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ABSTRACT 

Reliability is a central aspect of machine learning 

applications, especially in fault diagnosis systems, where 

only an accurate and reliable diagnosis system is 

economically justifiable, considering that any false diagnosis 

would lead to an increase in maintenance costs or a reduction 

in system efficiency. Recent advances in machine learning 

(ML) techniques have encouraged condition monitoring 

researchers to focus their efforts on finding suitable ML-

based solutions for system condition assessment. However, 

to address the reliability issue, it is crucial to consider a larger 

amount of data measured by heterogeneous sensors on the 

system together with non-sensor information. The trend of 

data fusion has already started in other areas of ML 

application, and many of today's state-of-the-art models 

benefit from various types of fusion techniques to improve 

their accuracy. However, traditional classifiers do not 

provide any information about the prediction uncertainty, and 

they tend to show falsely high confidence when encountering 

low-quality data or previously unseen classes. Fusion of 

different data sources without considering the epistemic or 

aleatory uncertainty can lead to a deterioration of the result. 

Bayesian frameworks have traditionally been used to 

quantify uncertainty of systems; however, only recent 

advances made it possible to successfully implement 

Bayesian ML models. 

The research methodology was investigated using the 

MAFAULDA dataset generated by SpectraQuest's 

Machinery Fault Simulator. This simulator experimentally 

simulated various bearing conditions, including normal 

operation and inner and outer ring bearing failures, at variable 

speeds. The dataset consists of 1951 instances measured 

using two triaxial accelerometers, a microphone, and a 

tachometer. 

Diagnosis has been done via two multi label 1D 

Convolutional Neural Networks - each for a selected sensor - 

and their prediction along with their associated uncertainty 

quantity has been fused utilizing Bayesian model averaging. 

The methodology is capable of fusion of various decisions 

made based on different data sources and generate a unified 

decision with associated confidence level. Fusion process is 

uncertainty aware and application of 1D networks reduce the 

amount of data needed. 

1. INTRODUCTION 

1.2. Motivation behind the study 

While Condition Monitoring Systems (CMS) have been 

extensively researched in recent years, the issue of their 

reliability has often been overlooked. It's crucial to recognize 

that CM relies on a complex system comprising sensors, 
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acquisition devices, data analysis techniques, and expertise. 

Having in mind that any system that can fail, would 

eventually fail highlights the importance of reliability studies 

on CMS. This gap in research domain has prompted the 

authors to investigate the reliability of CMS with the aim of 

increasing awareness and attracting other scientists’ attention 

to the issue of the reliability of CMS. 

The main goal of condition monitoring is to enhance the 

detection of failures compared to traditional methods like 

periodic maintenance in a cost-effective manner [1].  

Therefore, addressing uncertainty in models does not imply 

admitting their malfunction; rather, a CMS with high 

uncertainty may prevent severe failures and associated costs 

and casualties that could be overlooked by competitor 

approaches. Acknowledging and addressing sources and 

levels of uncertainty in any diagnosis system is essential, as 

uncertainty is an inevitable aspect. Providing this critical 

information can help operators to make informed decisions 

and conduct thorough risk analyses. 

1.1. Condition monitoring background 

Condition monitoring (CM) serves as a vigilant process or a 

precision instrument focused on the early detection of 

machinery faults, failures, and wear, aiming to minimize 

downtimes and maintenance costs while maximizing 

production output. By detecting failures in their early stages, 

CM optimizes maintenance planning and action, thereby 

mitigating the risk of escalating damage and catastrophic 

failures. Moreover, it enhances comprehension of machinery 

behavior, consequently refining maintenance practices and 

operational efficiency [2]. 

CM techniques typically involve continuous measurement of 

machinery indicators or signals (online CM) or periodic 

assessments at predetermined intervals (offline CM) to detect 

abnormal deviations from baseline signals, distinguishing 

them from normal operational variations or detecting any 

fault signature [3]. 

Many examples for the development of CM can be found in 

literature: [4] designed and developed an integrated wireless 

vibration sensing tool to monitor milling equipment, 

employing Support Vector Machine (SVM) for analysis. [5] 

compared the statistical parameters of vibration signals for 

bearing diagnosis and suggested that signal power is the most 

effective criterion for diagnosis. [6] proposed an intelligent 

feature extraction method from vibration signals of bearing 

datasets to prevent human intervention for large signal 

analysis tasks. [7] reviewed vibration based condition 

monitoring of rotary machinery. [8] proposed a deep learning 

based gearbox fault diagnosis method that addresses data 

scarcity. [9] have fused multiple vibration signal into two-

dimensional rectangular matrix and employed a two-

dimensional convolutional neural network (2D-CNN) for 

bearing fault diagnosis. 

Rotating machinery is a primary focus of CM research due to 

its challenging nature. This includes various industrial 

components such as rolling and journal bearings, gearboxes, 

shafts, blades, entire systems like wind turbines, 

reciprocating machines, electric motors, pumps, helicopters, 

fans, cam mechanisms, generators, and compressors. Various 

diagnostic parameters can be monitored, such as vibrations, 

acoustic emissions, electrical currents, flow rates, rotational 

speeds, pressure levels, temperature, lubrication conditions, 

strain, wear, and rotor-stator interactions. Vibration emerges 

as the predominant condition indicative of rotary machine 

health, as each component exhibits a unique vibration 

signature closely correlated with operational conditions. 

Faults or defects within components introduce additional 

dynamic forces, manifesting as vibrations within specific 

frequency ranges. Notable fault types detectable via 

vibration-based CM techniques include looseness, 

eccentricity, unbalance, blade defects, misalignment, bearing 

faults, gear damage, and shaft deformations  [3]. 

1.2. Uncertainty in diagnosis 

Uncertainty plays a significant role in human affairs, 

permeating everyday decisions in ordinary life. Decision-

making, a fundamental capability of human beings, is 

essential for survival and well-being. However, decision-

making is inherently challenged by uncertainty about the 

future. Anticipation of future events, upon which decisions 

are based, is inevitably subject to uncertainty. This is 

particularly evident in diagnostic uncertainty in engineering, 

where engineers often struggle to make definitive diagnoses 

despite extensive testing and relevant information [10]. 

In the realm of CM, ensuring the reliability of the diagnostic 

system is paramount. Indicating a fault where no fault is (a 

so-called false positive) can lead to unnecessary stoppages 

and maintenance, increasing operational costs, while false 

negatives risk failure and the propagation of damage. 

Ensuring the reliability of CMS is crucial for achieving their 

main goals of cost reduction and failure prevention. 

Considering the substantial investment necessary for 

implementing these techniques, only a reliable system that 

effectively prevents expensive failures can be justified. 

To address these challenges, an uncertainty-aware fusion 

approach is essential. This approach involves explicitly 

modeling and quantifying the uncertainty associated with 

each source of information and the fusion process itself. By 

accounting for uncertainty, decision-makers can better assess 

the reliability and confidence level of the fused information. 

Moreover, an uncertainty-aware fusion approach enables the 

identification of potential sources of error or bias in the fusion 
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process, allowing for more robust and trustworthy decision-

making outcomes. 

Information fusion, as a methodological approach, presents a 

promising solution to the challenge of managing uncertainty 

in complex systems. By integrating diverse sources of 

information, including both sensory and non-sensory data, 

information fusion aims to enhance decision-making 

processes by providing a more comprehensive and accurate 

understanding of the observed system [11]. 

One of the primary advantages of information fusion is its 

capacity to leverage the strengths of individual sources of 

information while compensating for their inherent 

limitations. For instance, while sensory data such as vibration 

measurements may provide insights into the mechanical 

condition of a machine, non-sensory data such as operational 

logs or historical maintenance records can offer valuable 

contextual information. By combining different types of 

information, information fusion enables a more holistic 

assessment of the system's health status. However, 

implementing data fusion poses several challenges, 

particularly due to the diversity of data sources and sensor 

technologies involved. These challenges include issues 

related to data compatibility, data quality, and data 

integration. For instance, data collected from different 

sensors may vary in terms of accuracy, precision, and 

sampling frequency, making it challenging to effectively 

merge them into a cohesive dataset. Neglecting model 

uncertainty during fusion process can significantly impact the 

reliability of the fused information. Inaccurate or unreliable 

diagnoses from individual sources can propagate errors and 

inconsistencies throughout the fusion process, leading to a 

loss of fidelity in the final fused output. [12] 

1.3. Authors contribution 

The field of condition monitoring is vast, with numerous 

research initiatives aiming to enhance fault diagnosis 

techniques. This work contributes to the existing body of 

knowledge by introducing several approaches: 

 

1- Multi-Label Fault Diagnosis: The authors propose a 

multi-label approach to fault diagnosis, enabling 

handling of complex fault scenarios. This 

methodology allows for the assignment of 

independent probability values to each fault class, 

providing a more detailed understanding of the 

system's health status. 

2- Addressing Data Scarcity: The research addresses 

the common challenge of data scarcity by 

introducing a Custom 1D Convolutional Neural 

Network (CNN). 1D CNN architecture reduces the 

amount of data required for accurate fault diagnosis, 

thereby overcoming limitations associated with 

insufficient data availability. 

3- Reliability Enhancement: The study enhances the 

reliability of fault diagnosis by leveraging multiple 

probabilistic decisions from different sensors. 

Through a Bayesian Model Averaging (BMA) 

approach, the authors combine the probabilistic 

outputs of various sensors, resulting in more robust 

and accurate diagnostic outcomes. This integration 

of diverse sensor data contributes to improved 

decision-making and system health assessment. 

2. MULTILABEL PROBLEM 

In traditional single-label classification, the model learns 

from a set of examples, each associated with a single label 

from a set of distinct labels. Typically, a traditional classifier 

utilizing a SoftMax layer assigns a probability value to each 

label, ensuring that the sum of probabilities across all 

possible labels equals one. The model then selects the label 

with the highest probability as the predicted label. However, 

this approach limits the model to predicting only one label 

per instance. 

In contrast, in multi-label classification, the model assigns a 

probability value between zero and one independently to each 

class for a given instance. This allows for multiple labels to 

simultaneously have high probabilities. These classes are 

non-mutually exclusive and may overlap by definition. This 

approach was mainly used for text categorization and medical 

diagnosis [13]. Multi-label classification has been used by 

[14] to classify X-ray image via residual attention learning to 

diagnosis thorax disease. [15] utilized multi-label modeling 

for person re-identification to address the challenges of 

unsupervised learning, utilizing memory-based non-

parametric classifier and integrates multi-label classification 

and single-label classification in a unified framework. [16] 

used attention based multi-label graph neural network to 

highlight the dependencies of labels in text classification. 

In the context of system diagnosis and machinery fault 

detection, multi-label classification has not been widely 

investigated despite its value for identifying complex faults, 

especially when there's a correlation between them. By 

setting an appropriate threshold, the model can predict a 

neutral class, indicating uncertainty about the outcome, rather 

than forcing a specific label prediction. In contrast to single-

label classification where the model assigns a probability 

value summing up to one across all classes, multi-label 

classification assigns an independent probability to each label 

(see Figure 1). This means that there may be cases where 

none of the labels have a high enough probability to cross the 
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threshold, indicating that the network lacks confidence in its 

prediction.  

 
Figure 1 Label assignment in Multi-class vs Multi-label 

modeling 

Various techniques exist for implementing a multi-label 

model, as shown in Figure 2. However, the details of each 

technique are beyond the scope of this paper, and interested 

readers are referred to [13, 17] for more information. 

In addressing the problem, two primary approaches are 

commonly employed. Firstly, we can transform the problem 

into smaller, single-label components, allowing the use of 

any machine learning method to address each segment. 

Alternatively, we can adapt the algorithm itself to enable 

multi-label classification. 

In the transformation approach, we can convert the problem 

into single-label binary classification using various methods: 

• Powerset of Labels: This method decomposes the 

problem into all possible combinations of labels. 

While it provides insight into label relations, it can 

be computationally expensive. 

• Binary Relevance: This approach compares a single 

label to all others or to one other label. 

• Label Manipulation: We can also delete or create 

new labels as needed. 

When implementing CNNs, different loss functions and 

activation layers may be required at the end of the network to 

accommodate multi-label classification. 

3. BAYESIAN MODEL AVERAGING 

In many cases, multiple models can adequately describe the 

distributions that generate observed data. When faced with 

this scenario, selecting the best model becomes crucial and is 

typically based on criteria such as how well the model fits the 

observed dataset, its predictive capabilities, or likelihood 

penalizations like information criteria. Once a model is 

selected, inferences are drawn and conclusions are made 

under the assumption that the selected model accurately 

represents the underlying truth. However, there are 

drawbacks to this approach. Selecting a single model can lead 

to overconfident inferences and riskier decisions, as it 

overlooks the inherent uncertainty in model selection and 

relies heavily on specific assumptions about the selected 

model. [18] 

BMA provides a systematic and coherent methodology for 

addressing model uncertainty. It applies Bayesian inference 

directly to the problem of model selection, combined 

estimation, and prediction. BMA provides a straightforward 

criterion for model selection and leads to more cautious 

predictions. However, implementing BMA can be 

challenging, as it involves making various assumptions and 

decisions based on specific situations and contexts. [18] 

 
Figure 2 Overview of multi-label classification techniques 

Let us consider an ensemble of models represented as 

 𝑴𝒍, 𝒍 = 𝟏, … , 𝑲 , and let 𝒀  represent observed data from 

dataset and 𝜽𝒍 be parameter of the model 𝒍, then likelihood 

function of 𝒀  given 𝜽𝒍  and 𝑴𝒍  can be written as 

𝑳(𝒀|𝜽𝒍, 𝑴𝒍) . Additionally, prior probability of model 

parameters neglecting hyperparameters can be written as 

𝝅(𝜽𝒍|𝑴𝒍) now, one can easily show posterior probability for 

model parameters as:  

𝜋(𝜃𝑙|𝑌, 𝑀𝑙) =
𝐿(𝑌|𝜃𝑙 , 𝑀𝑙)𝜋(𝜃𝑙|𝑀𝑙)

∫ 𝐿(𝑌|𝜃𝑙 , 𝑀𝑙)𝜋(𝜃𝑙|𝑀𝑙) 𝑑𝜃𝑙

 
(1) 

The denominator of (1) is called model’s marginal likelihood 

or model evidence which represent prior distribution of all 

the parameter values related to model 𝑴𝒍. Let’s denote it as:  

𝜋(𝑌|𝑀𝑙) =  ∫ 𝐿(𝑌|𝜃𝑙 , 𝑀𝑙)𝜋(𝜃𝑙|𝑀𝑙) 𝑑𝜃𝑙 (2) 

Bayesian model averaging introduces an additional level to 

this hierarchical modeling framework by incorporating a 

prior distribution over the entire set of models under 

consideration. This incorporates for the prior uncertainty 

regarding each model's ability to accurately represent the 

observed data. This is represented as a probability density 

function across all the models, and can be written as 𝝅(𝑴𝒍) 

Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN – 978-1-936263-40-0

Page 706



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024 

5 

or 𝒍 = 𝟏, … , 𝑲 , now we can show the posterior of model 

probability as: 

𝜋(𝑀𝑙|𝑌) =
𝜋(𝑌|𝑀𝑙)𝜋(𝑀𝑙)

𝛴𝑙=1
𝑘 𝜋(𝑌|𝑀𝑙)𝜋(𝑀𝑙)

 
(3) 

One now may re-write (3) as a ratio to a baseline model: 

𝐵𝐹𝑙𝑚 =
𝜋(𝑀𝑙|𝑌)

𝜋(𝑀𝑚|𝑌)
 

(4) 

This can be interpreted as the relative strength of the models 

with respect to each other. It is clear that Eq. (3) can be 

expressed as the division of Eq. (4) as: [18] 

𝜋(𝑀𝑙|𝑌) =
𝐵𝐹𝑙1𝜋(𝑀𝑙)

𝛴𝑚=1
𝑘 𝐵𝐹𝑚1𝜋(𝑀𝑚)

 
(5) 

If 𝜟 is a quantity of interest, such as the utility of a course of 

action, then its posterior distribution can be formulated 

as: [19] 

𝜋(𝛥|𝑌) = 𝛴𝑙=1
𝑘 𝜋(𝛥|𝑀𝑙 , 𝑌)𝜋(𝑀𝑙|𝑌) 

(6) 

Here and on for simplicity we would address 𝝅(𝑴𝒍|𝒀) term 

as 𝒘𝒍. The 𝒘𝒍s are probabilities; hence, they are nonnegative 

and sum up to 1. It is important to bear this in mind during 

their estimation. [20] 

4. ESTIMATING BY LIKELIHOOD MAXIMIZATION 

For convenience, we restrict attention to the situation where 

the conditional probability density functions (PDFs) are 

approximated by normal distributions. We maximize 𝒘𝒌 by 

maximum likelihood from the validation/training dataset. 

The likelihood function is defined as the probability of the 

training data given the parameters to be estimated. The 

maximum likelihood estimator is the value of the parameter 

vector that maximizes the likelihood function, that is, the 

value of the parameter vector under which the observed data 

were most likely to have been observed. It is convenient to 

maximize the logarithm of the likelihood function (or log-

likelihood function) rather than the likelihood function itself, 

for reasons of both algebraic simplicity and numerical 

stability; the same parameter value that maximizes one also 

maximizes the other. Estimation through likelihood 

maximization involves approximating the conditional PDFs 

here for ease of computation normal distributions has been 

selected. We maximize the weights 𝒘𝒌 by maximizing the 

likelihood function using the validation/training dataset. The  

likelihood function represents the probability of observing 

the training data given the parameters to be estimated.  

𝐿(𝑤𝑘|𝑌) = 𝛴𝑡𝛴𝑘=1
𝑘 𝑙𝑜𝑔 𝜋(𝛥|𝑀𝑙 , 𝑌) 𝑤𝑘 

(7) 

where the summation is over values of 𝒕  that index 

observations in the training set. [20] 

5. MODEL ARCHITECTURE 

5.1. Convolutional neural network 

CNNs have received considerable attention and have been 

proven effective in various domains. One promising area for 

CNNs is in fault diagnosis and CM. Researchers have been 

increasingly using ML techniques, especially CNNs, for 

system diagnosis, particularly when monitoring signals such 

as vibration, acoustics, or temperature. [21] has utilized 

multi-branch residual convolutional neural network to 

diagnose crane gearbox with vibration signal that has been 

transferred to 2D images using Markov transformation field. 

[22] suggested an explainable CNN model that analysis 

cyclostationary vibration signals to diagnose wind turbine 

gearbox fault. [23] has proposed a light weight CNN model 

for bearing fault diagnosis based on Fast Fourier Transfer 

Figure 3 1D CNN for multi-label classification of bearing fault 
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(FFT) image coding of vibration signals. [24] has proposed a 

multiscale quadratic attention-embedded CNN with attention 

mechanisms to address the challenges associated with 

bearing vibration signals for fault diagnosis. [25] has fused 

vibration and microphone signals utilizing a 1D-CNN to 

enhance the accuracy of diagnosis. [26] has introduced a 

CNN model to diagnose bearing fault utilizing motor speed 

signal to remove the necessity of additional sensors. 

A CNN consists of several layers, including an input layer, a 

convolutional layer, an activation layer, and a fully connected 

layer. Additional layers such as normalization and dropout 

are often used for generalization and to prevent overfitting. 

At the core of CNNs are convolutional layers, which allow us 

to automatically extract features from input data by 

mimicking how the brain's visual cortex processes images. 

This can be achieved by convoluting the input data with a 

filter, which is an n by m matrix whose elements are defined 

during the training phase, and moving the filter through the 

data at a constant step called a "stride". The convolution layer 

produces new images called feature maps. The feature map 

emphasizes the unique features of the original image. [27, 28] 

Although 2D CNNs have been commonly used for 

vibrational based diagnosis tasks, their effectiveness depends 

on a preprocessing step that converts the 1D signal into a 2D 

format. However, this preprocessing step often results in 

information loss and reduced diagnostic reliability. Although 

1D and 2D CNNs share similar architectures, the key 

difference between them lies in their filter sliding 

mechanisms. In 1D CNNs, the filter slides vertically along 

the height to extract features, with the height determining the 

number of sample points for convolutional operations. On the 

other hand, 2D CNNs slide the filter both horizontally and 

vertically, with the height and width of the filter dictating the 

range of convolution operations for each step. However, 1D 

CNNs offer advantages over their 2D counterparts when 

processing 1D signals. This preference stems from several 

factors: [29] 

 

• Computational complexity of 1D and 2D 

convolution calculations differ due to the fact that 

1D CNN operates with one dimension less, 

resulting in significantly lower computational costs 

under identical conditions (same configuration, 

network, and hyperparameters). 

• Reduced computational complexity makes 1D 

CNN suitable for low-cost real-time applications 

on smaller devices. 

• Processing signals in the time domain eliminates 

the need for an additional step to convert a one-

dimensional signal to a two-dimensional signal. 

This avoids adding irrelevant data and preserves 

the information present in the original data. 

Here, we introduce a customized 1D CNN network (refer to 

Figure 3) along with the associated hyperparameters (see 

Table 1) for multi-label classification of bearing fault 

diagnosis. The application of 1D CNN allows us to employ 

shallower networks and avoids the inclusion of irrelevant 

information that may result from the conversion of 1D to 2D 

data.  

By employing a sigmoid activation function at the last layer 

of the CNN architecture, along with a binary entropy loss 

function, the conventional multi-class CNN classifier has 

been transformed into a multi-label classifier that operates 

independently within each class and predicts whether the 

instance belongs to that class or not, as in a "one against all" 

strategy. This approach eliminates the need to train multiple 

networks for each label, thus reducing the necessity of large 

data and computational effort. 

Table 1 Model Hyperparameters 

Hyperparameter Value 

Mini batch size 25 

Max epoch 50 

Network selection 

(Early stoppage) 

Minimum validation 

loss 

optimizer Adam 

Learning rate 0.001 

Loss Function Binary cross-entropy 

Padding “Same” 

Software MATLAB 

6. TEST DATASET AND PREPRATION 

The methodology has been applied on the MAFAULDA 

dataset. The dataset consists of 1951 multivariate time-series 

acquired by sensors on SpectraQuest's Machinery Fault 

Simulator (MFS) Alignment-Balance-Vibration (ABVT). It 

includes six different simulated states: normal function, 

imbalance fault, horizontal and vertical misalignment faults, 

and inner and outer bearing faults. This heterogeneous dataset 

involves measuring acoustic and vibration signals, providing 

comprehensive insights into machinery behavior and fault 

diagnosis. Each measurement lasts for 5 seconds, with 49 

measurements for normal conditions, 197 for horizontal 

misalignment with angles of 0.5, 1.0, 1.5, and 2.0 degrees, 

301 for vertical misalignment with angles of 0.51, 0.63, 1.27, 

1.40, 1.78, and 1.90 degrees, and 333 for mass imbalance of 

6, 10, 15, 20, 25, 30, and 35 grams. Bearing faults have been 
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combined with 5, 6, 20, and 35 grams of mass imbalance to 

enhance the effect of the fault. The available experiment 

specification includes details of used equipment’s, including 

the SpectraQuest Inc. Alignment/Balance Vibration Trainer 

(ABVT) Machinery Fault Simulator (MFS), Industrial IMI 

Sensors accelerometers, Monarch Instrument MT-190 analog 

tachometer, and Shure SM81 microphone. Data acquisition 

parameters such as sensitivity, frequency range, and 

measurement range are specified for each sensor. Sequences 

are categorized based on fault types, with details on the 

number of sequences per fault category, load values, and 

degrees of misalignment. The database is openly accessible 

online, with links provided at [30] for downloading the entire 

dataset or specific parts corresponding to different fault types. 

Figure 4 depicts the data preparation process for training the 

models. Raw vibration signals from the tangential direction 

of the overhang (sensor number four) and underhang (sensor 

number seven) accelerometers, each corresponding to a 

different model, are inputted along with the tachometer 

signal. These signals are then divided into five successive 

parts of one second each. The first three rotations of each one-

second signal are then extracted, resulting in variable vector 

lengths. Following, random noise is added to reduce signal 

quality to signal-to-noise ratio (SNR) level of 10. The data 

set is then randomly divided into training (60 %), validation 

(20 %), and test (20 %) sets to facilitate model evaluation and 

validation. Additionally, reducing the data to three 

revolutions per second helps to evaluate the model under 

more realistic conditions where acquiring large datasets may 

not be feasible. 

7. RESULT 

The proposed 1D CNN was trained using the preprocessed 

training set (see Figure 4) of data from sensors four and seven 

separately. Probability acceptance threshold of 0.5 was set for 

each label output by the models. The models were then 

evaluated on the test dataset, and the performance results for 

the tangential overhang accelerometer signal are reported in 

Table 2, while those for the tangential underhang 

accelerometer are shown in Table 3. The corresponding 

confusion matrices are depicted in Figure 5 and Figure 6. 

Subsequently, BMA was performed on the two models, 

where BMA parameters were computed by maximizing the 

likelihood using the validation dataset. The related values are 

reported in Table 4. Finally, the results of the combined 

model via BMA, with the same probability acceptance 

threshold of 0.5, are shown in Table 5, along with its 

confusion matrix in Figure 7. Two instances from the test set 

have been selected and reported in Table 6 to demonstrate the 

step-by-step improvement of the results: 

• In case A, the underhung model shows the highest 

probability for the outer race fault, which is an 

incorrect label. However, overhung and the 

combined model correctly identifies the fault as a 

cage fault. 

• Case B reports an instance where the underhung 

model correctly identifies the label, but the 

overhung model fails to do so. Once again, the 

combined model correctly classifies the instance. 

The results indicate an increase in performance of almost 5 % 

over the overhang accelerometer model and an increase of 

8 % over the underhang accelerometer model. Considering 

the confusion matrix and accuracy of each class for each 

model, the calculated BMA parameters were as expected. 

 
Figure 4 Data preparation scheme 

 

Table 2 Accuracy of proposed 1D multi-label CNN for 

tangential Overhang accelerometer 

Tangential Overhang accelerometer 

Label 
Outer 

Race Fault 

Cage 

Fault 

Ball 

Fault 
Healthy  

Accuracy (%) 78.06  97.45 92.35 99.49 

Overall Accuracy (%)  87.76 

 

Table 3 Accuracy of proposed 1D multi-label CNN for 

sensor tangential Underhung accelerometer 

Tangential Underhung accelerometer 

Label 
Outer 

Race Fault 

Cage 

Fault 

Ball 

Fault 
Healthy  

Accuracy (%) 95.41 89.29 95.41 99.49 

Overall Accuracy (%)  84.69 

 

Table 4 BMA parameters 

Posterior probability of 

Overhang Model 

Posterior probability of 

Underhung Model 

0.3728 0.6272 
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Table 5 Accuracy of combined model via BMA 

Tangential Underhung accelerometer 

Label 
Outer 

Race Fault 

Cage 

Fault 

Ball 

Fault 
Healthy  

Accuracy (%) 93.88 96.43 96.94 99.49 

Overall Accuracy (%)  91.84 

 

Table 6 Instances from test set 

 

Case A Case B 

O
v

erh
an

g
 

U
n

d
erh

u
n

g
 

C
o

m
b

in
ed

 

O
v

erh
an

g
 

U
n

d
erh

u
n

g
 

C
o

m
b

in
ed

 

Outer 

Race Fault 
0.04 0.59 0.39 0.46 0.78 0.66 

Cage Fault 1.00 0.24 0.52 0.01 0.2 0.13 

Ball Fault 0.00 0.05 0.03 0.54 0.02 0.21 

Healthy 0.00 0.00 0.00 0.00 0.00 0.00 

True label Cage Fault Outer Race Fault 

8. CONCLUSION  

This study introduces a multi-label approach to fault 

diagnosis, which facilitate the handling of complex fault 

scenarios by assigning an independent probability value to 

each class. To address the common issue of data scarcity, a 

Custom 1D CNN is proposed to reduce the required amount 

of data. Additionally, a BMA approach is employed to 

enhance the reliability of diagnosis by combining multiple 

decisions from different sensors. Evaluation of the technique 

on a public dataset shows a 5 to 8 % improvement in the 

accuracy of the combined BMA model result compared to 

individual models. The discussed algorithm provides an 

explainable process for decision fusion, emphasizing the 

quality of each diagnosis. BMA offers an uncertainty-aware 

fusion platform, where each model contributes based on its 

performance in the training and validation phases. 

 
Figure 5 Confusion Matrix Multi-Label classifier - 

Tangential Overhung accelerometer 

 
Figure 6 Confusion Matrix Multi-Label classifier - 

Tangential Underhung accelerometer 

 

Figure 7 Confusion Matrix BMA combined Model 
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