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ABSTRACT 

The world is experimenting a decarbonization process, 
mainly through lithium-ion-based solutions. Nonetheless, 
catastrophic events have negatively affected the social 
acceptance of lithium-ion-based solutions. One of the most 
interesting projects regarding catastrophic event prevention 
is the internal short-circuit detection. This paper proposes to 
detect it using different machine-learning algorithms such as 
random forest and combination of random forest with neural 
network-based algorithms through time-instant classification 
and historical feature classification. The hyper-parameters 
have been optimized through grid-search. The selected 
algorithms have been trained thanks to synthetically 
generated data using a first-order electrical equivalent circuit 
model. The performance of the generated models has been 
verified and compared thanks to testing and validation data 
sets taken from the synthetically generated data. Afterward, 
the most accurate internal short circuit detection algorithm 
was selected and validated through laboratory-level data. The 
selected cell in this study is SLPB526495HE, a pouch cell of 
3.7Ah. The generated data are time series of voltage and 
current, which are the variables that will be available in a real 
application. The results demonstrate an accuracy above 90% 
in detecting an internal short circuit in the most interesting 
cases. The validation with laboratory data has shown that an 
accuracy of 90% can be achieved. This paper provides 
learned lessons on the process of developing the internal short 
circuit detection machine-learning model, highlighting the 
potential they possess to detect accurately internal short 
circuits. 

1. INTRODUCTION 

Lithium-ion batteries have been acclaimed for their high 
energy density, low self-discharge rates, and environmental 
compatibility since a decade ago (Diouf & Pode, 2015). This 

battery technology has emerged as a key component in global 
decarbonization strategies, finding extensive application in 
diverse energy storage systems such as electric vehicles and 
smart grids (Zubi et al., 2018). Despite their notable 
advantages, safety concerns, particularly those stemming 
from internal short circuits (ISC) leading to thermal runaway, 
remain a primary impediment to their broader adoption(Zhan 
et al., 2023). Such incidents can result in battery fires or even 
explosions, leading to grave consequences. Thermal runaway 
is often initiated by ISC events (Ren et al., 2021), and the 
detection of such events poses significant challenges, 
especially during their incipient stages. 

ISC faults often begin with mild severity, starting with high 
resistance values, which decrease as the fault progresses. In 
this process, the voltage, current, and State of Charge (SoC) 
of normal batteries and those with varying ISC resistance 
values exhibit similar characteristics during charging and 
discharging processes. This similarity significantly 
complicates the diagnosis of early-stage ISC faults, leading 
to researchers to apply data-driven algorithms (Zhang et al., 
2021). The application of data-driven or machine learning 
(ML) algorithms in ISC fault detection can be categorized 
further into two main types: unsupervised and supervised 
learning.  

Unsupervised learning methods train fault detection models 
using data generated during the charging and discharging 
processes of normal batteries. These methods identify 
potential anomalies by defining deviation measures between 
normal and abnormal data, deciphering the standard patterns 
within the data, and employing specific decision rules. 
Typical algorithms include Support Vector Machine (SVM) 
(Chatterjee et al., 2023), Relevance Vector Machine (RVM) 
(Xie et al., 2020), Kernel Principal Component Analysis 
(KPCA) (Schmid & Endisch, 2022), and Isolated Forest 
(Cheng et al., 2023), which have demonstrated effective 
anomaly detection capabilities in various scenarios. 
Nonetheless, unsupervised learning algorithms have their 
limitations. Particularly when the abnormal data closely 
resemble the normal data with no significant distributional 

ZiHong Zhang et al. This is an open-access article distributed under the 
terms of the Creative Commons Attribution 3.0 United States License, 
which permits unrestricted use, distribution, and reproduction in any 
medium, provided the original author and source are credited. 

Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN – 978-1-936263-40-0

Page 244



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024 

2 

differences, as it is our case. These methods may struggle to 
distinguish between them accurately. This is why, it is 
challenging for unsupervised learning algorithms to detect 
these subtle anomalies.  

Supervised learning methods utilize pre-labeled datasets for 
training, differentiating like this battery performance data 
under normal operations and abnormal conditions in the 
training process. Through training, these models are adept at 
distinguishing between normal battery behavior and potential 
fault signals. Typical algorithms include Random Forest (RF) 
(naha et al., 2020), Convolutional Neural Network (CNN) 
(Yang et al., 2022) and Long Short-Term Memory (LSTM) 
(Wang et al., 2023). Nonetheless, it is not clear which should 
be the one to be applied. In light of this, our research aims to 
explore and apply various supervised learning algorithms to 
help researchers find the most suitable algorithms for ISC 
detection. 

This paper proposes the development and comparison of ISC 
detection supervised learning algorithms, enhancing the 
detection capabilities at early stages of ISC. This study seeks 
to provide an ISC detection algorithm selection background 
to fellow researchers and boost the reliability and safety of 
lithium-ion batteries in operational contexts. 

This paper is structured as follows. The data generation is 
detailed in section 2. The ISC detection methods are 
described in section 3. The hyperparameter tuning process 
undergone in this paper is placed in section 4. The results are 
shown in section 5. The discussion is done in section 6 and 
the conclusions are drawn in section 7. 

2. DATA GENERATION 

The selected battery is SLPB526495HE. The synthetically 
generated data has been generated with a first-order 
equivalent electric model. The experimental data has been 
generated in laboratory testing facilities. During the training 
and testing phases, only virtual datasets were utilized to 
develop the models. In the validation phase, experimental 
datasets were additionally incorporated. This approach was 
adopted to evaluate the performance of the models trained on 
virtual datasets in real-world scenarios. 

This study focuses on charging data. In practical scenarios, 
battery discharging conditions are highly complex, whereas 
the charging scenarios are relatively monotonous. Therefore, 
we chose charging data to train the model for detecting ISC 
anomalies during the charging phase. 

The operational conditions of the generated data are the same 
for the synthetically generated one and the one generated 
through laboratory tests: an ambient temperature of 25°C and 
a charge process at constant charge mode from 1% SoC to the 
maximum voltage value. 

The extracted feature data during this process included the 
battery voltage and the battery's current voltage increment 

relative to its voltage before charging an amount equivalent 
to 1% of its nominal capacity, denominated as voltage 
difference, see Eq. (1). 

 𝑉ௗ௜௙௙_௞ = 𝑉௞ − 𝑉௞ିଵ%௖ (1) 

2.1. Virtual dataset 

The virtual data set used for model training and testing was 
generated by a first-order electric equivalent circuit model 
(Arrinda, Oyarbide, Macicior, Muxika, et al., 2021) for the 
SLPB526495HE battery, as shown in Figure 1. 

 

Figure 1: Equivalent electric circuit models. 

The parameters of the model were obtained by conducting 
specific modeling tests on the SLPB526495HE battery, see 
Figure 2. 

 

Figure 2: Modeling tests. A capacity and pulse based 
impedance characterization and OCV characterization test is 

performed at controlled ambient temperature. 

The built model was run to obtain data from a normal battery 
and a battery with different level of ISC faults (a total of 21 
stages): 5Ω, 50Ω, 100Ω, 150Ω, 200Ω, 250Ω, 300Ω, 350Ω, 
400Ω, 450Ω, 500Ω, 550Ω, 600Ω, 650Ω, 700Ω, 750Ω, 800Ω, 
850Ω, 900Ω, 950Ω and 1kΩ. 

2.2. Experimental dataset 

The experimental Data Set used for the model validation was 
generated in the laboratory by cycling the cell with constant 
current charging tests from 1% SOC to maximum voltage 
value, see Figure 3. The reference test has been tested only 
with the cell. The ISC has been emulated by connecting an 
external bleed resistor of 10 Ω and performing the charge. 
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Figure 3: Experimental setup. Within a controlled 

temperature chamber, a battery cell is interfaced with a 
Printed Circuit Board (PCB), which incorporates various 

resistors to simulate an Internal Short Circuit (ISC) 
phenomenon. This setup is further connected to a Data 

Acquisition System (DAQ) for comprehensive data 
collection and monitoring. 

3. DETECTION METHODS 

This paper presents and compares various ISC detection 
solutions based on different ML models. These solutions can 
be divided into two main categories according to the data 
types they utilize: the Instantaneous Feature-based Method 
and the Historical Feature-based Method. 

3.1. Instantaneous Feature-based Method 

As illustrated in Figure 4, the ISC detection solutions under 
the Instantaneous Feature-based Method determine whether 
the battery is in a normal state or experiencing an ISC 
anomaly by analyzing the feature data at every single moment 
and treating it as a binary classification task at every moment. 
The ISC detection solutions proposed in this paper that are 
under the Instantaneous Feature-based Method category are 
the RF solution and the RF combined with Multilayer 
Perceptron (RF+MLP) solution. 

 

Figure 4: Instant-based methods’ main concept diagram. 
Instant-based methods treat each moment k as an 

independent data point, characterized by two features: the 
cell voltage at time k (Vk) and the voltage difference 
(Vdiff_k) at time k. A machine learning model is then 

employed to classify each time point as either a normal or 
an ISC label. 

3.1.1. Data treatment 

A dataset for the charging process on a battery without an ISC 
was gathered with no ISC labels. A dataset of battery 
charging data that reflects the 21 stages of ISC fault 
conditions has been generated with ISC anomaly labels. The 
dataset with ISC anomaly labels has a significantly higher 
volume of data compared to the one with no ISC labels. To 
address this issue, a down-sampling method was adopted to 
balance the label distribution in the training dataset. 

The specific down-sampling process involves randomly 
selecting data from the dataset with ISC anomaly labels. The 
total number of data points is the same in both data sets, 4000. 
The data with ISC anomaly labels is evenly taken from all the 
simulated cases. This method ensures the consistency of the 
total volume of ISC anomaly data with normal data and 
guarantees a balanced sampling quantity of different stages 
of ISC anomaly data generated from different short-circuit 
resistance values. 

The final step in data handling involves splitting the dataset 
obtained through down-sampling into a training set and a test 
set based on an 80% to 20% ratio. This approach allows the 
model to train on a substantial portion of the data while 
retaining a separate subset for evaluation, ensuring that the 
model's performance can be accurately assessed. 

3.1.2. Random Forest (RF) 

The RF classifier, as a widely used ML model for 
classification tasks, leverages ensemble learning techniques 
to enhance the accuracy and stability of predictions. This 
model employs bootstrapping to draw multiple subsets of 
samples with replacements from the original training dataset 
and randomly selects subsets of features during the 
construction of each decision tree. In classification tasks, RF 
makes the final decision by aggregating the predictions from 
all its decision trees, adopting the class supported by the 
majority of the trees as the prediction outcome. 

3.1.3. Randon Forest with Multilayer Perceptron 
(RF+MLP) 

The RF+MLP combines the RF and MLP to detect the 
presence of ISC phenomena in batteries. The main workflow 
consists of training first a RF classifier to be used to predict 
the data. Then, the prediction results from each decision tree 
within the RF classifier are used as new input features of the 
MLP. This approach aims to leverage the MLP to learn the 
relationships between decision trees, thereby enhancing the 
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model's ability to distinguish between data with ISC and data 
without ISC. 

3.2. Historical Feature-based Method 

The historical feature-based method for detecting ISC events 
utilizes a sliding window technique. Starting from the (n+1)th 
time point, it combines the feature data of that moment with 
the feature data from the preceding n moments to construct a 
time series window. The window then slides forward, step by 
step, continuing this process to generate a series of time series 
window data, see Figure 5. Subsequently, deep learning 
models specifically designed for time series classification are 
applied to distinguish between ISC event data and no ISC 
data. 

 

Figure 5: Historical feature-based methods’ main concept 
diagram. 

3.2.1. Data treatment 

A series of data preprocessing steps are necessary. Initially, 
the sliding window technique is applied to transform the 
charging data of batteries without ISC and the charging data 
of batteries with ISC anomaly using different short-circuit 
resistance values. Starting from the (n+1)th moment, the 
feature data of each moment and its preceding n moments are 
combined to form individual 3x(n+1) dimensional time series 
windows. Here, 3 represents the number of features: 

 The battery voltage at each moment. 

 The voltage difference or the voltage increment of the 
battery at each moment relative to its voltage before 
charging an amount equivalent to 1% of its nominal 
capacity. 

 The probability that the current moment might 
correspond to ISC data as determined by the Random 
Forest classifier analyzing the current battery voltage at 
each moment and the voltage difference. 

Subsequently, down-sampling of ISC time series window 
data is performed as in the data treatment performed for the 
instant-based methods to balance the data label distribution 
and prevent data bias issues during the training process. 

Unlike the RF algorithm, neural network models typically 
require data normalization prior to training. This 
normalization accelerates model convergence, prevents 
issues with vanishing or exploding gradients, and enhances 
the model's generalization capability to new data. Common 
data normalization methods include the min-max 
normalization and the Z-score normalization (Patro & sahu, 
2015). 

The min-max normalization method adjusts the scale of the 
data so that all features have values ranging between 0 and 1. 
Specifically, for each feature, this is achieved by subtracting 
the minimum value of that feature from each value, then 
dividing by the difference between the maximum and 
minimum values of that feature, Eq. (2).  

 𝑥௡௢௥௠ =
𝑥 − 𝑥௠௜௡

𝑥௠௔௫ − 𝑥௠௜௡

 (2) 

The Z-score normalization, also known as standard score 
normalization, normalizes the data by subtracting the mean 
of each feature from its values and then dividing by its 
standard deviation, resulting in a dataset with a mean of 0 and 
a standard deviation of 1, Eq. (3).  

 𝑥௡௢௥௠ =
𝑥 − 𝜇

𝜎
 (3) 

Beyond the normalization methods, the choice of 
normalization strategy is crucial and can be based on one of 
the considered normalization processes: normalization-by-
moment, normalization-by-feature, and normalization-by-
window. 

The normalization-by-moment strategy involves normalizing 
the values of all features at each specific moment. It treats 
each point in time independently, adjusting the features 
across all samples at that particular moment to conform to the 
chosen normalization scale. This approach is useful when the 
relative magnitudes of features at each moment are important 
for the model to recognize patterns over time. 

The normalization-by-feature strategy operates on each 
feature across all moments. It normalizes the values of a 
single feature over the entire dataset, ensuring that the 
feature's values are on the same scale across all time points. 
This is particularly beneficial when you want the model to 
understand the behavior of each feature independently across 
time, emphasizing the feature's overall distribution without 
the influence of varying scales. 
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The normalization-by-window approach treats all the data 
within a sliding window as a whole for normalization 
purposes. Each window is normalized independently, 
meaning that the scale of the features is adjusted within the 
context of that window. This strategy is useful when the 
relationship between features within each window is critical 
to identifying patterns, and it aims to preserve the internal 
dynamics of each time window. 

 

Figure 6: Data treatment processing selection diagram. 

As a result, six distinct data preprocessing schemes have been 
developed based on the aforementioned. To identify the most 
suitable data processing approach for various models and to 
find the optimal sliding window size, an experimental 
workflow was designed as follows (Figure 6): 

 Experiment with window sizes equals to 10, 30, 50, 100, 
150 are evaluated. 

 The six different data preprocessing schemes are applied 
to each window size experiment, resulting in 30 different 
data processing configurations. 

 Train 1D CNN and LSTM networks using the processed 
data. 

 Evaluate the performance of these models through cross-
validation to determine the most suitable data processing 
method and window size for each model type. 

3.2.2. Random Forest with Convolutional Neural 
Network (RF+CNN) 

1D CNN algorithms are frequently employed for processing 
sequential data, such as time series data. A 1D CNN 
processes input data through a series of specific layers to 
extract useful features for classification or other tasks. The 
fundamental architecture of a simple 1D CNN consists of an 
input layer, convolutional layer, activation function, pooling 
layer, fully connected layer, and output layer. In the context 
of time series classification tasks, the input layer initially 
receives the raw data. This is followed by the convolutional 
layer, where multiple kernels slide across all features of the 
data to perform convolution operations and extract features, 
which are subsequently subjected to an activation function. 
The pooling layer then reduces the dimensionality of the 
feature maps, decreasing the volume of data that needs to be 
processed. Finally, the fully connected layer and the output 
layer classify the previously extracted features, producing the 
final outcome. 

3.2.3. Random Forest with Long short-term memory 
(RF+LSTM) 

LSTM networks are a specialized type of Recurrent Neural 
Networks (RNNs) particularly suited for classifying, 
processing, and predicting based on time series data. LSTMs 
are adept at addressing issues of vanishing or exploding 
gradients, which are common with traditional RNNs. The 
basic structure of an LSTM includes an input layer, LSTM 
layer, hidden layers, and an output layer. Within the LSTM 
layer, each LSTM unit contains several key components: Cell 
State, Input Gate, Forget Gate, Output Gate, and Hidden 
State. When LSTMs are employed for time series data 
classification tasks, data is initially decomposed into 
individual time steps through the Input Layer and then fed 
into the LSTM layer. This layer captures long-term and short-
term relationships within the time series data by maintaining, 
ignoring, or updating information through an internal state 
and three gate structures. The output from the LSTM layer is 
then passed to one or more Hidden Layers for further feature 
extraction, with the final classification result being produced 
by the output layer. 

4. HYPERPARAMETER TUNING 

Hyperparameter tuning plays a crucial role in the training of 
ML and deep learning models, as the choice of 
hyperparameters directly affects the performance, learning 
capability, and generalization ability of the model. During the 
training of various models mentioned before, such as RF, 
MLP, 1D CNNs, and LSTMs, experimenting with multiple 
combinations of hyperparameters is an effective method to 
find the relatively optimal hyperparameter settings. 
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4.1. RF Classifier Hyperparameter Tuning 

The use of the grid search through “GridSearchCV” tool from 
the Scikit-learn python’s library is proposed to systematically 
explore and optimize the hyperparameter settings of the RF 
classifier (Arrinda, Oyarbide, Macicior, & Muxika, 2021). 
Initially, we defined a search space containing various 
combinations of hyperparameters, including the number of 
decision trees, the maximum depth of the trees, the minimum 
number of samples required to split an internal node, the 
minimum number of samples required at a leaf node, and 
whether bootstrap sampling is used. 

“GridSearchCV” tested each of the 2,400 different 
hyperparameter combinations defined in our search space 
and employed cross-validation to comprehensively assess the 
performance of each combination. The training dataset was 
divided into five subsets, with one subset being used as the 
validation set to evaluate the model and the remaining four 
subsets for training. The performance of each combination 
was assessed based on the average results of these five 
validations. 

The optimal combination of hyperparameters for the model 
was finally identified by analyzing and comparing. After 
determining the best hyperparameters, these parameters were 
used with the full training dataset to conduct the final training 
of the random forest classifier, ensuring the model achieved 
optimal predictive performance. 

4.2. Neural Networks Hyperparameter Tuning 

The grid search method used for identifying the optimal 
hyperparameters of the RF Classifier was considered 
unsuitable for neural networks due to time cost concerns. 
Hence, the “Keras Tuner” Python’s library is proposed to 
perform hyperparameter optimization through random search 
of neural network based models. Similar to “GridSearchCV”, 
before starting the random search, a search space for each 
model is defined. However, the distinct feature of the random 
search method provided by “Keras Tuner” is that it does not 
attempt every possible combination of hyperparameters. 
Instead, it randomly selects n combinations of 
hyperparameters from the defined search space to experiment 
with. A key advantage of this approach is its ability to 
significantly reduce the search time while still maintaining 
the possibility of discovering well-performing 
hyperparameter sets. 

5. RESULTS 

The most suitable data processing approach and the most 
optimal hyperparameters for each model are shown in Figure 
7. Each trained model has been validated both by virtual 
datasets and experimental datasets. 

 

Figure 7 The most suitable data processing approach and the 
most optimal hyperparameters for each model. 

5.1. Validation with virtual dataset 

The virtual dataset comprises one charging data set generated 
by a normal battery electric equivalent circuit model and 
other two charging data sets generated respectively by ISC 
battery electric equivalent circuit models, characterized by 
short-circuit resistances of 10Ω and 510Ω, respectively. 

The validation results of models of the instantaneous feature-
based method are shown in Figure 8, whereas the results for 
models utilizing historical feature-based methods are 
illustrated in Figure 9. These figures illustrate the temporal 
variation of cell voltage (Vcell) during the constant current 
charging process of normal batteries and batteries 
experiencing ISC faults with short circuit resistances of 10 
ohms and 510 ohms. Furthermore, the figures depict the fault 
detection outcomes at each time point during the charging 
process, as predicted by the RF model and the RF model 
integrated with MLP. The prediction outcomes are marked in 
blue and red, indicating correct predictions and incorrect 
predictions, respectively. 
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Figure 8: Validation Results of models of Instantaneous 
Feature-based method with virtual dataset. The blue line is 
the Vcell vs time, and the red points represent the moments 

where the prediction is wrong. 

 

Figure 9: Validation Results of models of Historical 
Feature-based Methods with virtual dataset. The green part 
represents the moments when the charging amount is still 

less than 1% nominal capacity. 

5.2. Validation with experimental dataset 

The experimental dataset consists of two datasets. One of 
them is the charging dataset of a real battery without any fault. 
The other one is the charging dataset from the same battery 
connected with a 10Ω short-circuit resistance emulating an 
ISC condition. 

The battery model used to generate the virtual data assumed 
a state of health (SoH) of 100%, whereas the battery utilized 
for the experimental dataset did not have the exact same SoH. 
Hence, Eq. (4) should be employed for calculating the voltage 
difference of the experimental dataset. 

 𝑉ௗ௜௙௙_ୣ୶୮ _௞ = (𝑉௞ − 𝑉௞ିଵ%௖) ∙ 𝑆𝑜𝐻௘௫௣ (4) 

Figure 10 and Figure 11 illustrate the validation results of 
Instantaneous Feature-based method models and Historical 
Feature-based method models respectively. These figures 
also use red and blue markers to denote the accuracy of 

predictions in relation to the actual conditions, where red 
indicates a mismatch between predicted and actual label, and 
blue signifies correct predictions. 

 

Figure 10: Validation Results of models of Instantaneous 
Feature-based method with experimental dataset. 

 

Figure 11: Validation Results of models of Historical 
Feature-based Methods with virtual dataset. 

6. DISCUSSION 

This study introduced four innovative methods for detecting 
ISC faults, all of which demonstrated a prediction accuracy 
above 90% (and 8 of 12 close to 99%) during the validation 
process with virtual data, including the identification of 
normal data and ISC data with 10Ω and 510Ω short-circuit 
resistances. The validation results are presented in Table1.  
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The RF method, being the earliest and simplest instantaneous 
feature-based method, shows excellent performance in 
distinguishing between ISC and normal data within the 
virtual dataset. It achieved an accuracy of 98.3% for normal 
data and 99.3% for severe ISC detection (lower short-circuit 
resistance values), though its accuracy slightly decreased to 
90.8% for early-stage ISC detection (higher short-circuit 
resistance values). To enhance the model's accuracy in 
predicting high resistance value ISC conditions, three other 
detection methods based on model stacking were proposed, 
using RF as the base model whose output serves as additional 
input features for other models. 

The combination of RF with MLP slightly improved the 
accuracy for high resistance value ISC conditions to 93.8%, 
at the cost of reduced accuracy for normal battery data 
predictions, which fell to 95.9%. This is a consequence of the 
weight distribution of RF’s estimators provided by the MLP. 

The combination of RF with CNN performed best in virtual 
data validation. It achieved a 1.6% increase in accuracy for 
normal data predictions, reaching 99.9%. Moreover, this 
method improved the detection accuracy for 510Ω short-
circuit resistance ISC from 90.8% to 99.7%. Nonetheless, its 
accuracy for detecting lower resistance ISC slightly fell by 
0.3% to 99.0% compared to using RF alone. 

The combination of RF with LSTM networks increased the 
prediction accuracy for high resistance ISC detection to 98.6% 
while maintaining the accuracy for normal data predictions at 
98.1%. Nevertheless, lower resistance ISC detection slightly 
decreased to 94.2%. 

The validation process with experimental data has shown a 
decrease in accuracy. All models experienced a significant 
performance decline in the validation with the experimental 
dataset, especially in predicting normal data. The 
instantaneous feature-based methods outperformed the 
historical feature-based methods overall in the experimental 
dataset. RF and RF+MLP maintained over 90% accuracy in 

predicting low resistance ISC conditions, but their accuracy 
in predicting normal data dropped to 55% and 45.8%, 
respectively. The HFM-based methods had less than 30% 
accuracy in predicting normal data, and their detection 
accuracy for ISC faults did not reach 80%. 

This performance drop could be attributed to overfitting on 
virtual normal data, as the virtual normal battery could 
generate only a single set of normal battery charging data, 
and to discrepancies between data generated by equivalent 
circuit models and real data, preventing the RF model from 
accurately learning subtle changes in real conditions. The 
performance of model stacking methods was impacted by the 
base model RF's performance; if RF could not provide 
accurate predictions, the overall performance of the stacked 
models was negatively affected. 

In real applications, as the performance gap between electric 
equivalent circuit model and actual battery increases, and 
therefore, the negative effect of stacked models will be 
amplified, making the RF model a preferred choice for ISC 
detection algorithms in the absence of real data. Nonetheless, 
if the performance gap could be resolved, or if real-life data 
could be used to further train the stacked models, models like 
RF+CNN could achieve significantly higher accuracy levels 
in early-stage ISC detection compared to the RF model alone.  

7. CONCLUSION 

This paper developed four methods for detecting ISC faults. 
Data is obtained from simulations and experiments at lab 
level. The ISC fault detection methods are trained using the 
virtual data. The normalization method, normalization 
strategy, are performed by using an exhaustive method and 
hyperparameter tuning is done by grid-search and random-
search. After the training and hyperparameter tuning, these 
methods have been evaluated respectively by conducting 
validations and performance comparisons with both the 
virtual and experimental datasets. 

The validation with virtual data shows that the historical 
feature-based method combining RF and CNN demonstrated 
superior performance. However, the limitations of virtual 
data became apparent during the validation with 
experimental data. The base model, the RF model, fails to 
achieve satisfactory prediction results on the experimental 
dataset. It suffers a drop of accuracy from 98.3% to 55% in 
describing data without ISC. This limitation further impacted 
the overall performance of the RF+CNN methods in the 
experimental data validation, having higher accuracy drops 
than the ones observed in RF. 

To address this issue in future research, one of the potential 
approaches could be integrating digital twin and cloud 
computing technologies. Digital twins can facilitate the 
collection of extensive real-world data to refine the model, 
while cloud computing, combined with the gathered real-
world data, can enable continuous learning for the model. 

Table 1. Validation Accuracy of models on Different 
Validation Dataset. 

 
Dataset RF RF+MLP RF+CNN RF+LSTM 
Normal 
(Virtual) 

98.3% 95.9% 99.9% 98.1% 

Normal 
(Experi
mental) 

55.0% 45.8% 21.5% 29.9% 

10Ω
(Virtual) 

99.3% 99.7% 99.0% 94.2% 

10Ω
(Experi
mental) 

90.8% 93.9% 82.2% 75.0% 

510Ω 
(Virtual) 

90.8% 93.8% 99.7% 98.6% 
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This method ensures the model's adaptability to real-world 
data. Moreover, as a battery's SoH gradually declines, 
affecting its charging data throughout its use, continuous 
learning can also allow the model to adjust to these changes. 
This synergy of multiple technologies considerably augments 
the flexibility and universality of ISC detection systems, 
equipping them to accommodate a wider array of scenarios 
and conditions. 
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NOMENCLATURE 

SoHexp battery's SoH in the experimental dataset 
Vk  voltage at the kth moment 
Vk-1%c voltage at the moment before charging 1% 

of the nominal capacity prior to the kth 
moment. 

Vdiff_k voltage difference of virtual dataset 
between kth and k-1%cth moment 

Vdiff_exp_k voltage difference of experimental dataset 
between kth and k-1%cth moment 

x  unnormalized original value 
xmin  minimum value among dataset 

xmax  maximum value among dataset 

xnorm  normalized value 
μ  mean value of dataset 
σ  standard deviation of dataset 
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