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ABSTRACT 

Developing PHM capability for a system is a multi-staged 

process. This paper explores genetic algorithms, neural 

networks, fuzzy logic systems, AHP (Analytical Hierarchy 

Process), and Boolean logic to synthesize and fuse complex 

decisions arising in PHM design. Tools for PHM analysis are 

typically introduced and utilized towards the end of a 

products design or potentially after design. The methods 

proposed are tools that can be implemented during 

conceptual and early stage preliminary design prior to 

specific hardware design decisions being made. As a result, 

diagnostic capability can be developed along with the broader 

system allowing better embedded design of diagnostic 

instruments into the system and giving PHM a greater role in 

operation rather than being a secondary consideration of 

system development. 

1. BACK GROUND 

PHM being a discipline of engineering focused on the 

detection of failures in mechanical systems for the purpose of 

maintenance, reliability, and safety. Prognostics refers to the 

estimation of life remaining in the item before functional 

failure (inability to perform a function) occurs. Equally 

important in the PHM process is the diagnosis of failures. 

Diagnosis referring to the detection (awareness that a failure 

is present) and isolation (awareness of which item in the 

system is failing and how). 

A comprehensive PHM process or system incorporates 

elements of condition monitoring, state assessment, 

diagnostics, failure progression analysis, prognostics, and 

maintenance considerations (Sheppard, Kaufman 

&Wilmering, 2009). Focusing on implementing PHM into 

the design of engineering systems during the conceptual or 

preliminary design phase, this paper contains details and 

discussions of several methods to aid in design for PHM. 

Assessing and designing a PHM system through the lens of 

diagnostic capability lends itself to the early stage of product 

development as at this point the general configuration and 

functions of the system are known, however the physical 

structures and failures may not. Prognostics may not be 

possible at a preliminary design stage due to the requirements 

for physics of failure or data driven trend analysis, 

unavailable at this point in design. 

PHM’s place in the design process can be varied however the 

prevalent approaches to PHM result in a largely complete 

system design prior to the introduction of PHM 

considerations. 

Data driven diagnostics take available data/information and 

via methods, such as neural networks, seek to form diagnostic 

rules from patterns in the data. Whilst valid, there are 

downsides to an approach that is inherently biased towards 

the later side of design such as limited sensor placement 

potential due to inflexible design, lack of system 

understanding, misattribution of physical causes of failure, 

and the inability to adequately estimate costs.  

Physics of failure models tracking degradation over time 

offer increased fidelity over data driven methods however 

suffer many of the same problems.  

Additionally, the computationally expensive process limits 

the broad, system scale application of physics of failure 

(Sheppard et al, 2009). 

By introducing PHM considerations earlier allows design for 

PHM, earlier costings, sensor placement flexibility, and 

development of diagnostic design along with criticality and 

failure analyses. 

Failures within an engineering system can be sensed in a 

multitude of way. Using sensors to detect failures ultimately 

requires the presence of observable symptoms that occur as a 

result of a failure. A symptom being a manifested condition 

occurring as the result of a failure. Symptoms can be the 
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directly indicative of a failure (for example an observation 

that a shaft has fractured), or they may be indirect (for 

example increased power consumption as a result of wear in 

bearings). 

To diagnose a failure as having occurred a uniquely 

identifiable syndrome that is associated to that failure must 

be observed. In the case that a non-uniquely identifiable 

syndrome is observed a diagnosis has not been made, or the 

result is ambiguity in the diagnosis. Ambiguity referring to 

the inability to distinguish between multiple failures (this 

may sometimes be acceptable if the ambiguity narrows down 

potential diagnoses in a controlled manner). 

In the case of this paper the focus is specifically in failures in 

engineering systems. The observables being discussed are 

failure mode responses (properties of an item indicative of 

function/performance) due to the conditions imposed during 

modelling (early stage design using a logical modelling 

framework). 

 

Figure 1: Use of methods across phases of diagnostic design 

 

The initial success metric from which to judge a prospective 

diagnostic capability / sensor set is coverage (coverage being 

the proportion of failures in the system that can be diagnosed 

without ambiguity). 

Once hardware has been introduced (in the form of physical 

sensor allocation) then sensor parameters such as cost, 

weight, probability of detection, and reliability can be utilized 

as prominent metrics for comparing and selecting an optimal 

solution. 

Ultimately, the questions that require answering during 

sensor set design (particularly from an early stage) are: 

Where should sensors be placed? How to diagnose a failure? 

What physical sensor types should be used at a given 

location? 

2. METHODS 

2.1. Fuzzy Logic 

Fuzzy logic is a method for translating knowledge and 

expertise into a consistent, rule-based form for the purpose of 

some analysis. It can be used to map human language, with 

the vagueness and imprecision inherent within, to a crisp 

value based process via a set of rules. 

The application of fuzzy logic discussed is twofold; firstly, 

modelling of a system, secondly, prioritization of failure 

diagnosis based on engineering risk. 

2.1.1. Fuzzy Cognitive Maps (FCM) 

FCM is a methodology of modelling that represents a 

network of interconnected concepts in order to understand the 

network’s performance. Each of the concepts in the network 

may be connected to other concepts through causal 

connections that represent the performance dependencies 

between the concepts. Concepts are factors in the network 

that may exert influence on one another through causational 

relationships (e.g. increase in concept A causes decrease in 

concept B). Utilizing FCM allows complex networks of 

interdependent concepts to be modelled and the impacts of 

changes in magnitude to one or more of the concepts 

simulated as they impact upon the network. 

 

Figure 2: Basic FCM diagram with three concepts 

 

In order to simulate the behaviour (or response) of the system, 

FCM looks at all initial state of the concepts in the system, 

the causal connections between the concepts and any 

perturbations affecting the concepts (Palaez & Bowles, 

1995). The process used to simulate the system response can 

be represented using an iterative set of matrix multiplications 

(Stylios & Groumpos, 1999): 

𝑨𝑡−1𝑾 + 𝑷 = 𝑨𝑡   (1) 
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Where: 

𝑨𝑡−1 is the system state vector from the previous time-

step. During the first time-step of the analysis 𝑨𝑡−1=𝑨0. 𝑨0 

represents the initial state of the system (the value of each 

concept at the beginning of the analysis) 

𝑾 is the weighting matrix that describes all the inter-

connections between concepts in the system 

𝑷 is the perturbation vector that describes any 

permanent changes or deviations to the concepts in the 

system 

𝑨𝑡 is the system state vector that represents values of 

the flow properties after a time-step 

FCM is used in modelling to predict or capture the syndrome 

that will be tested for using sensors. 

The FCM modelling framework is the equivalent of a logical 

model with functions and flow properties assigned to each 

item. The functional flow properties being the concepts of the 

FCM model and connections being assigned with weights (or 

causal strengths) indicating how the concepts influence one 

another (Styblinski & Meyer, 1988). 

These causal connections define the interactions between 

item flow properties. Failures of the system are ultimately 

simulated using the model. In order to simulate, failures are 

“injected” into the model by perturbing flow properties. To 

get the predicted/ simulated “syndrome” of failure, the state 

of the flow properties in the model after the failure has been 

perturbed through the model is compared to the state of the 

flow properties in the model before the failure was perturbed. 

This requires two consecutive simulations of the FCM model: 

- The first simulation does not include the 

perturbation vector, simulating the operational or 

undisturbed system. This establishes a nominal 

system response. 

- The second simulation introduces the perturbation 

vector representing a failure within the system. The 

results of this simulation are compared against that 

of the nominal system response. The relative change 

in response represents the potentially observable 

syndrome of the failure that was introduced. 

Table 1: Failures and corresponding test points 

 

End output of this is to obtain a “fuzzy”, or qualitative, 

syndrome that maps failures to symptoms that can be sensed. 

These syndromes can be collectively presented in a 

diagnostic table for the system (Hess, Stecki & Rudov-Clark, 

2008). 

2.2. Fuzzy Criticality 

Fuzzy criticality uses the fuzzy logic framework to assess the 

risk associated with each failure. Risk generally being a 

measure of each failure’s potential of severity, it’s probability 

of occurrence and the ease of which that failure can be 

detected. 

Defining and applying a fuzzy rule base for criticality offers 

an easily implemented criticality assessment at the early stage 

of design within the scope of this discussion (Fonseca & 

Knapp, 2001). 

Risk Priority Number (RPN) is a ubiquitous example of 

criticality in which each failure is allocated severity (S), 

occurrence (O), and difficulty of detection (D) values on a 

scale ranging from 1 to 10 (with 1 representing least critical, 

10 representing most). The values assigned to each metric can 

be based on a qualitative or quantitative set of guidelines 

corresponding to each integer in the 1 to 10 scales and 

determining these guidelines forms the basis of the criticality 

method being applied. The product of the three metrics 

(O*S*D) represents the failure’s criticality. 

Fuzzy criticality seeks to extend the RPN methodology by 

incorporating measures of failure progression and causal 

probability into the criticality assessment, similar metrics are 

used in work by Liu, Yang, Wang, Sii, and Wang (2004). 

This is particularly advantageous as the FCM model being 

utilized can act as the structure onto which these new metrics 

are assigned. 

Fuzzy Criticality metrics: 

- Apparent Occurrence is the overall likelihood or 

frequency of a failure occurring and resulting in an 

end-effect. Calculated as a mapping between 

Occurrence and Causal Probability (of the failure 

resulting in end-effect). 

- Apparent Severity is the severity of the end-effect 

considering the relative rate at which the initial 

failure develops and progresses to that end-effect. 

Calculated as a mapping between Severity and 

Progression Rate. 

- Difficulty of Detection as in RPN criticality, the 

Difficulty of Detection is a measure of the ease at 

which the operator of the system may diagnose the 

specific failure. 

Collectively these metrics are then mapped to an overall 

Fuzzy Criticality measure of risk. 

 Test Point 

Failure 1 2 3 

A High Nominal Nominal 

B High Low Nominal 

C Nominal Low High 
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Figure 3: Example of fuzzy memberships for the 

Progression Rate parameter 

Mappings between parameters are based on rules that are 

determined prior to commencement of criticality analysis. 

Example of mappings between parameters are shown in the 

application section of the paper. 

The application of Fuzzy Criticality as a tool for sensor set 

design is as a measurement of risk and prioritization for the 

failures the sensor set is seeking to diagnose. The sensor set 

can be designed in order to prioritize the diagnosis of those 

most critical failures, and in the process of applying a sensing 

methodology decreasing the risk of failures by reducing the 

Difficulty of Detection. 

2.3. Genetic Algorithm 

A methodology that mimics nature’s evolutionary process, a 

genetic algorithm is a form of heuristic that can generate high 

quality solutions over a large potential solution space. 

Evolution in a genetic algorithm is an iterative process that 

functions as a search through the potential solutions. The 

genetic algorithm initially randomly generates a number of 

candidate solutions which are evolved into better solutions 

with each iteration. Every iteration, the highest fitness 

candidate solutions are selected to produce the next 

generation of solutions. The selection process gives 

preference to the solutions that best meet the criteria.  

In application to diagnostics, genetic algorithms can be used 

to select sensor sets (combinations of sensors) based on the 

diagnostic table generated in using the FCM model. The 

criteria for preferencing a generated candidate sensor set is 

given to solutions with high coverage, and low sensor count, 

these can be adjusted and specified depending on the analysts 

own preferences (criteria). The selected solutions are 

combined and modified to produce the next generation. This 

process continues until the specified iteration limit has been 

reached. 

The fitness function used to assess sensor sets generated uses 

diagnostic coverage and number of sensors. There are many 

potential fitness functions based on strategies for sensor set 

optimization. A simple strategy is described below, with 

other strategies being variants that bias the fitness function to 

optimize for a specific level of coverage or number of 

sensors. 

𝑓(𝑐, 𝑠) = 𝑤𝑐 . 𝑓𝑐(𝑐) + 𝑤𝑠. 𝑓𝑠(𝑠)  (2) 

Where: 

𝑐 = coverage 

𝑠 = sensors in sensors set 

𝑓(𝑐, 𝑠) = fitness function 

𝑤𝑐 = 5, coverage weighting 

𝑓𝑐(𝑐) =
𝑐

100
 

𝑤𝑠 = 1, sensor weighting 

𝑓𝑠(𝑠) =
𝑠𝑚𝑎𝑥 − 𝑠

𝑠𝑚𝑎𝑥

 

𝑠𝑚𝑎𝑥 = maximum possible value of s (equal to the number of 

columns in the diagnostic table) 

 

Figure 4: Plot of potential fitness, dots represent generated 

Sensor Sets for an example system 

 

Analytical solution to this problem are possible, however 

with large / complex diagnostic tables, the time to solve these 

problems increases to the point where it is computationally 

impractical. 

Advantages of a genetic algorithm in this context are 

relatively low time requirement for analysis and the ability to 

produce both broad and specific results by manipulation of 
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the fitness function as a mechanism to change the analysis. 

The process will result in a list of Sensor Set's that are able to 

uniquely identify the failure responses found in the 

Diagnostic Table. 

2.4. Boolean Simplification 

Boolean simplification or logic optimization is a process to 

simplify a Boolean function into its smallest form via 

application of logic. 

In practice this allows the expression of failures and the 

sensor locations required to diagnose them to be expressed as 

a truth table. 

A broad definition of sensors as observable elements in the 

system, meaning a sensor can be either an onboard unit or a 

manual inspection point, this highlights the want for a 

minimal number of steps (inspections) to diagnose a specific 

failure (Kohda, Ohki & Inoue, 1991). 

The diagnostic rules serve two purposes: 

1. To confirm whether a specific failure has occurred 

2. To determine which failure has occurred 

Implemented by comparing rows against one another and 

finding the unique combinations within. A diagnostic rule is 

defined as the minimum number of sensor location that 

require observation to confirm the presence of a failure and 

to specifically distinguish a failure from all other failures. To 

that end, each diagnostic rule includes the locations that are 

unique for that failure when compared to each other failure’s 

response at that location. If a single location does not 

uniquely identify the failure, then a set of locations are used 

that can uniquely identify the failure. 

The diagnostic rules can be applied to the development of 

maintenance/detection instructions (such as those contained 

within a fault detection and isolation manual). This aids in 

sorting through and managing non-essential information and 

finding failures with fewer inspection steps. 

Steps in Boolean Minimization: 

1. Define functions for each failure based on the 

available sensors (the sensors identified by the 

genetic algorithm) 

a. Compare each failure with each other 

failure 

b. Find which inspection locations can be 

used to distinguish between each failure 

pairing 

c. The failure’s function is constructed by 

combining all the inspection locations 

from each failure pairing 

2. Use Boolean properties to reduce the functions to 

their smallest form 

3. Convert the functions to diagnostic rules 

2.5. Analytical Hierarchy Process (AHP) 

The Analytical Hierarchy Process (AHP) is a multicriteria 

decision-making tool used to evaluate both quantitative and 

qualitative criteria. The AHP arranges criteria and sub-

criteria into a hierarchical structure, similar to a family tree, 

in general these criteria can be anything that is comparable 

between the alternatives being compared (Saaty, 1990). In the 

context of engineering systems, criteria may include design 

parameters such as performance, cost, constraints, and so on. 

The purpose of this arrangement is to organise the most 

pertinent requirements into a series of simplified 

comparisons and rankings, followed by the synthesis of 

results. This process provides a traceable basis for the choices 

made that lead to a ranking the most important criteria and 

alternatives that are considered the “best-fit” to meet such 

criteria. 

As a method for decision making, AHP presents a framework 

for determining which sensors are best utilized from available 

options. 

2.6. Neural Networks 

Artificial Neural Networks (ANNs) or simply ‘Neural Nets’ 

(NN) are computing systems used to determine a solution by 

analysing large datasets without the use of traditional, task-

specific programming (Roemer, Byington & Schoeller, 

2007). These systems are loosely based on the concept of 

neurons in biological neural networks. 

Neural Networks consist of individual ‘artificial neurons’ 

called perceptrons (also known as sigmoid neurons). These 

perceptrons take in multiple binary inputs to produce a single 

binary output – either 0 or 1. This output is calculated with 

using weights in the form of real numbers to express the 

importance of each input to the output  

A typical layout for a neural net consists of three elements: 

• An Input Layer (Left-side) 

• Input Neurons (Hidden Layer) 

• Output Neurons (Right-side) 

By using a multi-layered neural net, multiple outputs act as a 

single input for perceptrons in the next layer. Learning 

algorithms can be used to tune weights and biases of a 

perceptron network which responds autonomously in 

response to external stimuli. 

The purpose of using Neural Networks in the context of 

diagnostics is to use a generated diagnostic set from a sensor 

analysis, use this dataset to ‘train’ a neural network which 

would then be able to identify the probability of a sensor 

giving a false reading or false alarm. 
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3. EXAMPLE / CASE STUDY 

Here a case study of the above methodology is presented. The 

case study features a Driveline System belonging to an 8-

wheel drive ground vehicle, such as a military armored 

personnel carrier. The Driveline has been developed to an 

expectable level for mid-preliminary design. The logical 

framework of the system has been determined and as such 

components can be modelled in terms of the functional 

properties they provide; however physical hardware has not 

been allocated or designed. 

3.1. Fuzzy Logic Applied 

3.1.1. Fuzzy Cognitive Maps 

The Driveline System has system inputs of compressed air 

(transferred through the airline), a control signal (to actuate 

the air input), and rotational torque (from the engine 

providing power to the wheels via differentials and 

gearboxes). 

The power into the system is split via a Transfer Case to two 

Driveshafts each leading to Differentials. The two 

Differentials (Differential Rear and Differential Front) 

supply the rear and front wheels with power (each 

Differential is responsible for 4 wheels). Whilst all 8 wheels 

are driven, the front 4 wheels are used for steering. 

The full Driveline System contains 29 components and is too 

large to graphically display here. Below is an example of a 

section of system in logical format and then devolved into a 

FCM diagram. 

The connections in the diagram are typically of a value of 1.0 

for directionally forward connections and -0.4 for 

directionally backward connections (referred to as 

feedbacks). This results in a FCM simulation that reaches an 

equilibrium (i.e. each failure injected into the system results 

in each flow property in the system reaching a constant 

response). 

 

Figure 5: Logical structure of a section of the Driveline. 

Displayed is the front right Planetary Gearbox delivering 

angular velocity to two wheels 

 

 

Figure 6: The logical structure is converted to a FCM 

diagram with strength of connection displayed on the 

connections. Dotted lines refer to connections leading to and 

from outside the diagram to other components in the 

Driveline 

 

A diagnostic table is derived from the whole Driveline 

System by injecting failures into the model via perturbation 

of a single flow property and then propagating it through the 

system. Simulation steps: 

1. Run FCM simulation with assumption of nominal 

behaviour represented by a value of 0.0 at each flow 

property concept. Note that the initial simulation 

does not include the perturbation vector 

(representing that no failures are being injected). 

2. Introduce single failure as a perturbation of 1.0 in 

either positive or negative direction. A positive 

perturbation is equivalent to an increase in the flow 

property, a negative perturbation is equivalent to a 

decrease in the flow property. For the purposes of 

this system every component is assumed to have one 

functional failure, a decrease or loss of flow. 

3. Run simulation until equilibrium is found. 

4. Compare equilibrium response to nominal value 

(0.0) of each flow property in the simulation. 

5. If the response is higher than the equilibrium point, 

the response is high, if lower the response is lower. 

6. Diagnostic table is built by running a simulation for 

each failure and capturing the responses across the 

system. Each failure is represented by a row in the 

table. 

3.1.2. Fuzzy Criticality Applied 

Each failure (taken from the list of FCM simulated failures) 

can be assigned criticality. The goal of performing a Fuzzy 

Criticality analysis (or any alternative criticality analysis) is 

to prioritize the failures that carry the highest risk in order to 

design the diagnostic capability so that these failures may be 

isolated when they occur/are occurring (Tay & Lim, 2006). 
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As an example of the Fuzzy Criticality concept, four 

components will be analyzed: 

- Driveshaft, which supplies the Differential Rear 

with power 

- Driveshaft 2, which supplies the Differential Front 

with power 

- Differential Rear, which transfers power to the four 

rear wheels via two gearboxes 

- Differential Front, which transfers power to the four 

front wheels via two gearboxes 

Fuzzy criticality containing the following parameters; 

Occurrence (Occ.), Causal Probability (CP), Apparent 

Occurrence (App. O), Severity (Sev.), Progression Rate (PR), 

Apparent Severity (App. Sev.), Difficulty of Detection 

(DoD), and Fuzzy Criticality. 

 

Table 2: Criticality inputs and outputs 
 

O
cc

. 

C
P

 

A
p

p
. 

O
 

S
ev

. 

P
R

 

A
p

p
. 

S
ev

. 

D
o

D
 

F
u

zz
y

 C
ri

ti
ca

li
ty

 

Driveshaft 2.5 
(L) 

10 
(H) 

2.5 
(L) 

6 
(M) 

9 
(VH) 

7.5 
(H) 

8 
(H) 

5 
(M) 

Driveshaft 2 2.5 

(L) 

10 

(H) 

2.5 

(L) 

10 

(VH) 

9 

(VH) 

9.2 

(VH) 

8 

(H) 

5 

(M) 

Diff. Rear 8 

(H) 

10 

(H) 

7.5 

(H) 

6 

(M) 

7 

(H) 

7.5 

(H) 

8 

(H) 

7.5 

(H) 

Diff. Front 8 

(H) 

10 

(H) 

7.5 

(H) 

10 

(VH) 

7 

(H) 

9.2 

(VH) 

8 

(H) 

9.2 

(VH) 

Where: 

L = Low, M = Medium, H = High, VH = Very High 

The allocations of the raw criticality metrics (Occ., CP, Sev., 

PR, and DoD) are based upon historical knowledge of similar 

systems given the preliminary stage of design. The logic 

behind the allocations: 

Occ. – Occurrence is allocated as low to the Driveshafts as 

known Driveshaft failures (primarily stress and torsional 

failures) are low occurrence under assumed operation. The 

Differentials experiencing wear alongside fatigue are prone 

to lower time to failure. 

CP – The High CP value indicates direct causality with the 

end-effect. 

App. O – Is produced as a mapping between Occ. and CP. 

 

 

Figure 7: Mapping between Causal Probability and 

Occurrence to obtain Apparent Occurrence 

 

Sev. – The front wheels providing steering mean the 

associated items (Driveshaft 2 and Differential Rear) are of 

higher relative criticality. 

PR – As the primary cause of failure in the Differentials is 

wear as compared to stress in the Driveshafts, the 

Differentials experience a relatively slower progression to 

complete failure. 

App. Sev. – Is produced as a mapping between Sev. and PR. 

 

Figure 8: Mapping between Progression Rate and Severity 

to obtain Apparent Severity 

 

DoD – All failures experience a similarly difficulty of 

detection. 

Fuzzy Criticality – Is produced as a mapping between App. 

O, App. Sev., and DoD. 
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Figure 9: Mapping between Apparent Occurrence and 

Difficulty of Detection for the case of High Apparent 

Severity to obtain Fuzzy Criticality 

 

Figure 10: Mapping between Apparent Occurrence and 

Difficulty of Detection for the case of Very High Apparent 

Severity to obtain Fuzzy Criticality 

 

Given the criticality analysis it is established that failures of 

the Differential Front component should specifically be 

covered by the diagnostic system being designed. Similarly, 

failures of the Differential Rear are of relative importance. 

These are the important deliverables from the Fuzzy 

Criticality analysis. 

3.2. Genetic Algorithm Applied 

The genetic algorithm is set-up to generate sensor sets for the 

system based on the diagnostic table produced via FCM and 

utilizing information from the Fuzzy Criticality analysis. 

Initially, the genetic algorithm is run with the fitness criteria 

as default (equations mentioned in prior section). This will 

generate sensor sets with maximal coverage and minimal 

sensor location. Using this fitness, it is found that in order to 

achieve 100% coverage 16 sensors are required. 

Fitness equation for maximum coverage and minimum 

sensor count: 

𝑓(𝑐, 𝑠) = 𝑤𝑐 . 𝑓𝑐(𝑐) + 𝑤𝑠. 𝑓𝑠(𝑠)  (3) 

Table 3: Summary of fitness calculation for sensor set 

generation targeting 100% coverage 

Term Value Description 

𝑤𝑐 5 Coverage weighting 

𝑓𝑐(𝑐) 1 Coverage function, =
𝑐

100
 

𝑤𝑠 1 Sensor count weighting 

𝑓𝑠(𝑠) 0.448276 Sensor count function,  

=
𝑠𝑚𝑎𝑥 − 𝑠

𝑠𝑚𝑎𝑥

 

𝑠𝑚𝑎𝑥 29 Maximum number of sensor 

locations. Based on the model’s 

table this is 29 (equivalent to the 

number of columns) 

𝑐 100 Coverage achieved by the sensor 

set generated 

𝑠 16 Sensor locations in the sensor set 

𝑓(𝑐, 𝑠)𝑚𝑎𝑥 6 Maximum theoretical fitness value 

(if 0 sensors and 100% coverage) 

𝑓(𝑐, 𝑠) 5.448276 Fitness value, based on sensor set 

generated 

𝑓(𝑐, 𝑠) % 90.8046 Percentage of maximum fitness 

 

Limiting the number of potential sensor locations to 8 via 

adjusting the fitness, and the best possible coverage (with 8 

sensor locations) is found to be 65.52% (equivalent to x out 

of y failures being covered). 

In calculating fitness when a specific number of sensors is 

being targeted the same top-level fitness function is used 

however the coverage weighting is reduced to 1 and changes 

to the sensor count function are made as follows: 

Table 4: Changes to the sensor count function 

Term Value Description 

𝑓𝑠(𝑠) 1 Sensor count function,  

=
𝑝(𝑠)

𝑝(𝑠𝑡𝑎𝑟𝑔𝑒𝑡)
 

𝑝(𝑠) 0.3982 Probability density function for sensor 

set generated,  
= 𝑃𝐷𝑁𝑜𝑟𝑚𝑎𝑙 (𝑠, 𝑠𝑡𝑎𝑟𝑔𝑒𝑡 , 𝑠𝑟𝑎𝑛𝑔𝑒) 

𝑝(𝑠𝑡𝑎𝑟𝑔𝑒𝑡) 0.3989 Probability density function for target 

number of sensors, =
𝑃𝐷𝑁𝑜𝑟𝑚𝑎𝑙 (𝑠𝑡𝑎𝑟𝑔𝑒𝑡 , 𝑠𝑡𝑎𝑟𝑔𝑒𝑡 , 𝑠𝑟𝑎𝑛𝑔𝑒) 

𝑠𝑡𝑎𝑟𝑔𝑒𝑡 8 Sensor count targeted 

𝑠𝑟𝑎𝑛𝑔𝑒 1 Range (± no. of sensors) 
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However, if a maximum of 8 sensor locations are going to 

cover failures of the two differential components, then only a 

51.72% coverage is possible. Fitness is calculated in the same 

way as for the limited number of sensors strategy, however 

results are generated so that every sensor set created will 

contain the nominated failures of the Differentials. 

When producing sensor sets via a genetic algorithm each 

fitness strategy can produce a multitude of sensor sets that fit 

the criteria, the differences between the sets being the sensor 

locations used and the failures being covered. 

3.3. Boolean Simplification Applied 

The output of the Genetic Algorithm is a sensor set with a 

number of identified required sensors to diagnose failures in 

the system. This can be displayed as a cut-down version of 

the diagnostic table with the unused sensor locations 

(columns) being removed. 

In order to find the minimum number of sensors (or 

observations) required to diagnose each failure a process of 

Boolean minimization is undertaken (Kohda et al, 1991). 

To simplify the example three failures and their sensor 

locations will be used to show the process. 

The following cut down prop table was output from the GA 

and the first three failures will be used as an example, each 

sensor location has been assigned a letter: 

Table 5: Sensor set specific diagnostic table 
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0 0 -1 1 1 1 -1 -1 

 

 

Steps for developing diagnostic rules using Boolean 

expressions: 

1. Define functions for each failure based on the 

available sensors (the sensors identified by the 

genetic algorithm) 

a. Compare each failure with each other 

failure 

b. Find which inspection locations can be 

used to distinguish between each failure 

pairing 

𝐷12 = {𝐷, 𝐸, 𝐹, 𝐺, 𝐻} 

𝐷13 = {𝐶, 𝐷, 𝐸, 𝐹, 𝐺, 𝐻} 

𝐷23 = {𝐶, 𝐷, 𝐸, 𝐹} 

c. The failure’s function is constructed by 

combining all the inspection locations 

from each failure pairing 

𝐹1 = (𝐷 ∨ 𝐸 ∨ 𝐹 ∨ 𝐺 ∨ 𝐻) ∧ (𝐶 ∨ 𝐷 ∨ 𝐸 ∨ 𝐹 ∨ 𝐺 ∨ 𝐻) 

𝐹2 = (𝐷 ∨ 𝐸 ∨ 𝐹 ∨ 𝐺 ∨ 𝐻) ∧ (𝐶 ∨ 𝐷 ∨ 𝐸 ∨ 𝐹) 

𝐹3 = (𝐶 ∨ 𝐷 ∨ 𝐸 ∨ 𝐹 ∨ 𝐺 ∨ 𝐻) ∧ (𝐶 ∨ 𝐷 ∨ 𝐸 ∨ 𝐹) 

2. Use Boolean properties to simplify the functions to 

their smallest form 

𝐹1 = 𝐷 ∨ 𝐸 ∨ 𝐹 ∨ 𝐺 ∨ 𝐻 

𝐹2 = (𝐶 ∧ (𝐺 ∨ 𝐻)) ∨ 𝐷 ∨ 𝐸 ∨ 𝐹 

𝐹3 =  𝐶 ∨ 𝐷 ∨ 𝐸 ∨ 𝐹 

3. Convert the functions to diagnostic rules 

𝐼𝐹 𝐷 = −1 𝑂𝑅 𝐸 = −1 𝑂𝑅 𝐹 = −1 𝑂𝑅 𝐺 = 0 𝑂𝑅 𝐻 = 0  
𝑇𝐻𝐸𝑁 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙 𝐹𝑟𝑜𝑛𝑡 ℎ𝑎𝑠 𝑓𝑎𝑖𝑙𝑒𝑑 𝐿𝑜𝑤 

𝐼𝐹 (𝐶 = 0 𝐴𝑁𝐷 𝐺 = −1 𝑂𝑅 𝐻 = −1)𝑂𝑅 𝐷 = 0 𝑂𝑅 𝐸
= 0 𝑂𝑅 𝐹 = 0   
𝑇𝐻𝐸𝑁 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙 𝑅𝑒𝑎𝑟 ℎ𝑎𝑠 𝑓𝑎𝑖𝑙𝑒𝑑 𝐿𝑜𝑤 

𝐼𝐹 𝐶 = −1 𝑂𝑅 𝐷 = 1 𝑂𝑅 𝐸 = 1 𝑂𝑅 𝐹 = 1   
𝑇𝐻𝐸𝑁 𝐷𝑟𝑖𝑣𝑒𝑠ℎ𝑎𝑓𝑡 ℎ𝑎𝑠 𝑓𝑎𝑖𝑙𝑒𝑑 𝐿𝑜𝑤 

This process is applied to each entire sensor set’s diagnostic 

table yielding rules for diagnosis for each covered failure. 

3.4. Analytical Hierarchy Process (AHP) Applied 

The Analytical Hierarchy Process is used to select the best 

sensor for the identified locations from the GA analysis. 

Sensors are selected from a library of candidate sensors based 

upon the preferences of the analyst, those preferences being 

captured in the AHP framework. 

For this example, a set of sensors will be assessed in terms of 

their applicability to sensing the rotational motion of the 

Driveshaft. The properties of interest are the cost, size, and 

power requirements of the sensors. 
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A difficulty in this process is finding accurate sensor data as 

data supplied by vendors is typically incomplete or 

incomparable. As such the properties will be assessed in 

terms of a qualitative taxonomy, which itself will be ranked 

using AHP. The qualitative taxonomy and general 

impressions of each type of sensor are derived from a 

Fleming (2001) paper and will be used as an example of the 

subjective information inherent in these types of problems. 

The purpose of AHP is to bring traceability and objectiveness 

to the decision making. 

The first step in AHP is to establish candidates (also known 

as alternatives) and list the properties that will be compared. 

Each property for each candidate sensor has a value assigned 

to it (in this case all values are qualitative). Candidate sensors 

are Inductive (1), Wiegand Effect (2), Hall Effect (3), 

Magnetoresistor (4), AMR Magnetoresistive (5), and GMR 

Magnetoresistive (6). 

Table 6: Sensor candidates with criteria values 

Criteria Sensor Candidates 
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The next step is to get relative rankings between each 

criterion in terms of the priority they should be given, the 

greater the priority, the higher the weighting for the criteria 

in deciding on the candidate sensor. 

Similarly, rankings are established for the level of impact that 

each property value has relative to the other potential values. 

The inputs to the rankings are based on individual or 

organizational weightings. 

 

Figure 11: Relative importance between the three criteria is 

input. Here Size is being weighted as 1.25x more important 

than Cost 

 

Figure 12: Inputs for Cost weightings 

 

Figure 13: Input for Size weightings 

 

 

Figure 14: Inputs for Power weightings 

 

Each pairwise weighting matrix is normalized via the 

following procedure in order to get an importance of each 

criteria/value as relative to the other criteria/values in the 

matrix. 

To obtain normalized outputs from each matrix the following 

steps are followed: 

1. Square the matrix 

2. Sum each value then normalize 

3. Create eigenvectors after each iteration 

4. The previous three steps are repeated until the eigenvector 

converges – when this occurs the result is recorded 

Table 7: Normalized criteria weightings 

Criteria 

Normalized 

Weighting Ranking 

Cost 0.388052448 2 

Size 0.42133456 1 

Power 0.190612992 3 

Table 8: Normalized cost values 

Cost Values Normalized 

Weighting 

Ranking 

Low 0.459958088 1 

Medium 0.318917126 2 

High 0.221124785 3 
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Table 9: Normalized size values 

Size Values Normalized 

Weightings 

Ranking 

Small 0.4 1 

Small/Moderate 0.333333333 2 

Moderate 0.266666667 3 

Table 10: Normalized power values 

Power Values Normalized 

Weightings 

Rankings 

Passive 0.75 1 

Active 0.25 2 

 

To obtain an overall ranking of the candidate sensors the 

normalized weightings of the criteria values are used to 

replace the qualitative terms in the original candidate-criteria 

table. The criteria weightings matrix is multiplied with that 

table and each sensor candidate is given a ranking based on 

the summation of its constituent rankings, yielding the 

following results. 

Table 11: Ranking of sensor candidates 

Sensors 

1
 

2
 

3
 

4
 

5
 

6
 

AHP 

Outputs 

0.46 0.34 0.39 0.28 0.28 0.28 

Results 1 3 2 4 4 4 

 

Based on the input selection criteria and the weightings 

provided it can be shown that the Inductive sensor is the most 

appropriate for sensing rotational motion at the Driveshaft. 

3.5. Neural Nets Applied 

The system model has been created, diagnostic rules (in 

indicating sensor locations) have been generated and sensors 

have been selected for their specific use case. Once complete, 

an ANN can be configured. A training session is run which 

continues until the number of cycles converge to the required 

result. Finally, the trained ANN displays the fault responses 

with its associated symptom responses.  

The item of interest is the failure of the Driveshaft 

component, and its effect on Driveshaft 1 and Wheel 

components (RL1 & RR1) downstream. 

Having generated sensor sets and diagnostic rules the ANN 

can now be trained by setting the number of hidden nodes 

(input & output nodes are fixed based on the number of 

sensor locations in the system). 

Failure of the neural net to converge is indicated, and an 

analyst can repeat heuristic process until the ANN training 

yields a successful result. Upon successful completion of 

ANN training, the analyst then runs the neural net which 

outputs detected fault responses (red – UP, blue – DOWN, 

green – NO CHANGE) and their correlated symptom 

responses. 

 
Figure 15: Running ANN to derive fault responses 

associated with symptom responses 

 

Finally, different steps can be cycled through which are 

different configurations of faults and corresponding 

symptoms by using the trained ANN. 

By observing the failure responses indicated by sensors, we 

can ideally detect which failures occur. There are cases where 

syndromes (responses of sensors) are not observed in a 

diagnostic set – this could be due to faulty sensors and would 

prevent a correct diagnostic observation.  

The purpose of the Neural Network in this context is to 

determine, based on current failure responses, what the most 

probable failure would be during system operation. 

Diagnostic rules and Neural Network outputs should provide 

the same diagnosis when all sensors are working, while 

degraded states where sensors are detecting inconsistent 

failure responses are identified by the Neural Network 

outputs and a diagnosis made based on incomplete 

information. 

4. CONCLUSIONS 

Identified is a process for the design and development of 

diagnostic capability beginning in early stage design. The 

basis for diagnostic design begins with the formation of a 

model to act as a framework for capturing failures and 

associated observables. Answering questions such as where 

sensors should be placed, how to diagnose a failure when it 

occurs, and which physical hardware should be selected can 

be answered using a set of complementary tools (genetic 

algorithm, Boolean simplification, and AHP respectively). 
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Concluding with a set of diagnostic rules that are applied 

through the usage of a trained Neural Network. 
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