
considered as confounding factors. P is relatively high due
to the small difference between end values (i.e. 0.5 and 0.6
respectively), and a weak trendability is observed due to the
increase in data points near the end.

However, the actual meaning of these high metrics is dis-
putable. Heek (2021) described that in case 2, maintenance
was performed around t = 2700h, as indicated by the vertical
bar in Fig. 8. After this moment, the residuals make a jump
of 1◦C. This behavior is also visible when evaluating the third
case study in which no failure was observed, shown in Fig.
9. Similar to case 2, maintenance was performed after which
residuals make a jump (of approximately 0.6◦C) as indicated
by the vertical bar around t = 1200h.

Again, this yields a gradually increasing trend, but it is un-
related to degradation. Heek (2021) proposed to retrain the
regression model after maintenance is performed to reduce the
number of false positives, which may provide a solution for

Figure 9. Trajectories of diesel engine temperature residuals
without failures

anomaly detection. However, this way the physical relations
and meaning of the residuals is inconsistent, i.e. there is no
clear link between the residuals and the quantitative amount of
damage. This makes it difficult to isolate maintenance actions
(or other external confounding factors) from degradation, i.e.
the signal-to-noise of the residuals can be considered to be
low.

Real-time monitoring the residuals offers potential for early
fault detection. However, similar to the ETF case study, it
is still extremely complicated to implement prognostics due
to the limited number of run-to-failure trajectories and a low
signal-to-noise ratio due to limited physical understanding of
the data. An additional problem in this case, is that the lack of
physical understanding of the residuals complicate threshold
definition, and without a threshold it is impossible to estimate
the RUL.

2.4. Discussion and Conclusion Case Studies

A first observation of the case studies is that a good direct
measurement of the degradation severity (e.g. crack length)
can be considered as a perfect prognostic feature. As degra-
dation is in general an irreversible process, it is monotonic
and yields perfect trendability. Also thresholds can be defined
based on phyical knowledge, yielding perfect prognosability.
However, in practice it is complicated or impossible to obtain
direct measurements of the actual degradation severity and
real-time sensors should provide monotonic, prognosable and
trendable run-to-failure trajectories. It is found to be relatively
easy to extract such trajectories from well-defined benchmark
data sets with labeled data (i.e. milling data set (Agogino
& Goebel, 2007)) or many historical run-to-failures (i.e. C-
MAPSS (Saxena & Goebel, 2008)).

However, both real-world case studies suffered from two main
issues: 1) the number of failures is extremely low, or even
non-existent, and 2) low prognostic metrics due to a low signal-
to-noise ratio between the health indicator (i.e. the signal) and
other confounding factors such as maintenance actions and
environments (the noise). The low number of failures, with low
prognostic potential in the derived feature, make training of
data-driven prognostic algorithms infeasible. Furthermore, the
low signal-to-noise ratio makes it complicated to distinguish
nominal operating conditions from faulty behavior, such that
estimation of the onset of degradation, as well as identifying
the degradation trends are difficult.

Note that the latter issue is mainly contributed to confounding
factors affecting system behavior, originating from varying
operating conditions. This shows the main difference between
the benchmark and real-world data sets: in benchmark data
sets, either an experimental setup or a simulation is used to
generate data, in which external factors influencing system
behavior can easily be excluded (lab experiment) or by defini-
tion do not exist (simulation). However, in real-world cases
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such factors are not always well understood or measured such
that they are not included in the developed models. Note that
available prognostic algorithms can work if data requirements
are met (e.g. as found by van der Velde et al. (2023), chances
are higher for assets in large fleets, and requirements are less
strict in constant operating conditions (Tiddens et al., 2023)),
but a solution needs to be found for these complex real-world
cases in varying conditions.

3. PROPOSED FRAMEWORK

The lack of run-to-failures and the lack of physical understand-
ing of the monitored signal complicated prognostics in the
real-world case studies. Following the decision framework
proposed by Tiddens et al. (2023), two solutions are possible:
1) improving the data set or 2) improving the system knowl-
edge. Collecting more run-to-failures is not a realistic option
as the failures are critical and therefore prevented by perform-
ing preventive maintenance actions. Worldwide data sharing
may help (Coelho et al., 2022), especially for similar assets
existing in large fleets, such as industrial machinery (Peng
et al., 2022) and wind turbines (Li et al., 2021). However,
data sharing is often complicated due to standardization and
different data structures (Coelho et al., 2022). Furthermore,
the military applications bring additional challenges regarding
confidentiality of data, but also companies may not be keen
on sharing data as they can consider it as intellectual property.

Therefore, the focus in development of the framework (Fig.
10) is on improving system knowledge. System knowledge
can be improved in two ways: 1) learning the relation between
usage and the degradation rates (i.e. with PoF-models) and
2) and quantifying the relation between measured signals and
damage severities. The first part (part I in Fig. 10) is already
explored by previous work of the authors (Tinga, 2013a; Keiz-
ers et al., 2021, 2022). The second part (part II in 10) focuses
on improved quantitative diagnostics to obtain features with
higher prognostic metrics, as found to be required for the
real-world case studies discussed in section 2.

Degradation can vary heavily between assets used in varying
operational conditions (Tiddens et al., 2023), and in absence
of historical run-to-failures, the quantitative relation between
usage and degradation is essential for accurate prognostics.
Therefore, PoF-models are used in part I of the framework.
Such models are often tuned for prognostics of specific assets
with Bayesian filters (Jouin et al., 2016). However, in literature
the effect of actual loading conditions is often simplified, e.g.
by substituting loads with a constant model parameter (Zio
& Peloni, 2011). This takes away one of the main strengths
of a PoF-model, as handling the loads as a model parameter
only makes extrapolation of the latest trend possible, yielding
wrong RUL for changing future usage profiles, as was shown
in Keizers et al. (2021).

To achieve PoF-based prognostics (i.e. part I of the frame-

work) it is proposed to use the method described in Keizers et
al. (2021), taking loads as separate input for a Bayesian filter
and for prognostics. Loads are first monitored (for t ≤ tp,
with tp the time of prediction) to update the PoF-model. Then,
expected future loads (for t > tp) are substituted in the up-
dated PoF-model for prognostics (see the lower input of the
PoF-model in Fig. 10). This enables RUL prediction based on
expected future operating conditions, or adaptation of system
usage to extend the RUL.

A conceptual example can be given in the form of the Apache
ETF case: it is observed that the ETF decreases faster in sandy
environments Vos (2019), which can be explained by increased
wear of vanes, blades and seals due to the increased number
of sliding sand particles over the components. Erosive wear is
already studied for decades (Sundararajan, 1991) and can be
modeled by Archard law (Archard, 1953) or by more detailed
empirical models that also take characteristics (e.g. hardness,
size) of sand particles into account (Gülich, 2020). Such
models can be used to estimate degradation rates in specific
(and varying) operational and environmental conditions.

The update of the PoF-model requires corresponding degra-
dation measurements. In the studies described in Keizers
et al. (2021) and Keizers et al. (2022) direct condition mea-
surements (i.e. measurement of the parameter calculated by
the PoF-model) were assumed, which can be the available in
some practical applications. For example, in case of fatigue
crack growth, DC Potential Drop Methods can measure crack
lengths directly (Bär, 2020) and in case of corrosion, electro-
chemical measurements can measure corrosion rates directly
(Homborg et al., 2014). Such direct condition measurements
are preferred, as they can be considered to be a perfect prog-
nostic metric as discussed in section 2. However, in many
practical applications, such as the real-world case studies of
section 2, these types of direct condition measurements are ex-
pensive or impossible to obtain. Therefore, monitoring options
are used that measure (indirect) consequences of the actual
degradation, e.g. vibrations or temperatures.

Here, part II of the framework is introduced. It considers a
quantitative diagnostic block, linking indirect condition mea-
surements in specific operating conditions (the right-side input
of the block) to the direct condition (i.e. damage severity).
However, as illustrated by the case studies in section 2 the fea-
tures derived from the real-world data sets have low prognostic
metrics, and are unlabeled. Therefore, the relation between
measured data and degradation severity is unknown, and quan-
titative diagnostic algorithms cannot be trained. Experimental
set-ups could help to gather training data to learn this rela-
tion, but it is economically infeasible to collect data for all
fault types and locations in all possible operating conditions
(Sawalhi & Randall, 2008). Here, the second way of including
system knowledge is relevant, which is positioned below the
quantitative diagnostic block in Fig. 10. By introducing faults
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Figure 10. Proposed framework

in physics-based system models and (virtual) measuring the
system response of degradation, a better understanding of the
effect of faults with varying sizes on measured signals in dif-
ferent operating conditions can be obtained. In the conceptual
example of erosive wear in the Apache components, a system
model should reveal the efficiency loss for different amounts
of material removal. Subsequently, the required additional
power, and forthcoming turbine gas temperature, need to be
modeled in different operational conditions.

Indeed, developing such a model brings major challenges.
First, building an extensive physics-based model for each com-
ponent or system is time-consuming and expensive. Second,
damage induces responses in different physical domains (i.e.
mechanical wear yields increased temperature). For these rea-
sons, a modular modeling method that is relatively easy to
reuse, adapt and scale, and which is applicable in multiple do-
mains is proposed. Bond graphs are such models (Mkadara et
al., 2021). It will be profitable to develop models of standard
equipment (e.g. bearings) that can be easily reused in other
system models, accelerating development for new machinery.

As an example, Nakhaeinejad & Bryant (2011) showed that
different types of bearing faults and their vibration response
can be modeled using these types of models. Note that bond
graphs are proposed more often in hybrid prognostic frame-
works for determining residuals from a nominal system model
(e.g. (Medjaher & Zerhouni, 2013)) or for tracking faulty

parameters (e.g. Borutzky (2020)), but the link with an actual
PoF-model and its corresponding direct condition measure-
ment is missing, limiting prognostic capabilities in cases of
varying operating conditions.

To conclude, part II of the framework can help to create a
quantitative damage assessment, acting as an input for part I
in the likely scenario where direct condition measurements are
unavailable. Subsequently, prognostics can be performed, and
the RUL can be predicted based on assumed usage profiles.
This not only improves prognostic performance in cases of
varying operating conditions, but also offers the possibility to
adapt usage profiles to extend the RUL.

4. DISCUSSION AND CONCLUSION

The paper showed that prognostic metrics of data from real-
world data sets are extremely low compared to benchmark
data sets. The main issues observed are unavailability of
run-to-failure trajectories and low signal-to-noise ratios of
the available trajectories due to always present confounding
factors. As a consequence, developed data-driven prognostic
methods are often not applicable in practical cases.

The criticality of discussed real-world cases make it unlikely
that much run-to-failure data will be collected in the future,
so the proposed solution is defined in a framework based on
enhancing and utilizing system knowledge. The limited un-
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derstanding of measured signals in the real-world cases make
trending complicated, so system models with induced damage
are proposed to increase understanding of the effects of dam-
age on measured signals. A quantitative diagnostic algorithm
can improve the signal-to-noise ratio of measured signals, pro-
viding the input for a Bayesian filter that quantifies the relation
between usage and degradation rates. Subsequently, prognos-
tics can be performed based on expected system usage.

The framework has strict requirements on system knowledge
(i.e. PoF, load monitoring, system models with induced dam-
age), but low data requirements as no historical run-to-failures
are needed. To accelerate development for application to new
systems, usage of modular system models such as bond graphs
is proposed. The framework still needs to be implemented and
validated for a real application and the strict requirements on
system knowledge requires investments. However, it enables
better RUL predictions (or RUL extension by usage adapta-
tion) which can yield great benefits. Before moving to complex
cases such as the Apache ETF or the marine diesel engine, it
is proposed to start with relatively simple standard equipment
such as bearings to validate the benefits of the method. This
will be presented in a future publication.
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Alomari, Y., Andó, M., & Baptista, M. (2023). Advancing
aircraft engine rul predictions: an interpretable integrated
approach of feature engineering and aggregated feature
importance. Scientific Reports, 13(1), 13:13466. doi: https://
doi.org/10.1038/s41598-023-40315-1

Archard, J. (1953). Contact and rubbing of flat surfaces.
Journal of Applied Physics, 24(8), 981 - 988. doi: https://
doi.org/10.1063/1.1721448

Baral, T., Saraygord Afshari, S., & Liang, X. (2023). Residual
life prediction of aluminum alloy plates under cyclic loading
using an integrated prognosis method. Transactions of the
Canadian Society for Mechanical Engineering, 47(5), 1-12.
doi: https://doi.org/10.1139/tcsme-2023-0010

Borutzky, W. (2020, Jan). A hybrid bond graph model-
based - data driven method for failure prognostic. Procedia
Manufacturing, 42, 188-196. (International Conference on
Industry 4.0 and Smart Manufacturing (ISM 2019)) doi:
https://doi.org/10.1016/j.promfg.2020.02.069

Bär, J. (2020). Crack detection and crack length measurement
with the dc potential drop method–possibilities, challenges
and new developments. Applied Sciences, 10(23), 8559.
doi: https://doi.org/10.3390/app10238559

Calabrese, F., Regattieri, A., Bortolini, M., Gamberi, M., &
Pilati, F. (2021). Predictive maintenance: A novel frame-
work for a data-driven, semi-supervised, and partially online
prognostic health management application in industries. Ap-
plied Sciences, 11(8), 3380. doi: https://doi.org/10.3390/
app11083380

Chao, M. A., Kulkarni, C., Goebel, K., & Fink, O. (2021).
Aircraft engine run-to-failure dataset under real flight con-
ditions for prognostics and diagnostics. Data, 6(1), 5. doi:
https://doi.org/10.3390/data6010005

Chao, M. A., Kulkarni, C., Goebel, K., & Fink, O. (2022,
Jan). Fusing physics-based and deep learning models for
prognostics. Reliability Engineering & System Safety, 217,
107961. doi: https://doi.org/10.1016/j.ress.2021.107961

Christ, M., Braun, N., Neuffer, J., & Kempa-Liehr, A. W.
(2018, Sept). Time series feature extraction on basis of
scalable hypothesis tests (tsfresh – a python package). Neu-
rocomputing, 307, 72-77. doi: https://doi.org/10.1016/
j.neucom.2018.03.067

Coble, J. B. (2010). Merging data sources to predict remaining
useful life – an automated method to identify prognostic
parameters (Unpublished doctoral dissertation). University
of Tennessee.

Coelho, L. B., Zhang, D., Ingelgem, Y. V., Steckelmacher, D.,
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