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ABSTRACT

This study introduces an integrated framework for 

conceptualizing the design of negative stiffness honeycomb 

(NSH) structures, specifically considering the durability and 

performance of their unit cells. Unlike conventional energy-

absorbing structures that rely on plastic deformation, NSH 

offers a promising alternative for reusable energy absorption

(EA) and high initial stiffness, making it suitable for a wide 

range of engineering applications. The research considers the 

variability in characteristics of NSH based on the shape of the 

configured negative stiffness beam (NSB), selecting a single 

curved-beam unit cell as the focal point. Extensive testing, 

including quasi-static and cyclic compression tests, is 

conducted on NSH unit cell fabricated using polylactic 

acid/polyhydroxy alkenoate (PLA/PHA) filament, to analyze 

performance under stress and to assess degradation over time. 

Central to the study is the use of multi-objective optimization 

(MOO) to explore the trade-off between performance and 

operational durability, thereby emphasizing the significance 

of degradation in the design process. The results demonstrate 

the potential for NSH structures, particularly in terms of their 

reusability and efficiency, highlighting the viability of 

incorporating durability considerations in the early stages of 

design, especially for structures intended for additive 

manufacturing processes.

1. INTRODUCTION

NSH structures exhibit unique characteristics when 

compared to traditional hexagonal honeycombs. While   

hexagonal honeycombs effectively absorb energy through 

plastic deformation, they fall short in terms of reusability 

post-deformation. (Correa et al., 2015) NSH structures, 

composed of NSBs, stand out for their recoverable energy 

absorption, as highlighted by (Klatt et al., 2013; Correa et al., 

2015), their high initial stiffness (Correa et al., 2015), and

their capabilities in impact isolation (Shan et al., 2015; 

Debeau et al., 2018), creating opportunities for their use in 

many engineering fields. 

Many studies have been conducted on the characteristics 

of such NSBs. Qiu et al. (2004) studied a bistable mechanism 

with a curved beam, whereas Klatt et al. (2013) demonstrated

negative stiffness behavior and recoverable energy 

absorption through vertical axial compression in an 

additively manufactured structure with a curved beam.

Correa et al. (2015) optimized the dimensions of NSH, 

achieving a structure with similar relative density and force 

threshold as traditional hexagonal honeycomb, but with 

better energy absorption per unit mass, closely matching the 

performance of the hexagonal honeycomb. Chen et al. (2021) 

showed that NSH, comprising curved beams of varying

thicknesses, not only improved energy absorption per mass 

but also enhanced shock absorption and vibration isolation

compared to uniform-thickness NSH. Zhang et al. (2021) 

proposed a lattice and hollow structure for the curved beam, 

showing better energy dissipation than conventional curved 

beams of the same volume.  Liu et al. (2020) used machine 

learning methods to achieve enhanced results in curved beam 

thickness optimization. In addition, research on cylindrical 

structure (Wang et al., 2020), cubic structure (Ha et al., 2019), 

and composite negative stiffness structure (Chen et al., 2020)

shows various negative stiffness structures and different 

features depending on the shape and dimensions of NSBs.

A key feature of negative stiffness structures like NSH, 

distinguishing them from other structures, is their reusability.

The studies in Correa et al. (2015), Tan et al. (2019), and 
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Chen et al. (2020) show the properties of negative stiffness 

structures, such as force thresholds and energy absorption or 

dissipation under repeated compression. Chen et al. (2020) 

shows that the degree of reduction in force threshold for 

cyclic compression depends on the dimensions of the NSB's 

thickness. However, there has been limited research on 

quantifying the performance reduction of negative stiffness 

structures relative to the NSB dimensions under cyclic 

compression, which is crucial for predicting the operational 

end of life (EOL) of these structures.

To address this gap, we propose an integrated design 

framework that considers both the performance and 

operational aspects of negative stiffness structures like NSH, 

including performance degradation. In this study, we targeted 

the unit cell of NSH for design and manufactured it using 

PLA/PHA filament through 3D printing. To consider both

performance and operational aspects, we conducted quasi-

static compression tests and cyclic compression tests to 

acquire data. Based on this data, we developed a model to 

estimate the performance and EOL of the NSH unit cell 

according to its dimensions. Finally, through the Multi-

objective Optimization (MOO) design process considering 

the estimated performance and EOL of the NSH unit cell, we 

not only confirmed the relationship between the structural 

performance and operational aspects but also provided

insights into the design considering both aspects.

2. DESIGN OF EXPERIMENT 

The unit cell of NSH, as illustrated in Figure 1, was 

employed in this study. The structure of the curved-beam is 

assumed to be based on Eq. (1). (Qiu et al., 2004) The design 

variables defined for this structure are the thickness (t) and 

central height (h) of the curved beam.

Figure 1. Geometry and dimension of unit cell of NSH

!("#) = $2 %1 & !'* +2, "#" -. (1)

Considering that Zhakatayev et al. (2020) and Tan et al.

(2019) have confirmed that the influence of the thickness (/)
and height ($) of NSB on the strength, absorbed energy per 

unit mass, and force threshold of negative stiffness structure, 

and Qiu et al. (2004) have established a relationship between

force-displacement of the curved-beam and geometric 

parameters as per Eq. (2),

0 = 3,4562 78 978 & 32 : ;1< & <356>978 & 32 & ;1< & <356> (2)

Klatt et al. (2013) observed that negative stiffness initiates 

when the numerical value of 5(= $?/) reaches 1.5, when 5
exceeds 2.31, the bi-stable characteristics become evident. 

Therefore, t and h can be considered as important design 

factors for the negative stiffness structure like Fig 1.

Therefore, we defined the range of / as 1@2[AA] B / B3@2[AA] and $ as 1@2[AA] B $ B C@<[AA]. Subsequently, 

we sampled samples using the design of experiment (DOE) 

method to train and test the surrogate models and 

classification models for the characteristics of NSH unit cell, 

which will be discussed later in section 4 and 5. First, 25 

samples were sampled for the training data using the full 

factorial design (FFD) method. For the test data, 10 samples 

were sampled through the optimal Latin hypercube design 

(OLHD) method. The results are illustrated in Figure 2.

Figure 2. Result of design of experiment

3. FABRICATION AND TEST

We manufactured NSH unit cells with dimensions 

obtained through the DOE process using a fused filament 

fabrication (FFF) 3D printer and PLA/PHA filament. Liu et 

al. (2023) demonstrated that variations in manufacturing 

features, such as building direction, fill pattern, and wall 

layers influence printing quality and performance of the NSH 

cell through the FFF method. Therefore, we considered three 

different infill angles for 3D printing. We utilized Simplify 

3D software for 3D printing, and detailed printing settings 

can be found in Table 1.

Material Properties

In this study, Colorfabb's PLA/PHA filament was utilized 

for fabricating NSH unit cell. Research conducted by 

Morettni et al. (2022), Letcher & Waytashek et al. (2014), 

Zouaoui et al. (2021), and Gonabadi et al. (2020) have

confirmed that the physical properties of FFF 3D printing can 
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vary depending on manufacturing parameters such as infill 

angle or pattern. Therefore, to account for these 

manufacturing characteristics, five specimens were printed 

with three different infill angles (0°, 45°, and 90°) to assess 

the physical properties of the PLA/PHA filament through 

ASTM D638. An example of specimens is depicted in Figure 

3, and the result of ASTM D638 are presented in Table 2.

Figure 3. ASTM D638 specimen with three angles of infill

In Table 2, the average values and standard deviations of 

the ASTM D638 test results show that the average values of 

Young's modulus, yield strength, and elongation decreases as 

the infill angle increases from 0° to 45° and 90°. This is 

because as the infill angle increases, the force applied to the 

specimen and the direction of the stacked filament become 

more closely perpendicular. Therefore, when manufacturing 

the unit cells of NSH through 3D printing, we set the infill 

angle to 0° and produced 5 unit cells of NSH per sample. An 

example is illustrated in Figure 4.

Figure 4. A unit cell for NSH with D° infill angle

Compression Test for Data Acquisition

Quasi-static compression tests and cyclic compression 

tests were conducted to acquire experimental data,

considering the performance and operational aspects of the 

NSH's unit cell. In both tests, compression was applied by 

inducing a displacement of 2$ to the unit cell of NSH. The 

compression test equipment comprised a JSV-1000 stand and 

a HF-100 force gauge. Additionally, consistent compression 

test conditions were maintained throughout by securing both 

ends of the structure using a support structure, as depicted in 

Figure 5.

Figure 5. Compression test equipment and environment

However, different types of NSH unit cells were utilized in 

the two types of tests, as shown in Figure 6. The structure 

depicted in Figure 6 represents a configuration designed for 

quasi-static compression test. Unlike Figure 1, an additional 

structure is incorporated at the compression center of the T-

shaped support to minimize asymmetric buckling mode in the 

curved-beam behavior. Conversely, for the cyclic 

compression test, these additional structures may interfere 

with the cyclic compression process, hence a configuration 

similar to Figure. 1 was employed.

Table 1. 3D Printing setting.

Nozzle Temperature 210 E
Bed Temperature 60 E

Infill Density 100 %

Infill Pattern Rectilinear

Infill Angle [D°F <G°F HD°]
Layer height 0.2 mm

Printing Speed 50 mm/s

Cooling Fan Speed 100 %

Building direction Flat

Material PLA/PHA

Table 2. Material properties according to infill angles

Infill 

angle

Young’s 

Modulus 

[GPa]

Yield 

Strength 

[MPa]

Elongation 

[%]

Poisson’s 

Ratio

D° 2.84

(0.059)

52.11

(0.548)

5.84

(1.629)

0.34

(0.005)<G° 2.59

(0.019)

37.86

(0.833)

5.75

(1.561)
-HD° 1.99

(0.062)

16.48

(1.250)

1.65

(0.366)
-
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Figure 6. Shape of the NSH unit cell used in quasi-static 

compression test

3.2.1. Quasi-static Compression Test

To assess the performance aspect of NSH unit cell, a quasi-

static compression test was conducted at a speed of 10 

mm/min. The obtained force-displacement data were 

preprocessed using a moving average filter to generate five 

force-displacement curves for each sample, as illustrated in 

Figure 7.

Figure 7. Force-displacement curve for quasi-static 

compression test

Then, specific energy absorption (SEA) was obtained by 

dividing Eq. (4) by Eq. (3), with the average SEA value 

designated as the representative value for the corresponding 

sample.

A = IJ KLM (!("N) : /)7OP
Q R & LM !("N)P

Q 7ORS (3)

TU = LM V(O)7O6W
Q R (4)

These data were also used to examine the occurrence of 

negative stiffness for five samples of each design point 

employed in the experiments, as detailed in Section 5. The 

occurrence of negative stiffness was assessed using Eq. (5), 

as established by Qiu et al. (2004), and Eq. (6) based on the 

force-displacement data.

OXYZ = <3$ (5)

\A^#_`_abcdV(O)e & V(OXYZ)) f D g hij^/kli */kVVmi**'/$inOk*i g h'm & hij^/kli */kVVmi** (6)

This allowed us to classify whether negative stiffness 

occurred based on OXYZ in the force-displacement curve.

3.2.2. Cyclic Compression Test

In this experiment, 30 cycles of compression were 

repeatedly applied at a speed of 60 mm/min. The force-

displacement data obtained underwent the same data 

preprocessing as the quasi-static compression test. The 

average force-displacement curve for each sample is depicted 

in Figure 8. Using mean force-displacement data, EA for each 

cycle was calculated using Eq. (4); mean force-displacement 

data was also utilized as the health index (HI) for estimating 

the end of life (EOL), a topic discussed in detail in Section 6.

Figure 8. Reactive force for each cycle of the cyclic 

compression test

4. SURROGATE MODEL

A surrogate model replaces a high-cost test-based or 

simulation model with a relatively low-cost alternative. By 

creating a surrogate model for a specific factor of interest, 

predictions can be made without the need for costly tests or 

simulations for any given sample. In this study, the Kriging 

method, implemented in the PIAnO 2024 software, was used 

to develop a surrogate model for the performance and 

operational factors of the NSH unit cell. This approach 

enabled the prediction of the values of these factors for a 

specific design point.

Kriging

Kriging is one of the most widely used methods for 

constructing a surrogate model or metamodel, also known as 

Gaussian process regression. Based on the references to 
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Forrester et al. (2008) and Kim et al. (2017), the explanation 

of Kriging would be as follows: In Kriging, the predicted 

output of a Kriging model is typically represented as Eq. (7).op(q) = r(q)st : u(q) (7)

Here, r(q)st represents the global function, and u(q)
represents the local departure. In our study, q denotes the 

dimensions of the NSH unit cell, such as / and $, while op
represents the value we want to predict, such as SEA. We 

have defined the correlation function for two points (qF q') as

shown in Eq. (8).

v(qF qw) =xyz{ (&|Y}#Y & #Yw}~@�)8Z�
Y�~ (8)

where m7l indicates the number of design variables,

and |Y represents the parameter of the correlation function.

Other types of covariance functions can be found in 

Rasmussen & Williams (2006) and Xu (2020). Therefore, the 

correlation matrix is expressed as shown in Eq. (8), and the 

correlation between the point x to be predicted and the 

observed points is expressed as shown in Eq. (9).

� = �v(q�F q�) � v(q�F q�)� � �v(q�F q�) � v(q�F q�)� (9)

� = �v(q�F q)�v(q�F q)� (10)

To estimate the parameters of the Kriging model, t, �6 ,

and �, we use maximum likelihood estimation (MLE). So, 

the logarithmic likelihood can be expressed as Eq. (11).��d�(�}tF *6)e= &h2 ��(2�) & h2 ��(*6) & 12 ��(}�})& (� & �t)s��~(� & �t)2*6
(11)

Taking the derivatives of Eq. (11) for t and �6 respectively, 

and setting them to zero, yields the estimation results via 

MLE as shown in Eqs. (12) and (13).

t� = (�s��~�)�~(�s��~�) (12)

*�6 = (� & �t)s��~(� & �t)2h (13)

The parameter $ is determined by substituting Eqs. (12) and 

(13) into Eq. (11), and the resulting value is maximized by 

the optimization algorithm (Differential evolution, DE), as

expressed in Eq. (14). 

| = ^njA^# %&h2 ��(*�6) & 12 }�}. (14)

Given a vector �p = [�sF op ]s , which includes the new 

predicted value op at q, the correlation matrix can be written 

as Eq. (15).

�� = + � ��s 1- (15)

Based on this, we obtain the logarithmic likelihood, as shown 

in Eq. (16). ��(�)= &h2 ��(2�) & h2 ��(*�6) & 12 ��d����e& ( �p & �t�)s���~( �p & �t�)2*�6
(16)

Differentiating Eq. (16) with respect to op and setting it to zero, 

the final output of a Kriging model is expressed as Eq. (17):

op(q) = r(q)st� : �(q)s��~(� & �t�) (17)

SEA Prediction Model

We formed a surrogate model for SEA to consider the 

performance aspect of the NSH unit cell. To do this, we first 

performed a quasi-static compression test on the 25 samples 

collected by the FFD method, with 5 samples per test point.

The average SEA results for each sample were successfully 

obtained.

Figure 9. Response surfaced of Scaled �TUX��8
Prior to creating the surrogate model using 25 datasets, we 

set the design variables of the NSH unit cell, / and $, as the 

inputs for the surrogate model, with �TUX��8 as the output. 

Both input and output data were scaled to have values 

between 0 and 1 using min-max scaling. Finally, we set the 

global function type to constant, and the results of this 

surrogate model are depicted in Figure 9. As shown in Figure 

9, �TUX��8 tends to increase as the values of the design 

variables / and $ increase. The root mean square error 

(RMSE) for this surrogate model was computed using Eq. (18) 

with 10 test data points, resulting in an RMSE of 0.0276.
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Energy Absorption over Cycles Prediction Model

Similar to Section 4.2, Kriging was utilized to generate

surrogate models for predicting EA over the compression 

cycle using average force-displacement data from about 25 

samples collected via FFD method. 

Initially, EA for each compression cycle was computed 

using Eq. (19):

TU���P� = LM V���P�(O)7O6W
Q R (19)

Following this, it was assumed that there was no degradation 

in the NSH unit cell prior to cyclic compression test, and Eq. 

(20) was used to scale based on 1 cycle of EA as a reference.

TU�� = TU���P�TU ~ ���P� (20)

An example of TU�� is shown in Figure 10, where it is crucial 

to note that for any sample, TU�� is 1 at 1 cycle. TU�� was 

used as the HI for estimating EOL.

Figure 10. Scaled EA over cycles

The TU�� was further processed by Eq. (21) for samples with 

a TU�� exceeding 0.9 at 30 cycles:

�TU�� = 1F V'n !o!"i = 1TU�� = TU���~ & }TU�� & TU���~}F '/$inOk*i (21)

The input data, consisting of / and $, was used to train the 

model, aiming to predict TU�� for a specific cycle. Unlike 

the surrogate model for �TUX��8 , only min-max scaling was 

applied to the input data, and a simple quadratic function was 

utilized as the global function to construct the surrogate 

model. The corresponding response surface for this is shown 

in Figure 11.

Figure 11. Response surfaced of TU�� at cycle 2

The surrogate model predicts TU�� for each cycle, which is 

then utilized to estimate the EOL for NSH unit cells. This will 

be discussed in detail in Section 6.

5. CLASSIFICATION MODEL

A classification model was developed based on the 

findings discussed in Section 3.2.1, where the design of NSH 

unit cells exhibits negative stiffness depending on certain 

design variables. Previous studies by Shahan et al. (2012), 

Morris et al. (2018), and Matthews et al. (2016) demonstrated

that a set-based approach using the Bayesian network 

classifier method can be used to explore the boundaries of the 

design space and identify designs that meet specific

performance criteria. Based on this, we utilized the Bayesian 

classifier as a classification model to determine the presence 

of negative stiffness. We formed the classification model 

using the results from quasi-static compression tests on 25 

samples. Furthermore, this classification model was used as 

a constraint in the MOO design process, which will be 

discussed in detail in Section 7.

Bayes classifier

The results from all five test points in the quasi-static 

compression test were incorporated into the Bayesian 

classifier model. Specifically, the prior probability, as 

defined by Eq. (22) from Shahan et al. (2012), was 

established based on the frequency of occurrence of negative 

stiffness.

  ¡(!�¢) = h�¢ : 1h : 2¡(!��¢) = h��¢ : 1h : 2 (22)

For the likelihood, multivariate kernel density estimation 

was employed as described by Scott (2015) and can be 

expressed using Eq. (23)

£¤�T = ¥1h¦do§¨�ZFY & o©¨ª�FYe�
Y�~ (18)
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«¬­
¬® ¡(q}!�¢) = 1h�¢ ~̄F�¢�¯�cF�¢¦ \x ±L#² & #Y²²̄ R�c

²�~ ³�´µ
Y�~¡(q}!�¶8��¢) = 1h��¢ ~̄F��¢�¯�cF��¢¦ \x ±L#² & #Y²²̄ R�c

²�~ ³�´´µ
Y�~

(23)

The Gaussian kernel K is used, and the bandwidth ¯ values 

are calculated using Eq. (24):

«¬­
¬® ²̄F�¢ = *² � <(hZ : 2)h�¢·~?(�c¸4)

²̄F��¢ = *² � <(hZ : 2)h��¢·~?(�c¸4)
(24)

The posterior probabilities for the two classes are given by 

Eq. (25).

� ¡(!�¢}q) = ¡(!�¢)¡(q}!�¢)¡(!��¢}q) = ¡(!��¢)¡(q}!��¢) (25)

¹~¡(!�¢)¡(q}!�¢) & ¹6¡(!��¢)¡(q}!��¢) f D (26)

Then, the decision rule for class for classifying a sample 

regarding the occurrence of negative stiffness is defined by

Eq. (26) below. According to the study by Shahan et al. 

(2012), it has been confirmed that the loss factor ¹~ and ¹6
can shift the decision boundary of the classifier. Therefore, 

setting ¹~ = D@CC , ¹6 = D@3< accounts for cases where

negative and non-negative stiffness may occur 

simultaneously in the samples. This setting allows the 

classification of such samples into the class indicating the 

occurrence of negative stiffness. With ¹~ = D@CC and ¹6 =D@3<, the difference between the two posterior probabilities 

is illustrated in Figure 12.

Figure 12. Difference between the two posterior probabilities

6. PREDICTING EOL OF NSH UNIT CELL

In order to consider the operational aspects of the NSH unit 

cell, prognostics methods were utilized to estimate the EOL. 

According to Kim et al. (2017), prognostics methods can be 

categorized into physics-based and data-driven approaches. 

Kim et al. (2017) also introduced nonlinear least square 

(NLS), Bayesian method (BM), and particle filter (PF) within 

physics-based prognostics. In this study, the NLS method 

demonstrated by Kim et al. (2017) was used to estimate the 

EOL by considering degradation, as shown in Figure 10,

through TU��, which serves as the HI of the NSH unit cell.

First, to estimate the EOL via NLS, the degradation 

equation was defined as Eq. (27):º = i#|d&}»~} ¼ (!o!"i & 1)½¾e (27)

The parameters »~ and »6 were estimated using the 

'lsqnonlin' function in MATLAB R2023b, employing the 

Levenberg-Marquardt method. To consider the uncertainty of 

the estimated model parameters in NLS, the 95% confidence 

intervals for the model parameters were obtained from 1.0E7

random sampling from the multivariate t-distribution using

Eqs. (28) and (29), with degrees of freedom h & h§ : 1 .
Here, Eq, (28) represents the variance of noise in measured 

data, and Eq. (29) represents the variance of estimated model 

parameters.

*86 = ¿� & ÀÁs¿� & ÀÁh & h§ (28)Â½ = *86[ÃsÃ]�~ (29)

The challenge in EOL estimation lies in determining 

amount of TU�� data needed to estimate the EOL using the 

surrogate model from Section 4.3, and how to estimate 

parameters »~ and »6 using NLS. To address this, a model 

was developed to predict TU�� for design variables / and $
across 2 to 15 cycles using the Kriging model from Section 

4.3. For the 10 test data, the TU�� data estimated by the 

surrogate model from 3 to 15 cycles was progressively added, 

calculating the median of the confidence interval of NLS and 

the mean RMSE of the actual experimental data. The results

of mean RMSE are depicted in Figure 13.

Figure 13. Mean RMSE by number of data

Figure 14. EOL Estimation Process

gu by
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It was observed that utilizing more than 10 cycles of data

predicted from surrogate model (i.e., beyond 1-10 cycles) did 

not significantly affect the estimation error in degradation 

estimation via NLS. Consequently, TU�� values were 

estimated for 2-10 cycles through a surrogate model as shown 

in Figure 11, considering that at 1 cycle, the TU��value is 

consistently 1 across all samples. This process is illustrated 

in Figure 14. Therefore, this process was utilized to estimate 

the EOL of the NSH unit cell, and the median of the EOL

confidence interval (TÄ�XYZ) was used in the MOO design 

process, which will be discussed in detail in Session 7.

7. MULTI-OBJECTIVE OPTIMIZATION DESIGN

A MOO design was implemented to address both the 

performance and operational aspects of the NSH unit cell. �TUX��8was considered for the performance aspect, while 

the estimated TÄ�XYZ served as the objective function for the 

operational aspect. Constraints included the strain of the 

curved beam, the threshold for HI, and the presence or 

absence of negative stiffness. The problem was formulated 

accordingly, and the results of the MOO design were 

analyzed using the NSGA-2 optimization algorithm (Deb et 

al., 2002), implemented in the PIAnO 2024 software. The 

overall flowchart is depicted in Figure 15.

Figure 15. Flowchart of multi-objective optimization design

Problem Formulation

For the MOO design, the problem formulation is defined 

as Eq. (30). Initially, the surrogate model for �TUX��8 , as 

discussed in Section 4.2, was employed to address the 

performance aspect of the NSH unit cell. Maximizing the �TUX��8 implied enhancing the capacity of the unit's curved 

beam to absorb energy relative to its mass. Subsequently, the TÄ�XYZ estimated through the approach outlined in Section 

6, was considered for the operational aspect. To ensure 

comparability in scale between the scaled �TUX��8 by min-

max scaling and the estimated TÄ�XYZ, we utilized the TU��

obtained from cyclic compression tests from 1 to 30 cycles 

on the 25 samples extracted using the FFD method to 

estimate TÄ�XYZ . Based on this estimation, we performed 

min-max scaling on the estimated TÄ�XYZ . At this point, it 

was assumed that the TÄ�XYZ from 25 samples provides 

sufficient information about TÄ�XYZ for the entire design 

space.

The first constraint was defined using the maximum strain, 

determined from the mean elongation when the infill angle is 

0°. The second constraint was defined as the occurrence of 

negative stiffness, where ¹~ = D@CC and ¹6 = D@3< . The 

threshold for TU�� as HI was assumed to be 0.7, indicating 

that the structure has degraded to 30% of its original 

performance.0km7 /F $

(30)

A^#kAkÅi V(q)= �TU��FX��8(/�� F $��): TÄ���FXYZ(/�� F $��)*ÆJÇi!/ /' 2,6 /$"6 È D@DGÉ<
D@CC¡(!�¢)¡(/F $}!�¢)& D@3<¡(!��¢)¡(/F $}!��¢) f D
Ê$ni*$'"7 = D@Ë
1@2 AA B / B 3@2 AA
1@2 AA B $ B C@< AA

Result of Multi-Objective Optimization Design

In the MOO design process, we considered an initial 

design point for the NSH unit cell with / = 2@2 AA and $ =3@É AA . NSGA-2 was employed as the optimization 

algorithm in the PIAnO 2024 software, with settings 

summarized in Table 3.

The results are displayed in Figure 16, where the lower 

constraints pertain to the condition for the occurrence of

negative stiffness, while the upper constraints relate to the 

maximum strain. When plotting the Pareto frontier for the 

objective function, it appears similar to Figure 17.

Table 3. The settings for NSGA-2

Population Size 100

Crossover Rate 0.9

Mutation Rate 0.5

Maximum Number of 

Generations
250
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Figure 16. Optimum results using NSGA-2 

 

Figure 17. Results of Pareto frontier 

Figure 17 illustrates that, despite aiming to maximize the 

objective functions, EOL and SEA exhibit an inverse 

relationship within the Pareto optimal set. As EOL increases, 

SEA decreases, and vice versa. Therefore, to identify the 

knee point, a horizontal line was extended from the point with 

the maximum �TUX��8 , and a vertical line from the point 

with the maximum TÄ�XYZ. The knee point was determined 

as the intersection of these lines, selected as the closest point 

from the Pareto optimal set. The dimensional information for 

the points with the maximum �TUX��8 , maximum TÄ�XYZ, 

and the knee point is provided in Table 4.  

 

After manufacturing, quasi-static compression tests and 

cyclic compression tests were conducted for these three 

points, as discussed in Section 3. All three points satisfied 

maximum strain constraint as defined in Eq. (29) and 

exhibited negative stiffness in five samples per point during 

the test. The results for �TUX��8 and TÄ�XYZ  were 

summarized in Tables 5 and 6. 

 

  

According to Table 5, the �TUX��8 value at the point 

where it reaches its maximum is approximately 50.5% higher 

than the initial design point, as predicted by the surrogate 

model. 

Table 6 displays the estimated TÄ�XYZ results for the three 

points. The median result estimated by the proposed method 

was compared with actual compression test data collected 

over 30 cycles. However, it is important to note that since 

cyclic compression test data are available only up to 30 cycles, 

the EOL beyond this point cannot be accurately determined. 

Therefore, for the three design points, considering the 

average RMSE of 0.0073 between the NLS results using 

actual data from 1 to 30 cycles and the actual data, it is 

assumed that the extrapolated median results using the NLS 

method do not significantly differ from the actual EOL. The 

results presented in Table 6 demonstrate that the TÄ�XYZ  

obtained with the actual data falls within the 95% confidence 

interval of the EOL estimated by the proposed method. 

When comparing the maximum TÄ�XYZ  point with the 

initial point, Table 6 shows an increase of approximately 

99.17 cycles in TÄ�XYZ, based on the estimated TÄ�XYZ  in 

Table 4. Dimensions for three points

 

 Max 

(�TUX��8) 

Max 

(TÄ�XYZ) 

Knee 

 Point 

t [mm] 1.702 1.669 2.258 

h [mm] 6.255 2.52 2.725 

 

Table 5. �TUX��8  results of 3 points

 

 
Initial 

point 
Max 

(�TUX��8) 
Max 

(TÄ�XYZ) 
Knee 

point 

True 

[mJ/g] 
425.96 641.06 116.05 207.34 

Predict 

[mJ/g] 
- 760.93 128.27 246.42 

 

Table 6. Estimated TÄ�XYZ  results of 3 points

 

Initial 

point 
Max 

(�TUX��8) 
Max 

(TÄ�XYZ) 
Knee 

point 

Estimated TÄ�XYZ  

[95% C.I] 

by proposed 

method  

(Cycle) 

- 

1.49 

[1.47 

,1.52] 

102.08 

[50.21, 

266.95] 

22.56 

[14.78, 

39.04] 

Estimated TÄ�XYZ 
from 30 cycles 

of true test data 

(Cycle) 

  127.91 31.44 

True TÄ� 

(Cycle) 
2.90 1.48 - - 
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the operational aspect. However, there is a notable decrease 

of about 72.75% in �TUX��8 , representing the performance 

aspect. This trend is also observed at the knee point, where 

the operational aspect shows an TÄ�XYZ increase of 

approximately 19.66 cycles, but a performance decrease of 

around 51.32% in �TUX��8 . These observations highlight 

the trade-off between �TUX��8  (performance) and TÄ�XYZ  

(operational aspect, including degradation) in NSH unit cells. 

The initial design point has a high �TUX��8value but a very 

low TÄ�XYZ value in terms of service life, presenting a risk 

of breakage in case of repeated use. The results of the MOO 

show that the expected TÄ�XYZ result for the SEA value at 

the initial design point and the corresponding value is 4.72 

cycles at /  = 3.147 mm $Ì = 2.926 mm, which is an 

improvement in life and performance compared to the initial 

design point. 

 Moreover, analyzing the data from Tables 5 and 6, it can 

be inferred that if the target life is set to 20 cycles, the knee 

point emerges as the most reasonable design, considering the 

estimated TÄ�XYZ. Conversely, if reusability is not a priority, 

the point with the maximum �TUX��8value appears to be the 

optimal design choice. Consequently, this suggests that the 

most reasonable design can be determined from the Pareto 

optimum set, depending on the target life set by the designer. 

8. CONCLUSION 

In this study, a novel design framework for NSH unit cells 

was proposed, focusing on energy absorption and reusability. �TUX��8 was considered as a performance metric, while TÄ�XYZ estimation relied on operational degradation from 

cyclic compression. Using the repeated compression test data 

of 3D-printed NSH unit cell, a trade-off relationship between �TUX��8and TÄ�XYZwas identified through Pareto frontier 

analysis employing the NSGA-2 optimization algorithm. 

From the MOO results, it is evident that establishing a 

criterion for the target life enables the identification of a 

viable design point for that lifespan. This approach not only 

facilitates the lifespan-oriented design of NSH unit cells but 

also highlights the potential for its application in the design 

of multi-layer NSHs or similar negative stiffness structures. 

In the application of these structures, the lifespan of the 

structure is factored into the design process so that the time 

to repair or replace the structure can be considered and 

reflected in the design phase. This framework can be 

expected to facilitate decision-making based on information 

about the predicted health of the structure at the design stage 

and provide possibilities for prognostics and health 

management (PHM) for design. 

Finally, future work aims to develop a PHM framework for 

robust design that can account for uncertainties or noise that 

may occur during the manufacturing process and in the 

testing or operational environment, as efforts continue to 

predict the health more precisely and EOL of these structures. 

ACKNOWLEDGEMENT 

This work was supported by the (NRF) grant funded by the 

Korea government (MIST) (No. 2020R1A5A8018822, 

2021R1A2C1013557, and 2022H1D3A2A01052491) 

NOMENCLATURE 

t thickness of curved beam 

h central height of curved beam /�� scaled thickness of curved beam $�� scaled central height of curved beam 

Q /?$ 

c height of curved beam for length 

l length of curved beam (= 60 mm) "N  horizontal length of curved beam (= 0 ~ 60 mm) 

b width of curved beam (= 12 mm) I density of PLA/PHA filament (= 1.24 j?!AÍ) 0 normalized force 

f reactive force O displacement 78 normalized displacement (= O?$) 

m mass of curved beam » parameter of degradation equation t global function’s coefficients | parameter of correlation function � likelihood 

m mass Î6 variance  o observed data o§¨�Z  predicted value o©¨ª� true value op output of Kriging TU¢Ï Scaled EA from original data h number of observations h�¢ number of negative stiffness occurrences h��¢ number of non-negative stiffness occurrences hZ number of dimensions h§ number of parameters !�¢ class for occurrence of negative stiffness !��¢       class for occurrence of non-negative stiffness * standard deviation Ã Jacobian matrix m§ number of parameters ¯  bandwidth  r bases of global function � Matrix of bases of global function Â½  variance of parameters for degradation equation � correlation matrix � correlation vector q vector of design variables t and h 
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