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ABSTRACT

Conventional data-driven predictive maintenance (PdM) so-
lutions learn from samples of run-to-failures (R2F) to esti-
mate the remaining useful life of an asset. In practice, such
samples are scarce or completely missing. Simulation mod-
els can be oftentimes used to generate R2F samples as a re-
placement. However, due to the complexity of the assets,
creating realistic simulation models is tedious, or even im-
possible. Thus generated R2F data cannot be used to create
reliable PdM models as they are highly sensitive to noises
in the sensors or small deviations in system working condi-
tion. To address this, we present a new concept of simu-
lation data generation based on supervised domain adapta-
tion for a regression problem where the remaining useful life
(RUL) or the health index (HI) of the system is predicted.
Apart from input and output domain shift, given the changes
in the dominant failing component and its degradation pro-
cess, the function mapping sensor readings to RUL and/or
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HI is also prone to changes and thus is a random process it-
self. Therefore, we aim to generate R2F training data from
different working conditions and possible failure types using
parameter randomization in the simulation model. By sam-
pling from various configurations within simulation model’s
parameter space, we ensure that the trained data-driven PdM
model’s performance is not impacted by the initial conditions
and/or the changes in the degradation of the system’s condi-
tion indicators. Our results indicate that the model is robust to
signal reading manipulation and showcases a more spread-out
feature importance across a wider range of sensor readings
for making predictions. We also demonstrate its applicability
on the real-world factory physical system whilst our models
were mainly trained using generated data.

1. INTRODUCTION

Accurate prediction of a production asset’s health state en-
ables effective implementation of a predictive maintenance
(PdM) solution. Such a solution can help reduce both the
cost and occurrence of unscheduled maintenance of the tar-
geted production asset (Cui, Du, & Hawkes, 2012; Rahat et
al., 2022). With the advancements in sensor technologies,
data acquisition and analysis, numerous PdM solutions pre-
dict the remaining useful life (RUL) and/or the health index
(HI) by either date-driven models, model-based models or hy-
brid of the two.
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Figure 1. Overview of the proposed method

The data-driven models use historical data to train the model
of RUL, so their quality depends on the data quality. It is thus
of utmost importance that the training data meets the min-
imum data quality requirements (Liu, Wang, Ma, Yang, &
Yang, 2012). However, it is rarely the case that the available
data from a production asset not only has enough samples of
failure, but also covers all possible failure types of the sys-
tem (Fathi, van de Venn, & Honegger, 2021).

This in turn raises the need for the data generation via simu-
lation models, which underlines the importance of currently
missing related work on simulation-to-real transfer and do-
main adaptation (DA) techniques for RUL and/or HI estima-
tion in PdM.

The model-based approaches leverage mathematical and phys-
ical models to estimate the RUL. This usually requires pa-
rameter tuning, e.g., using Markov process model or Winner
process, for converging to the behavior of the physical sys-
tem (Hanachi, Liu, Banerjee, Chen, & Koul, 2014; Si, Wang,
Hu, Zhou, & Pecht, 2012; Thelen et al., 2022). The param-
eter tuning is highly sensitive to the parameter initialization,
which is normally based on the empirical knowledge from
the physical system (Lei et al., 2016). Even when the system
parameters are estimated correctly, any changes in the pro-
duction setting and/or the production asset itself requires a
re-calibration.

Both the data-driven and the model-based approaches suffer
from inadequacy in practical solutions: the relevant data is
either missing, or the models are not robust enough, respec-
tively.

Hybrid PdM models combine the two approaches by learning
from both the historical data and the data synthetised from
the simulation models. The hybrid models have proven to
be effective in terms of reliability and efficiency, and address
some of the issues of pure data-driven or model-based solu-
tions, such as reduction in data acquisition time and increased
model robustness (Chang, Fang, & Zhang, 2017; D. Chen
et al., 2022; Lin, Yu, Wang, Che, & Ni, 2022; Didona &
Romano, 2014). In practice, the sampling from simulation
models can not come up for the lack of historical data, so
the conventional hybrid PdM models are also heavily depen-
dant on annotated data. They are normally applied to systems

for which extensive labelled datasets are available, e.g., RUL
prediction for lithium-ion batteries and aircraft engine (Fei,
2022; Saxena, 2023). As large datasets are not available
for production assets in a manufacturing factory, the conven-
tional hybrid models are inapplicable in the manufacturing
setting.

In this paper, we focus on hybrid modelling for this spe-
cific scenarios where gathering extensive labelled data from
the physical system is non-trivial (or even impossible), and
where precise and robust simulation models are unavailable.
To compensate for that, we propose to extract as much value
as we can from both sources by applying the domain adapta-
tion between the simulation and the real-world scenarios (see
Fig. 1).

In the same vein, we further improve the robustness by con-
sidering the data distribution shifts which are a common con-
sequence of diverse manufacturing requirements in an Indus-
try 4.0 setting due to flexible and adaptable production (Fathi,
Sadurski, Kleinert, & van de Venn, 2023). In order to cover
as much of the parameter space of the system as possible, we
alter accordingly the modelling of the initial condition and
the degradation of the system.

The main contribution of this paper is thus four-fold. We:

1. Propose a hybrid PdM solution which relies mainly on
the data from a simulation sub-module and few samples
from the target domain for training its data-driven sub-
module (supervised DA),

2. Propose a new concept of simulation data generation aim-
ing for domain adaptation called Parameter and Data Per-
turbation (PDP), for covering as much of the parameter
and degradation space of the physical system as possible,

3. Inspect the impact of the changes in the generated data
from the simulation sub-module and the physical system
on the performance of the data-driven sub-module,

4. Demonstrate how the additional simulation data used for
model training results in a more spread-out feature im-
portance across a wider range of sensor readings from
the system while making predictions.

The rest of the paper is outlined as follows. First, some re-
lated work addressing synthetic data generation from simula-
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tion models for dealing with scarce labelled data and domain
adaptation are presented. Afterwards, the details of the sim-
ulation model are provided. Thereafter, the results of model
training using the simulation model data with PDP are pre-
sented. Lastly, discussion and the future work of this work
are presented and some conclusions are drawn.

2. RELATED WORK

2.1. Lack of annotated data from the target system

One method used for reducing the time spent gathering data
from the target application using hybrid modelling is boost-
rapping (Didona & Romano, 2014). The main idea of boos-
trapping is to rely on a simulation model of the target use
case and to generate initial synthetic training set for the data-
driven model training. Thereafter, the data-driven model tries
to incorporate knowledge from the target system as soon as a
data point is available. In (Didona & Romano, 2014), the au-
thors propose to remove the synthetic data points in the vicin-
ity of samples from the target system to prevent obfuscating
information from the real samples. However, for the purpose
of RUL prediction in PdM, the annotated samples from the
physical system are scarce and costly to gather. Hence, we
propose to instead to keep these valuable samples and to com-
bine them with data from different working conditions of the
system generated from the simulation model

2.2. Adaptation to different working condition

Another important issue impacting the performance of data-
driven PdM models is the varying working condition of the
production assets in industry. These constant changes can
make models trained with a specific working condition (a.k.a.
source distribution) obsolete as changes occur in the system (Ragab,
Chen, Wu, Kwoh, & Li, 2020). They cause a data distribu-
tion shift between the data employed to train the PdM model
and the data acquired during the model’s deployment in the
production line. This discrepancy between the source and
target distribution raises the need for techniques such as do-
main adaptation. In fact, domain adaptation aims to train a
model on multiple source domains which are annotated so
that the model can generalized to new and unseen target do-
mains (Farahani, Voghoei, Rasheed, & Arabnia, 2021).

To the best of our knowledge, no other PdM work adopted do-
main adaptation methods for robust RUL and HI estimation
in light of lacking annotated historical data from the physical
system using simulation-to-real transfer techniques. More-
over, the current literature (Farahani et al., 2021; Yu, Fu, Ma,
Lin, & Li, 2021; Rahat et al., 2022; Yang, Lei, Jia, & Xing,
2019; Gao, Liu, Huang, & Xiang, 2021; Wang, Taal, & Fink,
2021) reduce PdM to be a binary or a multi-class variable.
We treat it as estimating the RUL or HI as a continuous value
for better adaptability to different scenarios.

In addition, given the degradation process of different criti-
cal components of a production asset, the labelling function
mapping the input space to the output space, can not only
be different in the target domain, but also change in the tar-
get domain given the dominant degradation process of any
arbitrary critical component (Cortes & Mohri, 2011; Nejjar,
Geissmann, Zhao, Taal, & Fink, 2024)

These two, the estimation of RUL and/or HI as a continuous
variable under the assumption of scarcity of annotated data
from the target domain, and the possibility of data distribution
shifts in the target domain are the primary motivation behind
the proposed PDP method outlined in this work (Fig. 2).

2.3. Simulation-to-real transfer

Numerous application, especially safety-critical system, suf-
fer from lack of labelled data as gathering such datasets is
costly or endangers the human operator (Kaufmann et al.,
2020; Tiboni, Arndt, & Kyrki, 2023). Therefore, simula-
tion models are used to recreate different scenarios which
are also labelled for model training. Nonetheless, modelling
errors and the complexity of physical systems prevent the
zero-shot deployment of data-driven models trained with such
simulation models. One way for increasing the robustness
of the trained models is randomize the dynamic parameters
of the system which is a.k.a. domain randomization (Peng,
Andrychowicz, Zaremba, & Abbeel, 2018). Doing so in-
creases the robustness of the trained model at the the cost of
its optimality (Tiboni et al., 2023). In this paper, we use the
same method to cover as much as the parameter and degra-
dation dynamics space as possible. Different starting con-
ditions, model parameter and degradation processes are the
main sources of domain randomization in this paper (Fig. 2).

3. SIMULATION MODEL

Data-driven monitoring systems require continuous data col-
lection that must extend over a period of time before they can
provide effective results (Bonomi et al., 2021). Such data col-
lections, referred to as run-to-failure (R2F) data, are normally
expected to start from a healthy production asset state and
end with the asset failing or malfunctioning. In the present
scenario, there is the additional consideration that R2F tests
are, by their nature, long-lasting while accelerated destructive
testing is not always possible. Additionally, these tests are
expensive with uncertain success. We propose to use a simu-
lated model of the system to obtain realistic data (Ferrario et
al., 2019) on its response to the system’s most common types
of wear and tear.

The model creation phase is critical because it must satisfy
several conflicting requirements:

• The model must be complex enough to represent deteri-
orating operating conditions realistically.

3

Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN – 978-1-936263-40-0

Page 391



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

Figure 2. DA via PDP

• The model must be simple enough to be calibrated in a
short time and from accessible data.

• The model must take into account the system whose con-
dition is being monitored, the measurement instruments
used, and how the data are processed. To some approx-
imation, it must also take into account the context in
which the system operates (e.g., the effect of other com-
ponents).

To meet all these needs, we developed a system with the fol-
lowing characteristics:

• Our models follow the multi-physical system (Simscape)
as a concentrated variable model. This allows parameters
to be easily configured.

• The model is wrapped in a Python script that allows gen-
erating the random parameters, handles post-processing,
and eventually repeats or recovers the simulation scenar-
ios in case of failure.

3.1. Overview of the simulation model

Our specific use case is the condition and life monitoring of
a series of pneumatic cylinders. Based on its characteristics,
we separate the model into 5 macro blocks (Fig. 3):

1. Control system block: modeled as timed output signals.

2. Air feeding system and sensor block: modeled while
taking into account the fluid dynamic aspect and the char-
acteristic times of the sensors (i.e., thermometer, pressure
switch and flow switch). The generated data are saved as
time series on temporary files.

3. Valve blocks: modeled as adjustable restrictions con-
trolled with a Boolean signal taking into account the fluid-
dynamic aspect and implementation delays (Fig. 5).

4. Pipe blocks: modeled from the fluid dynamics and heat
transfer point of view.

5. Cylinder block: the fluid-dynamic, mechanical, and ther-
mal parts of the cylinders are modeled. The latter takes
into account the velocity damping systems included in
the final section of the cylinder and the speed controller

valves outside the cylinder. This block also contains the
modeling of possible failure types: air leakage is mod-
eled as an adjustable restriction between the two cham-
bers or between the chambers and the outside, and the
state of the seal as a parameter that changes the friction
force of the plunger. These parameters can be set with
configurable constants prior to simulation. (Fig. 4).

After simulation, we read the simulated time series and com-
pare them against the readings of the measuring instruments
with the goal of obtaining the same results as the real system.
During the reading, the acquisition frequency of the real sys-
tem, the interaction with the cylinder’s limit sensors, and any
post-processing are taken into account.

In order to optimize the computing load and the amount of
data transmitted, we later do not to use the time series di-
rectly. Instead, we represent the operation of the system with
only a few particular values. For example, for each pneu-
matic cylinder, the actuation delay, the time of arrival, the
airflow at departure, the airflow at arrival, the maximum air-
flow, the amount of air absorbed during the movement, the
average pressure, and the minimum pressure are collected.

After the model is created, a calibration is performed using
the available data, and the values obtained are compared with
the actual values to check for a match.

To model wear damage, after an analysis of component fail-
ure modes (Nakutis & Kaškonas, 2008; Belforte, Raparelli, &
Mazza, 1992; J. Chen, Zio, Li, Zeng, & Bu, 2018), effective
parameters are identified to represent the state of the system.
In the analyzed use case, the possible leakage is character-
ized as three adjustable local restrictions (between the first
chamber and the environment, between the second chamber
and the environment, or between the chambers) while the seal
state is an adjustable friction coefficient.

Simulations are performed from an ideal operating state cor-
responding to the HI of 100% (the state of the part at the
time of system calibration, assumed to be healthy) to a fail-
ure state, corresponding to the HI of 0%. The law by which
the condition is calculated depends on the use that is made
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Figure 3. View of the physical model with macro blocks and the structure of major ones highlighted.
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of the monitored machine and the requirements that it must
have. For example, in the case of pneumatic cylinders, it is
calculated based on the change in movement time and energy
used.

3.2. Parameter perturbation in simulation model

To make the model effective under different operating con-
ditions, we run several simulations by varying the system
boundary conditions and the damage progression law. In the
logic of keeping the algorithm simple and applicable to differ-
ent types of models, each failure mode was treated indepen-
dently (thus each parameter modeling wear progresses at dif-
ferent rates but does not affect others). Of course, the effects
that these parameters have on the operation of the simulated
device sum up and affect the HI.

This process can be schematized in the following points (see
Fig. 6):

1. Preparation: The model is calibrated from the condi-
tions measured in the real system. Then it is determined
what is the critical value of each of the parameters that
represent the damage (the value that alone would bring
the part HI to 0) through a series of simulations in which
the main operating parameters are varied (see Fig. 7) and
from which matrices of critical values are obtained.

2. Generation of the modeled system: At this stage, the
system’s own characteristics, those that are not expected
to change over time are determined. These parameters
are the damage progression laws for each component and
each failure mode, and also additional static parameters
such as the position of the control valves. Every damage
progression is determined by a quadratic law defined as
follows:

l < P 

START

Preparation 

 Set P (Number of 
modeled system)
i = 0

Generation of the lth
modelled system

Determining the increment
 of cycles per iteration

Preparation of iterations

Run model

Failure detected ?

Update cylces and times,
increment damage

Post processing

END

yes

yes

no

no

l++

Figure 6. The flowchart of the script running the simulations

{
(n < nf ) : Kdi,j(n) = n2 · (2−4·nli)

n2
f

+ n · 4·nli−1
nf

(n ≥ nf ) : Kdi,j(n) =
2nf (2nli−1)−x(4nli−3)

nf

(1)
model whereKdi,j is the damage progression coefficient
for the failure mode i of the device j, n is the number of
cycles made by the device, nli ∈ [0.25, 0.7] is the non-
linearity index, nf is the number of cycle that, would
bring the part to failure. The law is formulated to be al-
ways increasing while being parabolic up to the nf value,
and then proceeds linearly. The damage progression co-
efficient multiplied by the critical damage values deter-
mines the value of the corresponding failure parameter.

3. Determining the increment of cycles per iteration: For
each model defined in the previous step, a series of sim-
ulations must be run in which the number of cycles per-
formed by the machine increases progressively so as to
increase the various damage parameters. The simulations
must proceed until the HI of at least one of the parts drops
to 0. To keep the computation time acceptable, it was
decided that only one cycle is actually modeled in each
simulation while the cycle counter and time are recalcu-
lated using these formulas:

nk = nk−1 +min (nf,i,j) /N (2)

tk = tk−1 +min (nf,i,j) · tn (3)
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Figure 7. The figure shows the critical matrices for a pneumatic cylinder. The matrices represent the critical value of various
damage parameters (friction reduction, friction increase, leakage between chambers, leakage between the second chamber and
the environment) as a function of supply pressure and speed control valve adjustment. It can be seen that the critical friction is
greatly influenced by pressure while the critical value of leakage is more influenced by valve adjustment.

Where, nk in the number of cycles made by the device
in the iteration k, nf,i,j is the cycles to fail for the fail-
ure mode i of the device j, N is the desired number of
iterations, tk is the virtual time in which the simulation k
takes place, and tn is the number of cycles performed in
the unit of time.
This reduces the computational time by simulating only
a number of cycles equal to about N , which are equally
spaced. In practice, the number of simulations may vary
in relation to N , as the overlapping effects of increasing
different damage parameters may dampen or accentuate
their impact on the part condition.

4. Preparation of iteration: Before each simulation, some
parameters that may vary during the lifetime of the part,
such as environmental parameters, are randomly calcu-
lated. Specifically, in the presented use case, the pressure
of the air supply system, the ambient pressure, the am-
bient temperature, the sampling start time, the pressure
drop of the supply system, and the friction coefficient of
the sealing of each cylinder are varied.

5. Run to failure: For each iteration first the damage pa-
rameters are calculated using the equation:

Pi,j,k = Kdi,j,k (nk) · Pcrit,i,j (4)

wherePi,j,k is the damage parameter for the failure mode
i of the device j and the iteration k, Kdi,j,k (nk) is the
damage coefficient for the failure mode i of the device
j and the iteration k (see Eq. 1 and 2), Pcrit,i,j is the
critical parameter value for the failure mode i of the de-
vice j computed from the critical matrix crested in the
preparation phase.
After the computation of the damage parameters, the phys-
ical model is run, and finally, the HI of each part is cal-
culated. In case one of the parts has a HI equal to or less
than zero the iterative process is terminated otherwise the
next one is run.

6. Post-processing: At the end of the iterations, the col-
lected data is saved and labeled with the RUL and the HI
(depending on the use case) related to the corresponding
iteration.

4. DATA ANALYSIS AND PREDICTION MODEL PERFOR-
MANCE

In the conducted studies we assume that labelled data from
the target domain (physical system) is available, which cate-
gorizes the proposed method as a supervised DA solution (Motiian,
Piccirilli, Adjeroh, & Doretto, 2017). In fact, as soon as the
generated R2F data from the simulation and the labelled as-
set sensor readings are available, the acquired data can be
used to train a prediction model. In addition, gradient boosted
trees (T. Chen & Guestrin, 2016) have been used to estimate
the health status of the physical system, defined as HI or RUL,
given the sensor readings from it. For evaluating the per-
formance boost from PDP, two separate regression models
(XGBR) with the same complexity will be trained using the
following datasets:

• Limited annotated data (10% of the available data) from
the physical system (the model trained with this dataset
is referred to as XGBR1)

• Limited annotated data (10% of the available data) from
the physical system and the R2F from the simulation
model by employing PDP (the model trained with this
dataset is referred to as XGBR2)

4.1. Use cases and experiments

In this industrial project, two different systems, from SMC
Schweiz AG1 and TCI engineering2, are tested as use cases
to inspect the scalability of the proposed method. The for-
mer, is a pneumatic pick and place demonstrator which can
be used to mimic different failure types given various work-
ing conditions (e.g., by changes in the main pressure of the
compressed air). For this use case, the deployed model is
used to predict the RUL of the system as degradation in the
physical system does not cause any significant financial loss.
In fact, this demonstrator is used to create real R2F data for
testing the accuracy of the RUL predictions.

The latter; however, is used in a production line owned by

1https://www.smc.eu/de-ch
2https://www.tci-sa.ch/en/
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a third-party company and thus no failures can be artificially
built during production. For this use case only the HI of the
system is predicted as no failure samples are available from
the physical system. As shown later, given the changes in
the working conditions, the customer’s needs and minor in-
spections, there are numerous fluctuations in the HI values,
resulting them not to be monotonic.

In what follows, the results of model performance compari-
son for predicting the RUL and HI is provided in detail. How-
ever, the similar results of feature importance distribution for
RUL and HI predictions, subsection 4.3, and the robustness
to the noise, subsection 4.5, are not included in order to con-
serve space. Nonetheless, this omission does not diminish the
completeness of this paper in any manner.

4.2. Model accuracy for predicting the HI

The XGBR1 and XGBR2 prediction models are tested on
the data attained from the physical system which were not
previously exposed to them during model training. These
model have the R2 scores of 0.676 and 0.853 respectively,
which indicates the superiority of the model trained with sim-
ulation data. Moreover, for ensuring that sample selection
does not impact the accuracy comparison between XGBR1
and XGBR2, these accuracy values are calculate as the mean
of accuracy given different seeds for sampling data from the
physical system.

In addition, Fig. 8 demonstrates the progression of the HI of
the physical system during approximately 3 months. Given
the fact that, the data acquisition from the physical system did
not start right after a maintenance, there is no reference asset
behavior which represent a fully healthy behavior. Therefore,
the calculated HI values are equally biased to start from a
value which is as close to 1 as possible. In addition, as stated
in subsection 4.1, numerous internal and external factors con-
stantly impact the physical system during production, which
prevents a monotonic HI sequence.

4.3. Feature importance distribution

The trained XGBRs can provide insight about the importance
of different sensor readings from the system. In fact, impor-
tance values indicate how influential one feature is in deter-
mining the output of the prediction model. Considering that,
data reading from industrial assets is not always perfect, it
can be expected that there are scenarios where the attained
data from an asset contains noise, has missing values or in an
extreme case the installed sensor does not provide any data.
In such situations, it is vital to determine the role of different
sensor readings and also try to train models which use a wider
range of sensor readings from the physical system. By doing
so, erroneous predictions from the model are prevented, re-
sulting in enhanced model reliability.

Figure 8. Asset HI along with XGBR1 and XGBR2 predic-
tions

On a separate note, by comparing the significance of different
asset readings, it is also possible to verify if the trained pre-
diction model has converged to a PdM solution or is merely a
preventive maintenance model relying on the cycle number.

As it can be seen in figures 9 and 10, given the sparsity of
data from the physical model, the XGBR trained only using
the data from the physical system has a highly unbalanced
feature importance across different readings of the studied
asset. Therefore, from a model reliability point of view, the
simulation model can significantly enhance the performance
of the model. Please note that for sake of anonymity and
data protection for the involved industrial partner in the con-
ducted studies, hashed sensor reading names are provided in
the aforementioned figures.

4.4. Model comparison for predicting the RUL

The XGBR1 and XGBR2 trained for the SMC Schweiz AG
demonstrator have fairly similarR2 scores of 0.980 and 0.917
respectively. The higher accuracy in predicting the RUL is
partially attributed to fact that the controlled laboratory setup
allows us to control all the boundary conditions. Whereas in
the shopfloor, the system is influenced by numerous factors
that cannot be controlled or predicted, e.g., a drop in pres-
sure or regulation intervention. Additionally, it is also due
to the fact that the induced failure in the system is a result
of (semi-)linear opening of the valves in the demonstrator for
mimicking leakage in various parts of the system. Nonethe-
less, as discussed in subsection 4.3, the XGBR1 model puts
more emphasis on the information about the cycle count and
ignores the information from the rest of the available sensor
readings making it a less desirable solution given PdM re-
quirements, especially in case that a faster failure than the
ones seen before during model training occurs in the system.
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Figure 9. Feature importance among different asset sensor readings for XGBR1 model. This model relies on a limited number
of sensor readings from the system

Figure 10. Feature importance among different asset sensor readings for XGBR2 model. This model has a more spread-out
feature importance across different sensor readings of the system
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Figure 11. Impact of asset reading noise on the accuracy of
the trained prediction models

4.5. Robustness to asset sensor reading noise

In this part of the conducted studies, the impact of noise on
the most decisive asset readings on the accuracy of the XGBR1
and XGBR2 for the TCI engineering case are examined. For
manipulating the asset sensor readings, 8 of the most influen-
tial features given the values in figures 9 and 10 are selected.
Thereafter, samples of each of these features (xi ∈ X) are
distorted as follows:

xinew = xi+Max{xj}|X|
j=1×noise level×d ∼ N(0, 1) (5)

where |X| is the total number of feature readings, noise level
is scalar value (see Fig 11) and d is a sampled value from
N(0, 1) which represents normal distribution with mean of
0 and standard deviation of 1. Fig 11 shows the impact of
noise on the R2 score of the predictors. As it can be seen,
regardless of the added noise value, the performance of the
model trained with the additional simulation data is superior
which suggest the robustness of the trained model compared
to the prediction model trained only with scarce data from the
physical system.

5. DISCUSSION AND CONCLUSION

Gathering annotated data from a physical system for devel-
oping PdM solutions is one of the most time-consuming and
expensive steps which inhibits many end users in industry for
utilizing the full potential of their production assets. In the
conducted studies, we aimed to introduce a novel approach
for RUL and HI prediction model training which uses data
generated from a simulation model and a minimal set of sam-
ples from the physical system as apposed to complete R2F
datasets from the asset. We aimed to highlight the impor-
tance of simulation data generation with PDP for covering as
much as of the parameter space of an asset for enhancing the
performance of the prediction model despite the scarcity of

asset readings. It was shown how the proposed method, in
the best case scenario, increases the R2 score of the trained
model by 26% while simultaneously using a wider range of
sensor readings from the physical system. Furthermore, the
results of model performance deterioration in presence of as-
set reading noise demonstrated that, regardless of the added
noise to the readings, the R2 score of the model trained with
the additional simulation model data is higher. For the future
work, we aim to develop classifiers for different working con-
ditions of an asset and then find the corresponding regions of
the data generated from the simulation model for a more fine-
tuned data generation. In addition, we aim to inspect the per-
formance of the prediction model in different regions of the
parameter space and generate data from the simulation model
which explicitly can boost the performance of the model in
the chosen region of the parameter space.
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