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ABSTRACT 

During its operational lifetime, a wind turbine is continuously 

subjected to a number of aggressive environmental and 

operational conditions, resulting in degradation of its parts. If 

left unattended, these degraded components will negatively 

influence its performance and may lead to failure of the wind 

turbine. In order to mitigate the risk associated with the 

failure of components, a wind turbine is regularly inspected 

and maintained. 

Currently, there are two commonly used approaches for 

making maintenance management (inspection and 

maintenance) plans. Traditional Approach utilises 

understanding of failure profile of the components for 

manually developing maintenance plan for the equipment. 

Condition-Based Approach utilises data collected by 

condition monitoring of equipment for developing dynamic 

maintenance plan. SCADA system offers a low-resolution 

condition-monitoring data that can be used for fault detection, 

fault diagnosis, fault quantification and fault prognosis and 

eventually for maintenance planning. 

The monitoring data from SCADA system of a wind turbine 

is often afflicted with variability and uncertainty. The 

variability in data is the result of continuously changing 

environmental conditions and uncertainty arises due to 

imperfections in the recorded data. The uncertainty may be 

due to many reasons, including, inherent characteristic of 

sensing devices, drift in calibration with time, deterioration 

of sensing devices’ sensitivity and response due to 

environmental attacks, etc.  

For handling variability in monitoring data a number of 

parametric and non-parametric (statistical) predictive models 

for different aspects of a wind turbine’s structure and 

operation have been proposed. Depending upon its type – 

aleatory or epistemic – an uncertainty can be handled in a 

number of ways. Since, the dynamic nature of wind turbine 

operation does not allow collection of multiple values under 

the same condition; hence, uncertainty is mostly epistemic in 

nature. Possibilistic Approach, based on Fuzzy Set Theory, is 

especially suitable for handling epistemic uncertainty that 

may arise due to imprecision or lack of statistical data. 

Aim of the ongoing research is to develop a methodology for 

detecting sub-optimal operation of a wind turbine by 

comparing Measured Produced Power against Predicted 

Produced Power. Unfortunately, variability and uncertainty 

associated with the recorded data make accurate prediction of 

produced power challenging.  

This paper presents methodologies for predicting produced 

power using SCADA data while simultaneously accounting 

for variability and uncertainty. The methodologies utilise 

either parametric (example, power curve) or machine 

learning (example, XGBoost) models for handling 

variability; and Possibilistic Approach for handling 

uncertainty. 

1. INTRODUCTION 

1.1. Background 

The world has two conflicting needs, on one side is the need 

to generate and supply more energy to bring people out of 

poverty and improve their living standard; on the other side 

is the need to reduce reliance on fossil fuel so as to cut down 

on emissions that cause global warming. These conflicting 

needs have acted as a spur to find economical and clean 

alternative sources of energy. In recent years, wind power has 

become one of the major sources of alternative energy and its 

share is expected to continuously grow in the coming decade 

(Global Wind Energy Council, 2021). 

Due to various financial, social (“not-in-my-backyard” 

syndrome), environmental (meteorological conditions) and 

geographical (topological features) reasons the wind turbines 

are often located in remote areas where they experience harsh 

environmental conditions. The inconsistent and aggressive 

environmental conditions, like, wind velocity, humidity, 

temperature, precipitation and icing, degrade the vulnerable 

components. If left unattended, these degraded components 
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will result in deterioration of performance and at times 

failure. To prevent that from happening, maintenance of wind 

turbines is needed throughout their lifetime. It is estimated 

that maintenance costs comprise of a significant proportion 

(10-25%) of the total annual operational cost (Nilsson & 

Bertling, 2007). 

Currently, there are two commonly used approaches for 

making maintenance management plans (tasks and 

schedules):  

(a) Traditional Approach – In which understanding of the 

failure profile (failure causes, failure mechanisms, 

failure modes, failure rates, etc.) of components is used 

to develop maintenance concept and maintenance plan 

for the equipment.  

(b) Condition-Based Approach – In which data, collected 

using condition-monitoring equipment or Supervisory 

Control and Data Acquisition (SCADA) systems is 

analysed for fault detection, fault diagnosis, fault 

quantification and fault prognosis and maintenance 

planning.  

The Traditional Approach analyses structural, environmental 

and operational attributes to develop corrective or preventive 

maintenance plans. The preventive maintenance plans are 

often time-based, for example, preventive maintenance 

activities of wind turbines are normally planned at 3 to 6-

month intervals based upon the age and condition of the 

turbine (Nilsson & Bertling, 2007). Since these time-based 

inspection and maintenance plans are expensive to execute, 

there have been efforts to develop methodologies based on 

formalized risk analysis, e.g., Risk Based Inspection and 

Maintenance or Reliability Centered Maintenance. This 

involves understanding failure profile and carrying out risk 

analysis & risk evaluation for preparing maintenance plans 

that are more efficient and effective than time-based or 

incidence-based maintenance plans (Fischer, Besnard & 

Bertling, 2012). 

The Condition-Based Approach improves upon the 

inspection and maintenance plan by using condition 

attributes to update the equipment’s risk assessment by 

detecting faults. This is achieved by (a) intermittent or 

continuous monitoring using sensors; (b) data analytics; and 

(c) developing condition-based maintenance plans. This 

approach can be applied using either (Tavner, 2012): 

1. Condition Monitoring System (CMS) – A high-

resolution specialized system for detailed analysis of the 

condition of a machinery by monitoring parameters like, 

speed, displacement, vibration and oil particles, using 

sensitive sensors. While specialized Condition 

Monitoring Systems can give accurate and detailed 

analysis, they are also expensive to install and use. 

2. Supervisory Control and Data Acquisition (SCADA) 
– A low-resolution, usually at 10-minute intervals, 

standard system in every large wind turbine that 

monitors parameters for characterising environment, 

electrical, operational or structural attributes. SCADA 

system uses this data for controlling the wind turbine’s 

operation after analysing its operating conditions and 

status. This data can also be used for deducing the health 

(fault detection, diagnosis and quantification) of the 

wind turbine. 

3. Structural Health Monitoring (SHM) – A low-

resolution system for monitoring health of a structure, 

including tower and foundation. 

 

 

 

Figure 1. Main steps of a monitoring system (Based on 

ISO17359). 
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While Condition Monitoring System (CMS) provides costly 

but in-depth coverage, SCADA and Structural Health 

Monitoring (SHM) can provide cheap but wide coverage. 

Hence, a number of commercially available SCADA systems 

offer real-time data analysis, using statistical and artificial 

intelligence techniques, for fault detection of components. 

Yet, there is a need for better diagnostics, prognostics and 

control techniques using SCADA (Tavner, 2012; Yang et al., 

2018).  

Since, both – Traditional and Condition-based – Approaches 

have their own advantages and disadvantages, most of the 

maintenance planning is carried out by integrating the two 

approaches. The integration provides a solution that is robust, 

effective, and efficient. In an integrated method (Bindingsbø 

et al. 2023): 

 failure analysis is carried out in the traditional manner, 

and then the results of failure profile is used judiciously 

to develop a maintenance strategy; 

 time for inspection and maintenance of a component is 

adjusted based upon outcome of condition monitoring. 

Figure 1 shows main steps that should be carried out to 

monitor a system according to ISO17359. According to the 

standard, condition-monitoring approach has three steps 

(Equipment Audit, Reliability and Criticality Audit and 

Select Appropriate Maintenance Strategy) that help in 

developing maintenance plan using the Tradition Approach. 

Thereafter, three more steps (Select Monitoring Method, 

Data Acquisition and Analysis and Determine Maintenance 

Action) help in improving the maintenance plan by 

incorporating knowledge of system’s condition.  

1.2. Supervisory Control and Data Acquisition (SCADA) 

System  

An offshore wind turbine is subjected to severe variations in 

the environmental and operating conditions. To continuously 

monitor these variations all modern wind turbines come with 

a Supervisory Control and Data Acquisition (SCADA) 

system (Pandit & Wang, 2024).  

In a SCADA system, a multitude of sensors constantly 

monitor various meteorological and operational parameters; 

and the data is transmitted, processed and stored in SCADA 

supervisory computers. The parameters that are monitored 

include (Manwell, McGowan & Rogers, 2009): 

 Position – blade pitch angle, nacelle direction 

 Temperature – nose cone, gearbox bearing, gearbox oil, 

hydraulic system oil, generator bearing, generator stator 

windings, generator split ring chamber, transformer, 

busbar section, inverter, controllers, VCP control boards 

 RPM – rotor, generator 

 Hydraulic Characteristics – pressure, reservoir level, 

flowrate 

 Environmental Characteristics – wind speed, wind 

direction, temperature, humidity 

 Electrical Characteristics – active power, reactive 

power, voltage, current, phase displacement, frequency 

Apart from the data collected using sensors that are connected 

to a wind turbine, a number of data streams from nearby 

weather stations are also recorded. 

The recorded SCADA data is analysed using different 

deterministic, probabilistic, Fuzzy Logic, Machine Learning, 

Artificial Neural Networks and Deep Learning approaches to 

detect, diagnose and quantify failures in the components. 

Information gained after analysis is used to control the 

process or operation (Manwell, McGowan & Rogers, 2009; 

Tavner, 2012).  

Based on the data collected and analysed, a SCADA system 

can perform the following tasks (Manwell, McGowan & 

Rogers, 2009; Pandit & Wang, 2024): 

1. Controlling Operating Conditions – SCADA uses the 

information regarding environment and grid to 

determine the appropriate operating conditions. It then 

controls the components (pitch angle, brakes, generator 

connection to the grid, etc.) so that the turbine operates 

according to the determined task schedule. 

2. Monitoring for Fault Detection – SCADA uses the data 

from sensors (example, bearing temperature, hydraulic 

oil temperature, etc.) connected to critical components to 

monitor their behaviour and detect potential faults or 

spurious behaviour. 

3. Raising Alarm in Case of Faulty Behaviour – If 

SCADA detects abnormal behaviour of a component it 

can raise alarm and notify the operator. 

4. Triggering Safety and Emergency Response – In case 

of situations that can escalate into an accident, SCADA 

can disconnect turbine from the grid and activate brakes 

to isolate and shut down the operation. 

5. Integrating with Power Grid – SCADA can control 

integration of individual wind turbine into the power 

grid, thereby contributing to feed and stabilisation. 

1.3. Condition-based Maintenance Planning Using 

SCADA Data 

The data acquired from SCADA can be used for fault 

detection, where a fault can be of various kinds, for example, 

degradation of components, failure of sensors, operation 

beyond safe operating limits, problems associated with grid. 

While it may be possible to detect some of these faults 

directly, for example, failure of sensors resulting in irrational 

readings, other faults may only be detected indirectly 

(Manwell, McGowan & Rogers, 2009). 

Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN – 978-1-936263-40-0

Page 47



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024 

4 

Depending upon the type of fault, the time span between 

inception to potential failure could be between a few seconds 

(example, generator earth fault) to a few weeks (example, 

wear-out of gears). For the faults that have a long time span, 

analyses of SCADA data using appropriate models for fault 

diagnosis, fault quantification and finally fault prognosis may 

help in planning maintenance activities. These activities can 

be: 

 triggered either when some condition indicator crosses a 

pre-set limit, or  

 decided based on combination of Failure mode, Effect 

and Criticality Analysis (FMECA) with the condition 

analysis (fault diagnosis, quantification and prognosis) 

to update the existing maintenance plan. 

The recommended maintenance activities may include 

inspection (visual, auditory, NDT), testing, service 

(lubrication, cleaning, repair, etc.), repair and replacement 

tasks. These activities may be either preventive or corrective 

in nature depending on whether the needed task is carried out 

before or after failure. Since maintenance activities are 

planned based on the actual monitored condition, condition-

based maintenance strategy offers advantages that are 

associated with (Bindingsbø et al. 2023, Tavner, 2012): 

 maintenance activities being carried out when required 

and not limited to corrective or preventive maintenance; 

 not conducting unnecessary scheduled replacement of 

parts before their end of useful life. 

In spite of these advantages, use of the Condition-Based 

Approach is still restricted and needs further research and 

development. This is because of the difficulties associated 

with the (Bindingsbø et al. 2023): 

 quality and quantity of collected data, 

 handling of imperfect (spurious, inconsistent, inaccurate, 

uncertain, or irrational) data collected from faulty 

sensors, 

 interpretation of data for fault diagnosis, quantification 

and prognosis, 

 updating of maintenance plan, and 

 handling of unreliable analysis that may trigger false 

alarm (false positive) or failure to respond (false 

negative) 

1.4. Methodologies for Predicting Produced Power 

One of the common methods for analysing the performance 

of a wind turbine using SCADA data is to understand the 

power generation as a function of various variables, 

especially wind speed. A significant difference between the 

predicted power generation and measured power generation 

gives an indication of sub-optimal performance, hence, need 

for detailed examination. For this purpose it is essential to be 

able to accurately predict power generation under varying 

environmental and operating conditions (Pandit & Wang, 

2024; Wang et al., 2016).  

Power curve of a wind turbine is the unique relationship of a 

wind turbine between the power it generates and the 

environmental and operational conditions under which it 

operates. The power generated by a wind turbine is dependent 

upon the technical (example, radius of the rotor), 

environmental (example, wind speed, air density) and 

operational (example, pitch angle, angle between wind and 

nacelle) attributes (Manwell, McGowan & Rogers, 2009). 

In a simplified power balance model, the wind power is 

converted to rotor power; which in turn is converted to 

electrical power. The efficiency of conversion of wind power 

to rotor power is dependent upon wind speed, air density, 

blade geometry, etc. Ideally, the rotor power should be 

converted entirely to the electrical power via its drive train 

system; but in reality, some power is lost as vibration and 

heat. The energy balance can be expressed as (Manwell, 

McGowan & Rogers, 2009): 

𝑃𝑅𝑜𝑡𝑜𝑟 = 𝑃𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 +  𝑃𝑉𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 +  𝑃𝑇ℎ𝑒𝑟𝑚𝑎𝑙  (1a) 

𝑃𝑅𝑜𝑡𝑜𝑟 −  𝑃𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 = 𝑃𝑉𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 + 𝑃𝑇ℎ𝑒𝑟𝑚𝑎𝑙  (1b) 

Where: 

𝑃𝑅𝑜𝑡𝑜𝑟  = Rotor power 

𝑃𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙  = Electrical power 

𝑃𝑉𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛  = Vibration power 

𝑃𝑇ℎ𝑒𝑟𝑚𝑎𝑙  = Thermal power 

Hence, an increased discrepancy between rotor power 

( 𝑃𝑅𝑜𝑡𝑜𝑟 , predicted using models) and electrical power 

(𝑃𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 , measured) is an indication of additional loss of 

energy due to increase in vibrations and heat generation-

dissipation. This in turn can be attributed to the falling health 

condition of the mechanical and electrical drive train 

components. Thus, analysis of produced power can be used 

for (Duguid, 2018): 

 Fault Detection – While exact cause may not be easy to 

identify, but a significant difference may help in fault 

detection necessitating further investigation. 

 Suboptimal Performance Detection – Suboptimal 

performance, often due to poor control, can be identified 

using power curve. A comparison in power generation 

between a local group of wind turbines may also help in 

identifying those units that are performing sub-

optimally. 

To predict power generation, a number of parametric and 

non-parametric (statistical) methods have been proposed 

(Lydia at al. 2014; Pandit, Infield & Kolios, 2019; Saint-

Drenan et al., 2020; Pandit & Wang, 2024). The parametric 

models are based on functions that correlate different 

variables and are of different types. For example, linearized 

segmented model, polynomial power curve, 4/5-parameter 

logistic function, etc. are based on power equation derived 

from Bentz’s law, which can be expressed as (Manwell, 

McGowan & Rogers, 2009): 
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𝑃𝑅𝑜𝑡𝑜𝑟 = 𝑃𝑊𝑖𝑛𝑑 × 𝐶𝑃(𝜆, 𝛽) (2a) 

𝑃𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 = 𝑃𝑅𝑜𝑡𝑜𝑟 × η (2b) 

𝑃𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 = (
1

2
ρ𝐴𝑈3) × 𝐶𝑃(𝜆, 𝛽) × η 

(2c) 

Where: 

𝑃𝑊𝑖𝑛𝑑= Wind power 

𝜂  = Drive train efficiency ( 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 𝑝𝑜𝑤𝑒𝑟/
𝑟𝑜𝑡𝑜𝑟 𝑝𝑜𝑤𝑒𝑟 ), (mechanical & electrical) 

𝜌  = Air density 

𝐴 = Rotor disc area 

𝑈  = Air velocity 

𝐶𝑃(𝜆, 𝛽)  = Rotor power coefficient, it expresses the 

recoverable fraction of wind power and is a 

function of 𝜆 (tip speed ratio) and 𝛽 (blade pitch 

angle). 

The 𝜆 (tip speed ratio) can be expressed as:  

𝜆 =  
𝛺𝑅

𝑈
 

(3) 

Where: 

𝜆 = Tip speed ratio 

𝑅 = Radius of the wind rotor 

𝛺 = Angular velocity (in radians/sec) 

The maximum theoretically possible rotor power coefficient, 

𝐶𝑃,𝑚𝑎𝑥  also called the Betz limit, can be determined to be 

0.59. The actual value of 𝐶𝑃(𝜆, 𝛽) is much below the Bentz 

limit and is dependent upon technical features of the turbine 

and environmental factors (Saint-Drenan et al., 2020).  

According to the Equation 2c, produced electric power is 

proportional to the density of air and cube of wind speed. The 

density of air is in-turn dependent upon the ambient 

temperature, humidity and pressure. It can be calculated 

according to: 

𝜌 =  𝜌𝑑 + 𝜌𝑣 (4a) 

𝜌𝑑 =
𝑃 − 𝑃𝑣

(𝑅𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐,𝐷𝑟𝑦 𝐴𝑖𝑟 × 𝑇𝑘)
 

(4b) 

𝜌𝑣 =
𝑃𝑣

(𝑅𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐,𝑊𝑎𝑡𝑒𝑟 𝑉𝑎𝑝𝑜𝑢𝑟 × 𝑇𝑘)
 

(4c) 

𝑃𝑠𝑎𝑡 = 6.1078 × 10
7.5𝑇

𝑇+237.3 

𝑃𝑣 =
(ℎ × 𝑃𝑠𝑎𝑡)

100
 

(4d) 

Where: 

𝜌𝑑  = Density of the dry air 

𝜌𝑣  = Density of the water vapour 

𝑇  = Temperature (oC) 

𝑇𝐾   = 𝑇 + 273.15 (Kelvin) 

ℎ  = Humidity 

𝑃  = Total pressure of air 

𝑃𝑠𝑎𝑡   = Saturation water vapour pressure (Tetens’ 

Formula) 

𝑃𝑣  = Partial pressure of water vapour 

𝑅𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐,𝐷𝑟𝑦 𝐴𝑖𝑟   = Specific gas constant for dry air 

= 287.05 J/(kg·K) 

𝑅𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐,𝑊𝑎𝑡𝑒𝑟 𝑉𝑎𝑝𝑜𝑢𝑟  = Specific gas constant for water 

vapour = 461.5 J/(kg·K) 

The actual operation of a wind turbine is outcome of a 

number of controls, for example, aerodynamic torque control, 

yaw orientation control, brake torque control and generator 

torque control, that work together to create a number of 

decision combinations. The final operating strategy, which is 

an outcome of optimisation of diverse and often contradictory 

goals, determines the control of individual components. 

These goals include, safe operation, maximising power 

generation, minimising vibrations, preventing structural 

damages, integration with grid, etc. (Manwell, McGowan & 

Rogers, 2009).  

Due to the complexities involved in accounting for all the 

parameters that can effect control and operation, the 

parametric models are often not accurate. Hence, for 

predicting power generation of existing wind turbines a 

number of models based on Artificial Intelligence (Support 

Vector Machine, Gaussian Process, Random Forest and 

Artificial Neural Network) have been propounded These 

models are trained using historical SCADA data and the 

trained models are later used for making predictions (Ouyang 

et al., 2017; Pandit, Infield & Kolios, 2019).  

1.5. Data Quality for Predicting Power Produced 

In spite of all the precautions, the measurements recorded by 

SCADA system are always afflicted with imperfections or 

uncertainties of various kinds. Where uncertainty of 

measurement can be defined as the doubt that exists about the 

result of any measurement (Bell, 1999).  

Since, the uncertainties arise due to multiple reasons they are 

also of different types. Some of them are tangible (can be 

quantified), while others are intangible (cannot be properly 

quantified). Some uncertainties can by random and others can 

be systematic. Because of the difficulties associated with the 

taxonomy of uncertainties, a number of classifications have 

been proposed. Unfortunately, there is no consensus 

regarding these classifications and the proposed 

classifications have not been widely accepted, resulting in 

confusions. Traditionally, uncertainties have been classified 

into two types (Manwell, McGowan & Rogers, 2009; Simon, 

Weber & Sallak, 2018): 

 Aleatoric – This type of uncertainty arises due to 

inherent randomness or variability of the measured 

parameter. By repeating the measurement, it is possible 

to express it in terms of mean and standard deviation 

(interval and confidence level). 

 Epistemic – This type of uncertainty arises due to the 

lack of knowledge or data. The factors that contribute to 

the uncertainty influence all the recorded values, hence, 

there is limited benefit to be gained by repeated 

measurement. Epistemic uncertainty can be further 

classified into: 

o Bias – It is a systematic shift from the true value. 
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o Inaccuracy – This is the mean difference between 

the measured and true value of the measured 

variable. 

o Imprecision – It refers to the length of interval 

between which the measured values lie. 

o Ignorance – It arises due to limited availability of 

measurements or knowledge regarding precision. 

o Incompleteness – It arises due to missing data. 

o Credibility – It arises due to competence or 

trustworthiness during calibration, installation, 

etc. 

Epistemic uncertainty can be evaluated based on 

information like the manufacturer’s specifications, past 

experience, expert opinion or subjective feel. 

For the sake of completeness, measurements should be 

reported along with their corresponding uncertainties. A 

tangible uncertainty can be quantified using two numbers: 

interval (width of margin of doubt or dispersion about the 

mean) and confidence level (confidence that the “true” value 

lies with that margin. Since the uncertainties of a 

measurement depends upon a number of factors, it is often 

difficult to quantify all of them (Bell, 1999). 

These uncertainties are severe for wind turbines because of 

the large variations taking place in the environmental 

conditions. Most of the errors arise due to: 

 Imperfections Caused by Sensors – These 

imperfections arise because of many reasons, including, 

variations in the parametric values, imperfect nature 

(bias, noise, etc.) of the instruments, incorrect 

calibration, drift in the instrument calibration, 

measurement location, etc. They may be characterised 

as: 

o Inherent Imperfections – Since, environmental 

conditions constantly change, the sensors report 

values based on their response time, sampling rate, 

resolution, sensitivity and statistical analysis. Each 

of these behaviour introduces different types of 

uncertainties. 

o Acquired Imperfections – During its operation, a 

sensor is exposed to a number of environmental 

attacks, like, variations in impacts, wind force, 

temperature, humidity, condensation, frosting / 

icing, vibrations, oil / dirt / salt deposition, etc., 

resulting in its degradation. 

 Imperfection Caused by SCADA System – In a 

SCADA system, values are recorded every 10 minutes, 

hence, the recorded data is actually not of that particular 

time, but a statistical value based on predefined 

algorithm. 

To ensure confidence in the data used for analysis, a number 

of corrective measures need to be taken. These include 

(Manwell, McGowan & Rogers, 2009; Tavner, 2012): 

 Use of High Quality Sensors – High quality sensors 

should have structure that is able to withstand 

environmental attacks; and have superiority of 

performance in terms of accuracy, precision, reliability, 

repeatability and reproducibility.  

 Use of Multiple Data Streams – Multiple and varied 

data streams can be used to confirm the same fault so that 

its probability of detection increases, for example, use of 

vibration and debris count for detecting bearing fault. 

Apart from the benefits of redundancy, use of different 

sensors at different locations increases the probability of 

detection. A negative side effect of this is the collection 

of excessive number of data streams resulting in data 

overload. Additionally, “law of diminishing return” 

dictates that use of multiple sensors for the same task 

may not provide any new information. 

 Use of Advanced Data Analytics Techniques – A 

number of methods have been proposed to handle 

different types of uncertainties. While aleatoric 

uncertainty is often handled using the Probabilistic 

Approach, epistemic uncertainty can be handled using 

the Possibilistic Approach.  

In Possibilistic Approach, values are not regarded as 

“crisp point numbers” but as membership functions. By 

integrating Fuzzy arithmetic, that is based on extended 

interval analysis, with deterministic or Machine Learning 

models, the predicted output is not a crisp point but a 

Possibility Distribution Function. Comparison of this 

output membership function against acceptance criteria 

gives likelihood of failure in terms of “Possibility of 

Failure” and “Necessity of Failure”. The advantage of 

using Possibility Distribution Function, over Probability 

Density Function, is that no preference is given to values 

within the range of Fuzzy interval. This suits well for the 

situations where the available data is sparse. The 

weakness of the Possibilistic Approach is its imprecise 

results, which may give over-conservative and, at times, 

uneconomical recommendations. Thus, Possibilistic 

Approach may be a useful tool for implementing the 

philosophy of zero tolerance of accidents where not only 

the probability but also any possibility of failure has to 

be eliminated (Ayyub & Klir, 2006; Ross, 2004). 

2. MOTIVATION AND AIM OF THE RESEARCH 

2.1. Motivation for the Research 

As discussed in the previous section, performance of a wind 

turbine can be judged by comparing Predicted Produced 

Power and Measured Produced Power. A Significant 

Difference between the two indicates sub-optimal 

performance. Figure 2 shows a flowchart of the methodology 

that can employed for detecting sub-optimal power 

production. 
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Figure 2. Flowchart showing the proposed fault detection 

methodology. 

 

It may be possible to calculate Predicted Produced Power by 

using the four environmental variables; and if the Measured 

Produced Power (Grid Produced Power) is significantly less 

than the predicted value, there is a possibility that the wind 

turbine is operating sub-optimally.  

While SCADA data can be used for carrying out this analysis, 

the methodology has some weaknesses. These weaknesses 

arise due to: 

 lack of reliable models for calculating Predicted 

Produced Power taking into account all variations and 

imperfections in the collected data, and 

 identification of what constitutes as Significant 

Difference considering the imperfections of the data. 

2.2. Aim of the Research 

Aim of the research is to develop a methodology for 

calculating Predicted Power Production using Hybrid 

(Machine Learning – Possibilistic) Approach while 

accounting for variability and uncertainty in the SCADA 

data.  

2.3. Scientific Novelty and Importance of the Research 

This paper presents work carried out to calculate Predicted 

Produced Power using wind turbine SCADA data using a 

Hybrid (Machine Learning – Possibilistic) Approach. The 

research includes: 

 developing Machine Learning models for calculating 

Predicted Produced Power under varying environmental 

conditions, and  

 handling of imperfections in the collected environmental 

and operating data by representing them as Fuzzy 

Membership Functions. 

3. METHODS 

3.1. SCADA Data Description 

To demonstrate feasibility of the proposed methodology, 

SCADA data made available by the energy company EDP 

 

(2016) from four horizontal axis wind turbines located off the 

western coast of Africa has been used. The data has been 

recorded over a period of 2 years (2016 and 2017) at a 10-

minute averaging interval. The datasets contain values of 76 

parameters. For the mechanical components, some recorded 

parameters are (Bindingsbø et al. 2023): 

 Blades – pitch angle 

 Rotor – rpm 

 Nose Cone – temperature 

 Nacelle – direction, temperature 

 Generator – rpm, bearing temperature (drive end and 

non-drive end), stator windings temperatures in the 3 

phases, split ring chamber temperature, active power, 

reactive power 

 Gearbox – bearing temperature, oil temperature 

 Hydraulic System – oil temperature 

 High Voltage Transformer – temperature 

 Ambient – temperature, wind speed, wind direction 

Associated dataset about meteorological conditions has also 

been provided for the same time instances. Failure logs 

containing timestamp, damaged component and associated 

remarks are also available. For this work, Turbine Number 7 

(“T07”) has been selected for which the total number of 

instances are 52445 and 52294 for 2016 and 2017, 

respectively. The variables that have been used in the 

calculation of power curve are given in Table 1. 

Figure 3a shows the effect of Ambient Wind Speed on 

Generator RPM. The plot can be divided into three regions – 

(a) Low RPM Region, where Generator RPM < 300; (b) 

Transition Region, where 300 < Generator RPM < 1250; and 

(c) High RPM Region, where 1250 rpm < Generator RPM < 

1680. When the Ambient Wind Speed is below the Cut-In 

Wind Speed (4 m/s), the frequency of Generator RPM below 

300 rpm is high. With the increase in Ambient Wind Speed, 

the wind turbine adjusts its blade pitch angle so that 

Generator RPM is normally above 1250 rpm. Above the 

Rated Wind Speed (12 m/s), the Generator RPM is mostly 

above 1650 rpm. Figure 3b shows the effect of Ambient 

Wind Speed on Grid Produced Power. When the Ambient 

Wind Speed is below the Cut-In Wind Speed (4 m/s), Grid 

Produced Power is either negative or less than 275 kW. With 

increasing Ambient Wind Speed, Grid Produced Power 

increases so that at the Rated Wind Speed (12 m/s), Grid 

Produced Power is mostly Rated Power (2000 kW). Figure 

3c shows the effect of Generator RPM on Grid Produced 

Power. The figure shows that the power generation 

drastically increases when the Generator RPM is above 1250 

rpm.  
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Figure 3. Relationships between Ambient Wind Speed, Generator RPM and Grid Produced Power. 

 

Table 1. Selected variables used for developing the model. 

 

Variable Short Variable 

Name 

Original SCADA 

Name 

Description Units 

Timestamp   10-minute resolution  

Ambient 

Temperature 

Amb_Temp Amb_Temp_Avg Average ambient temperature ºC 

Ambient 

Humidity 

Amb_Humidity Avg_Humidity Average ambient relative humidity % 

Ambient Pressure Amb_Pressure Avg_Pressure Average ambient pressure millibar 

Ambient Wind 

Speed 

Amb_Wind_Speed Amb_WindSpeed_Avg Average windspeed within average 

timebase 

m/s 

Generator RPM Gen_RPM Gen_RPM_Avg Average generator shaft / bearing 

rotational speed 

rpm 

Grid Produced 

Power 

Grid_Prod_Power Grd_Prod_Pwr_Avg Power average kW 
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Figure 4. Plot of power generated versus wind speed 

using SCADA data. (a) Using raw data (b) Using data 

after removing outliers. 

3.2. Data Pre-processing 

Data pre-processing is an important step in the development 

of a Machine Learning model. This is to correct or remove 

vague, inconsistent, irrational, duplicate or missing values for 

algorithms to work properly (Bindingsbø et al. 2023).  

SCADA data from a wind turbine also contain data that do 

not conform to the expected power curve and are referred to 

as “outliers”. These outliers arise because of various 

explainable reasons. In this work, outliers have been 

identified for the following reasons: 

Outlier Rule 1. Generator RPM = 0 when Ambient Wind 

Speed => 4 m/s. Even though the Wind Speed is above 

the Cut-In Wind Speed (4 m/s), the rotor does not move 

because the wind turbine is in the shutdown state. This 

can be because of various reasons, including the grid 

condition. 

Outlier Rule 2. Grid Produced Power <= 0 when Ambient 

Wind Speed < 4 and Generator RPM > 0. This happens 

when the rpm of rotor is low, as a result of which power 

generation is less than the power consumed for 

operation. The difference is fulfilled by extracting power 

from grid. 

Outlier Rule 3. Grid Produced Power <= 0 when Ambient 

Wind Speed => 4 & Generator RPM > 0. Even though 

the Wind Speed is above the Cut-In Wind Speed (4 m/s), 

the rotor is moving, power generation does not take place 

because the wind turbine is “free wheeling” in the 

shutdown state. This can be because of various reasons, 

including the grid condition. 

Apart from these outlier data points, there are some more 

points that need to be removed. These data points have been 

recorded during the transition from normal operation to 

shutdown state or vice versa. These points lie scattered and 

 

can be identified using DBSCAN, a density-based clustering 

algorithm (Ester, Kriegel et al. 1996). Two rules that have 

been used for identifying the outliers are: 

DBSCAN Clustering Rule 1. Ambient Wind Speed, 

Grid Produced Power, eps value = 2, min_samples value 

= 10 

DBSCAN Clustering Rule 2. Ambient Wind Speed, 

Generator RPM, eps value = 3.45, min_samples value = 

10 

The results before and after cleaning are shown in Figure 4.  

3.3. Flowchart for Predicting Produced Power 

In order to develop a workable predictive model it is 

important to understand the process in terms of the structure, 

environment, and operation. Section 1 briefly discusses some 

of these issues and based on this knowledge a simplified 

flowchart used for calculating Predicted Produced Power is 

shown in Figure 5. The figure also shows that there is a weak 

correlation between the environmental variables (Ambient 

temperature, Ambient Humidity and Ambient Pressure) and 

Grid Produced Power; but there is a strong correlation 

between Ambient Wind Speed and Grid Produced Power. 

3.4. Representation of Variables as Possibility 

Distribution Functions 

As discussed earlier, SCADA data is always encumbered by 

imperfections. One of the techniques that can be used for 

handling imperfections of the data is the Fuzzy Logic 

Approach. In this approach, a fuzzy variable 𝑋  can be 

described by its Fuzzy Membership Function, instead of a 

Probability Density Function 

In the Possibilistic Approach, a Fuzzy Membership Function 

can also be interpreted as a Possibility Distribution Function 

(Figure 6). 𝛼𝑐𝑢𝑡 of this Possibility Distribution Function, 

donated by 𝑋𝛼 , is a fuzzy interval [𝑥, 𝑥′] that contains the 

values whose likelihood is 𝛼. The value of 𝛼 can be in the 

range [0,1]. At the base, when the value of 𝛼 is 0, variable 

has the interval within which the expected value will 

“certainly” lie. As the value of 𝛼  increases, the interval 

between which the values lie decreases, but the certainty that 

the values will lie within this interval also decreases. 

The 𝛼𝑐𝑢𝑡 of a fuzzy set is given by (Ayyub & Klir, 2006): 

𝑋𝛼 = [𝑥, 𝑥′]𝛼 = {𝑥 ∈ 𝑋|𝑥 ≤ 𝑥 ≤ 𝑥′} 
𝛼 ∈ [0,1] 

(5) 

Where: 

𝑥 = Lowest real number value of the interval 

𝑥′ = Highest real number value of the interval 

The use of 𝛼𝑐𝑢𝑡 allows for the concepts of interval analysis 

to be used (Ayyub & Klir, 2006). 
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Figure 5. Flowchart showing influence of variables on the calculation of produced power. 

 

 

 

 
Figure 6. Conceptual illustration of possibility 

distribution function. 

 

 

In the absence of detailed study to quantify the interval, limit 

values that have been used for the calculations are based on 

the literature and experience. For example, response time and 

uncertainty of a value recorded by a cup anemometer, 

depends upon its construction (dimensions, weight, etc.) and 

degree of deterioration (example, friction caused by 

corrosion). Under test conditions, a new anemometer can 

show inaccuracy of about 2%. Under working conditions, this 

inaccuracy may increase due to corrosion, wear, 

misalignment, deposition of dust, etc. (Manwell, McGowan 

& Rogers, 2009). Thus, at 𝛼 = 0 (interval within which the 

expected value “certainly” lies), the estimated limit of values 

around the measured values have been estimates as: 

 Ambient Temperature : ±1.0oC 

 Ambient Humidity : ±1.0% 

 Ambient Pressure : ±1.0 millibars 

 Ambient Wind Speed : ±0.5 m/s 

 Power Coefficient : 0.45 ±0.05 

Possibility Distribution Function for a variable is generated 

by stacking 𝛼 number of intervals, where the bottom layer, 

𝛼 = 0, has interval range:
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Table 2. Possible combinations of interval values used for calculating Predicted Produced Power. 

 

Combination Ambient 

Wind Speed 

Ambient 

Temperature 

Ambient 

Pressure 

Ambient 

Humidity 

Combination_1 Min Min Min Min 

Combination_2 Min Min Min Max 

Combination_3 Min Min Max Min 

Combination_4 Min Min Max Max 

Combination_5 Min Max Min Min 

Combination_6 Min Max Min Max 

Combination_7 Min Max Max Min 

Combination_8 Min Max Max Max 

Combination_9 Max Min Min Min 

Combination_10 Max Min Min Max 

Combination_11 Max Min Max Min 

Combination_12 Max Min Max Max 

Combination_13 Max Max Min Min 

Combination_14 Max Max Min Max 

Combination_15 Max Max Max Min 

Combination_16 Max Max Max Max 

 

 

[
(𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 − 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑙𝑖𝑚𝑖𝑡 𝑣𝑎𝑙𝑢𝑒),
(𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 + 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑙𝑖𝑚𝑖𝑡 𝑣𝑎𝑙𝑢𝑒)

] 

In the Possibilistic Approach, in order to account for the 

uncertainty, instead of using crisp values of environmental 

variables (Ambient Temperature, Humidity, Pressure and 

Wind Speed) as recorded by SCADA and Power Coefficient, 

Possibility Distribution Functions of the variables are used. 

Calculations are carried out using interval values at each 

𝛼𝑐𝑢𝑡. For each value of 𝛼, the interval values of variables 

are determined. Considering all the minimum and maximum 

values of the intervals, the minimum and maximum values of 

the output function are calculated using accepted equations. 

Different combinations that are possible are shown in Table 

2. The results of all 𝛼𝑐𝑢𝑡𝑠  are stacked to build the 

possibility distribution function of the output function 

(Ayyub & Klir, 2006). 

3.5. Possibilistic Approach 

The calculations are done in two steps. In the first step, 

Possibility Distribution Function for Air Density is generated 

using Equation 4. In the second step, the Possibility 

Distribution Functions for Air Density, Ambient Wind Speed 

and 𝐶𝑃(𝜆, 𝛽)  are used to generate Possibility Distribution 

Function for Predicted Produced Power using Equation 2. 

3.6. Hybrid (Machine Learning – Possibilistic) Approach 

Development of the Hybrid (Machine Learning – 

Possibilistic) is done in two steps. 

In the first step, different Machine Learning models are 

trained using training dataset and the output from the trained 

models are evaluated. Models that have been evaluated are: 

 Linear Models – Linear Regression (LR), Lasso, Ridge, 

and 

 Tree-based Models – Decision Trees, Random Forest 

(RF) 

 Boosting Models – AdaBoost, XGBoost and LGBoost 

 Support Vector Regression (SVR)  

Out of these models, XGBoost (RMSE = 186, R2 = 0.93, 

MAE = 127) has been selected because it gives acceptable fit 

and takes short calculation time. 

In the second step, the trained model and Possibility 

Distribution Functions of the environmental variables are 

used to generate Possibility Distribution Functions for 

Predicted Produced Power. The calculations are carried out 

according to the method described in the previous section, 

except that the calculations are done using the trained 

Machine Learning model instead of the equations. 

4. RESULTS AND DISCUSSION 

4.1. Possibilistic Approach 

4.1.1. Effect of Environmental Variables on Air Density 

Figure 7 shows the results of the calculations carried out for 

predicting Air Density. Since Air Density increases with the 

increase in Ambient Pressure, but decreases with the increase 

in Ambient Temperature and Ambient Humidity; the graph 

shows seasonal variations of the Air Density. The graph also 

shows sensitivity to the inaccuracies of recorded values and 

the “true” value may lie anywhere within the 𝐶𝑒𝑟𝑡𝑎𝑖𝑛 − 𝑀𝑖𝑛 

and 𝐶𝑒𝑟𝑡𝑎𝑖𝑛 − 𝑀𝑎𝑥 curves. 
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Figure 7. Seasonal variation on Predicted Air Density at 𝛼𝑐𝑢𝑡 = 0. 

 

 
 

Figure 8. Effect of Ambient Wind Speed on Predicted Produced Power using Possibilistic Approach at 𝛼𝑐𝑢𝑡 = 0. 

 

 
 

Figure 9. Plot of Grid Produced Power and Predicted Produced Power calculated using Possibilistic Approach at 𝛼𝑐𝑢𝑡=0 

for a 24 hour duration (19th July, 2016). 
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Figure 10. Predicted Produced Power using Hybrid Model for the combinations of interval values given in Table 2 at 

𝛼𝑐𝑢𝑡=0. 

 

 
 

Figure 11. Effect of Ambient Wind Speed on Predicted Produced Power using Hybrid Approach at 𝛼𝑐𝑢𝑡 = 0. 

𝐶𝑒𝑟𝑡𝑎𝑖𝑛 − 𝑀𝑖𝑛 is obtained from Combination_6 and 𝐶𝑒𝑟𝑡𝑎𝑖𝑛 − 𝑀𝑎𝑥 is obtained from Combination_11. 

 

 
 

Figure 12. Plot of Grid Produced Power and Predicted Produced Power calculated using Hybrid Approach at 𝛼𝑐𝑢𝑡=0 for 

a 24 hour duration (19th July, 2016). 
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4.1.2. Effect of Environmental Variables on Predicted 

Produced Power 

Figure 8 shows the effect of Ambient Wind Speed on the 

Predicted Produced Power. The graph shows that: 

 Power curve developed according to the Equation 2 

does not follow the actual trend. A better model, as 

proposed by Saint-Drenan, Y.-M. et al. (2020), may give 

better result. 

 Spread of measured Grid Produced Power at a particular 

wind speed has not been accounted for. The spread can 

arise due to various reasons, like, control of the operation 

and imperfections in measurements. 

 Predicted produced power is sensitive to the inaccuracies 

of recorded values and the “true” value may lie anywhere 

within the 𝐶𝑒𝑟𝑡𝑎𝑖𝑛 − 𝑀𝑖𝑛 and 𝐶𝑒𝑟𝑡𝑎𝑖𝑛 − 𝑀𝑎𝑥 curves.  

Figure 9 shows plot of Predicted Produced Power and Grid 

Produced Power for a 24-hour duration (19th July, 2016). The 

graph shows that measured values generally lie within the 

boundaries set by 𝐶𝑒𝑟𝑡𝑎𝑖𝑛 − 𝑀𝑖𝑛  and 𝐶𝑒𝑟𝑡𝑎𝑖𝑛 − 𝑀𝑎𝑥 

values. 

4.2. Hybrid (Machine Learning – Possibilistic) Approach 

Figures 10-12 show the results of calculations carried out 

using Hybrid (Machine Learning – Possibilistic) Approach. 

Figure 10 shows the effect of max and min interval values of 

environmental variables on Predicted Produced Power. The 

figure shows that combinations have significant effect on the 

Predicted Produced Power.  

According to Equation 2, Predicted Produced Power is 

proportional to cube of Ambient Wind Speed. Hence, 

Combination_1 to Combination_8 show lower values of 

Predicted Produced Power as compared to Combination_9 to 

Combination_16. Within these two sets of combinations, the 

differences are small because of the relatively small 

differences in the calculated air density.  

Figure 11 shows the effect of Ambient Wind Speed on 

Predicted Produced Power using Hybrid Approach at 

𝛼𝑐𝑢𝑡 = 0 . The figure shows significant effect of 

measurement uncertainties on the predicted values. 

𝐶𝑒𝑟𝑡𝑎𝑖𝑛 − 𝑀𝑖𝑛  is obtained from Combination_6 and 

𝐶𝑒𝑟𝑡𝑎𝑖𝑛 − 𝑀𝑎𝑥 is obtained from Combination_11. 

Figure 12 shows plot of Grid Produced Power and Predicted 

Produced Power calculated using hybrid approach at 

𝛼𝑐𝑢𝑡=0 for a 24-hour duration (19th July, 2016). The graph 

shows that measured values generally lie within the outer 

most boundaries set by 𝐶𝑒𝑟𝑡𝑎𝑖𝑛 − 𝑀𝑖𝑛 and 𝐶𝑒𝑟𝑡𝑎𝑖𝑛 − 𝑀𝑎𝑥 

values.  

A comparison between Figure 9 and Figure 12 shows that, 

in general, (a) Machine Learning model fits better than the 

parametric model; and (b) the difference between 𝐶𝑒𝑟𝑡𝑎𝑖𝑛 −
𝑀𝑎𝑥 and 𝐶𝑒𝑟𝑡𝑎𝑖𝑛 − 𝑀𝑖𝑛 in the Hybrid Model is less than 

that in the Possibilistic Model.  

5. CONCLUSIONS 

This paper presents a simple yet robust methodologies for 

calculating Predicted Produced Power using SCADA data 

while accounting for variability and uncertainty. The 

methodologies utilise either parametric or Machine Learning 

models for handling variability; and Possibilistic Approach 

for handling uncertainty. As a case study, the idea has been 

demonstrated using real-life SCADA data. 

To take the research work further, the following tasks have 

been identified: 

 The models do not account for effect of control measures 

of the wind turbine on produced power. Since, these 

measures can significantly effect power generation 

(López-Queija et al., 2022); models that account for 

control measures need to be used. 

 Grid Produced Power has been assumed to have crisp 

values, but in reality measurement of Grid Produced 

Power is also afflicted with uncertainties. Hence, 

calculations need to be done by representing it by a 

Possibility Distribution Function. 

 Having obtained Possibility Distribution Functions of 

Predicted Produced Power and Grid Produced Power, 

Likelihood of Sub-optimal Performance can be 

determined using the concepts of Possibility and 

Necessity Measures. 

DATA AVAILABILITY 

The datasets presented in this study can be found in online 

repositories given below: 

 https://www.edp.com/en/wind-turbine-scada-signals-

2016 

 https://www.edp.com/en/innovation/open-data/wind-

turbinescada-signals-2017. 
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