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ABSTRACT

System overheating is a common problem in electric equip-
ment, as degradation of contacts lead to an increase in Ohmic
resistance and increased thermal losses. Temperature mea-
surements are widely employed to monitor a device’s health
status, to estimate its remaining useful life, and to inform
maintenance strategies. An issue that is special to electrical
distribution networks is the varying heating power, which is
in turn due to changes in the current. This results in varying
temperatures, which in addition can often be delayed com-
pared to the currents. Simple threshold-based diagnostics
approaches are therefore not reliable for detecting faults in
contacts. It is common to analyze the thermal behavior of
electric devices using thermal networks, for both design and
diagnostic purposes. Unfortunately, identifying the parame-
ters of thermal networks from measured temperature data is a
challenging problem, mainly due to identifiability issues and
to numerical instabilities in parameter estimation. We pro-
pose an alternative data-driven strategy to compute the state-
of-health of electrical devices which does not resort to ther-
mal networks. Our approach consists in informing physics-
based reduced models of the thermal response with sensor
data. We show that our method is linked to the thermal net-
work approach but avoids the full identification of the system,
leading to better stability as well as less computational effort
in the determination of its parameters. Rigorous testing with
synthetic and experimental data confirms the efficacy of our
methodology.

1. INTRODUCTION

The effective monitoring of the operational health of elec-
tric devices is of utmost importance to guarantee the secure
and steady functioning of industrial facilities (Hoffmann et
al., 2020). Among the vulnerabilities encountered by these
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devices, the issue of overheating due to Joule’s effect stands
out prominently. A significant portion of the heat generated
within these devices comes from electric contacts. The dete-
rioration of contacts results in an increase in their electrical
contact resistance (ECR), which, in turn, triggers pronounced
overheating. Such overheating not only disrupts operational
stability but also exposes the devices to the imminent risk of
irreparable harm.

With the rise in connectivity of industrial devices – the in-
dustrial internet of things – the potential of monitoring al-
gorithms for predictive maintenance has grown considerably.
In the present context, temperature data can be leveraged to
prevent excessive overheating and monitor the health state of
devices. While simple algorithms monitor the temperature
and raise alerts based on critical levels, the dynamic nature of
the thermal response to time-dependent current loads yields
more insight into the root cause of the problem.

The method we propose in this report is computationally light
and memory-efficient (in contrast to numerical solvers of par-
tial differential equations), and is robust when confronted with
real data (unlike thermal networks). Despite its simplicity,
we believe this method can be effectively used for making
thermal predictions and detect anomalous behavior for a wide
range of electric devices.

Thermal networks can be cumbersome to set up and train
(O. M. Brastein et al., 2019; O. Brastein et al., 2020; Boodi
et al., 2022), but they are nevertheless a flexible tool to model
the temperature response of the device. Conversely, the me-
thod which we propose here does not allow to predict tem-
peratures away from the sensor and requires some dedicated
training of the response of each device using a specific cur-
rent profile. Memory-wise, the method also requires some
limited storage of past current values. Finding a mathemati-
cal equivalence of thermal networks and the proposed method
may therefore lead to the development of a method that com-
bines the two approaches and retains the advantages of both.
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The remainder of this article is as follows. In Section 2 we in-
troduce the thermal kernel method, focusing on how to cope
with noise in the data, and on how to infer variations in the
ECR values. The equivalence of the kernel method and the
thermal network approach is then discussed in Section 3. In
Section 4 we test the method against synthetic data, checking
the accuracy of the method as well as its robustness against
model misspecification and noise in temperature data. Fi-
nally, in Section 5 we draw our conclusions and propose an
outlook for future work.

2. THE THERMAL KERNEL METHOD

We consider an electric device which is equipped for simplic-
ity with a single temperature sensor (see Section 2.4 below for
the case of multiple sensors). We model the over-temperature
T at the sensor location for a new and healthy device as

T (t) =

∫ t

0

k0(t− s) I2(s) ds, (1)

where k0 is an unknown kernel function, and where I denotes
the electric current, which we assume to satisfy I(t) = 0 for
all t ≤ 0. Note that k0 can be seen as a Green function of
the thermal problem, and I2 is proportional to the thermal in-
put due to Joule’s law of heating. The kernel k0 captures all
linear thermal influences on the temperature measured by the
sensor, and in particular the heat generated both by bulk con-
ductors (e.g., busbars in electric devices) and the heat gener-
ated at imperfect contacts, which are both proportional to I2.
The existence of such a kernel function is guaranteed if we
assume that the system is linear both with respect to the heat
flow and the dependency on I2.

Let N be the number of electrical contacts in the device, and
denote by ∆Ri the variation (typically an increase) of the
ECR in the i-th contact for i = 1, . . . , N . Then, we assume
that there exist kernels ki for all i = 0, 1, . . . , N such that the
temperature at the sensor location reads

T (t) =

∫ t

0

k0(t− s)I2(s) ds

+

N∑

i=1

∆Ri

∫ t

0

ki(t− s)I2(s) ds.
(2)

With the formula in Eq. (2), we assume that the thermal re-
sponse at the sensor location of the device after contact degra-
dation is encoded by the kernel

k∆(t) = k0(t) +

N∑

i=1

∆Riki(t), (3)

where the kernels ki(t) model the thermal response due to
a change of resistance at contact i. The kernel functions ki
for i = 0, 1, . . . , N are unknown and depend on the device

geometry, on how heat is exchanged with the surrounding en-
vironment, and on the thermal interconnections of the device
components.

2.1. Determination of the kernel functions

In order to determine the kernel functions we use the response
of the system to a step excitation, i.e., by imposing a constant
current I(t) = I0 for all t ≥ 0. First, we fix ∆Ri = 0 for all
i and derive both sides of Eq. (1) with respect to t to obtain

k0(t) =
Ṫ (t)

I20
. (4)

Note that the temperature derivative Ṫ may not be available
from sensor data, but can easily be reconstructed in practice
by means of a finite difference formula from the measured
temperature T . Note that numerical differentiation may am-
plify noise on the signal. We tackle this issue in Section 2.2
below. Given k0 we can then determine the remaining N ker-
nels by increasing the ECRs by a known quantity one by one.
Indeed, if it holds I(t) = I0 and ∆Rj = 0 for all j ̸= i for a
fixed index i, we have from Eq. (2)

Ṫ (t) = (k0(t) + ∆Riki(t)) I
2
0 .

If the ECR increase ∆Ri is known and we measure the cor-
responding temperature T , then the kernel ki is given by

ki(t) =
1

I20∆Ri

(
Ṫ (t)− I20k0(t)

)
. (5)

It might be unpractical or impossible in some scenarios to
increase the ECR by a known quantity. Determining kernel
functions may then involve data generation through a high
fidelity simulation.

2.2. Noisy or short temperature data: Exponential fit

Let us assume that the temperature T is observed for a finite
time interval 0 ≤ t ≤ tend and that observations are subject
to measurement noise. In this case, the kernel k0 given by
Eq. (4) (and similarly the kernels ki, i = 1, . . . , N ) should
be post-processed to obtain a smooth kernel that can also be
evaluated for times t > tend. For this purpose, we can in-
troduce the natural assumption that k0 is given by an infinite
sum of negative exponential functions, as in

k0(t) =

∞∑

j=1

aj exp(−λjt),

where aj ∈ R, λj ∈ R+ for all j = 1, 2, . . .. We then truncate
the sum to an integer number Nexp of exponential functions
and write

k̃0(t) =

Nexp∑

j=1

aj exp(−λjt).
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A suitable value Nexp can be chosen with a model selection
algorithm. Finally, we determine aj and λj by maximizing
the likelihood of the noisy kernel k0 given by Eq. (4) applied
with the data sequence T . This ansatz can be motivated by the
equivalence between thermal networks and kernels (or more
in general by any finite-dimensional approximation of the full
heat problem). More details can be found in Section 3.

The approach of fitting exponential functions to k0 could be
problematic in case temperature data are corrupted by noise.
Indeed, noise is amplified when computing the time deriva-
tive Ṫ of the temperature. In this case, it is more robust to fit
directly the temperature data T , which under the assumption
above is approximated by

T̃ (t) = I20

Nexp∑

j=1

aj
λj

(1− exp(−λjt)) .

We can therefore fit the curve above directly to the tempera-
ture data and determine the values of aj and λj which fully
define the kernel function k0.

We can repeat the same reasoning for the kernels {ki}Ni=1

modeling the thermal response at the sensor location due to
(additional) heat generated at the contacts. We make the guess
that for all i = 1, . . . , N it holds

ki(t) =

Nexp∑

j=1

aij exp(−λijt).

Manipulating Eq. (5) with similar calculations as above we
obtain

T (t)− I20
∫ t

0

k0(t− s) ds

= I20∆Ri

Nexp∑

j=1

aij
λij

(1− exp(−λijt)) .

The left-hand side of this equation is known. Fitting the co-
efficients aij and λij to data then defines the kernel ki. Note
that this approach assumes that the coefficients λ are indepen-
dent of each other for k0 and each ki. Since the thermal time
scales should be the same for the nominal value of the re-
sistance and increased resistances by linearity, the values λij
should be shared by the fit to k0. A more robust approach,
which we do not investigate here, would therefore consist in
fitting the kernel functions simultaneously.

2.3. Inference of the resistance variations

In this section, we describe how knowledge of the kernel
functions can be combined with temperature data to infer on-
line a variation of the ECR of the N contacts, and conse-
quently deduce their health status. Assume that all the kernels
ki have been determined and denote for i = 0, . . . , N by Ki

the integrated quantity

Ki(t) =

∫ t

0

ki(t− s)I2(s) ds,

where I is the measured current. Then, we can rewrite Eq. (2)
as

T (t) = K0(t) +

N∑

i=1

∆RiKi(t). (6)

Assume that the current and the temperature at the sensor
have been measured on a set of times t = (t0, t1, . . . , tM ),
where tj = ts · j and ts is the sampling time. We can then
assemble M -dimensional vectors

T = T (t), Ki = Ki(t),

where T (t) = (T (t0), T (t1), . . . , T (tM ))⊤. Using the vec-
torial notation, the discrete version of Eq. (6) is

T = K0 +

N∑

i=1

∆RiKi.

An estimator ∆̂R ∈ RN of the vector of ECRs can be defined
as the least square estimator

∆̂R = argmin
∆R
∥K∆R− (T−K0)∥ , (7)

where K is the M × N matrix with columns Ki for i =
1, . . . , N . The minimization problem is overdetermined when-
ever M ≥ N , i.e., the number of time instants for the mea-
surements exceeds the number of contacts in the system, which
is most likely verified. Hence, the estimator in Eq. (7) should
be determined as the solution of the N ×N linear system

K⊤K∆̂R = K⊤(T−K0).

Note that in real applications we expect the values of ∆Ri to
increase rather than decrease due to contact degradation. A
physically meaningful solution could therefore be enforced
by using the constrained minimizer

∆̂R = arg min
∆R≥0

∥K∆R− (T−K0)∥ ,

where the symbol ≥ is meant component-wise.

2.4. Multiple temperature sensors

We now consider a device which is equipped with multiple
temperature sensors, and explain how more information can
be leveraged to obtain a possibly more precise estimation of
variations in the ECRs.

Assume that we have J temperature sensors. The temperature
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of each sensor j = 1, . . . , J can be expressed as

T j(t) =

∫ t

0

kj0(t− s)I2(s) ds

+

N∑

i=1

∆Ri

∫ t

0

kji (t− s)I2(s) ds.

Note that the resistance increase ∆Ri is common for all sen-
sors, as contacts are the same. Conversely, the temperature re-
sponse is different across sensors, hence typically kj1i ̸= kj2i
for j1 ̸= j2. Kernels kji can be determined as outlined in Sec-
tion 2.1 for each i = 0, . . . , N and j = 1, . . . , J . Similarly
to Section 2.3, we then write Tj = T j(t) and Kj

i = Kj
i (t)

where

Kj
i (t) =

∫ t

0

kji (t− s)I2(s) ds.

Calling Kj theN ×M matrix whose columns are the vectors
Kj

i for i = 1, . . . , N , we have J linear equations for ∆R

Kj∆R = Tj −Kj
0, j = 1, . . . , J.

In order to compute the least square solution ∆̂Rwe assemble
a NJ ×M matrix K and NJ vectors T and K0 by stacking
vertically the J equations as

K =




K1

K2

...
KJ


 , T =




T1

T2

...
TJ


 , K0 =




K1
0

K2
0

...
KJ

0


 .

The least square estimate ∆̂R is then the solution of the N ×
N linear system

K⊤K∆̂R = K⊤ (T−K0) ,

and similarly to the single-sensor case a non-negative con-
straint can be imposed to the least-square solution. We note
that in this case we expect an improvement by enforcing the
time scale parameters to be the same across resistances when
performing an exponential fit as in Section 2.2.

3. EQUIVALENCE WITH THERMAL NETWORKS

Thermal networks have been used to model the temperature
of electric devices, and to infer health status given temper-
ature measurements (Stosur et al., 2016). In this section,
we describe how our approach simplifies thermal networks,
whose parameters are notoriously difficult to estimate from
data (O. M. Brastein et al., 2019; O. Brastein et al., 2020;
Boodi et al., 2022). For a general discussion on identifiability
of linear models, we refer the reader to (Raue et al., 2014).

We call thermal network a model which splits the device into
an integer number Nc of compartments, whose temperature
is assumed to be sufficiently homogeneous to be described

by a single over-temperature Ti, for i = 1, . . . , Nc. We as-
sume that the i-th compartment has a heat capacity Ci for
i = 1, . . . , Nc. The compartments are thermally intercon-
nected so that the heat flowing between the compartments
indexed by i and j is proportional to their temperature differ-
ence with a constant hij . If two compartments are not directly
connected thermally, we trivially set hij = 0. Moreover, we
assume that the heat flowing towards the environment is pro-
portional to the over-temperature Ti with a constant αi. Fi-
nally, we assume that all elements in the network represent
parts of the device which are subject to an electrical current
I = I(t), so that the thermal input to the i-th element is given
by ui(t) = RiI

2(t) by Ohmic heating. Under these assump-
tions, the over-temperature Ti of the i-th compartment of the
network, for i = 1, . . . , Nc, satisfies the ordinary differential
equation (ODE)

CiṪi(t) =

Nc∑

j=1,j ̸=i

hij(Tj − Ti)− αiTi + ui(t). (8)

In this section, we show how the temperature evolution of
each compartment in a thermal network satisfies Eq. (1), i.e.,
there exist kernels ki0 such that

Ti(t) =

∫ t

0

ki0(t− s)I2(s) ds, (9)

for each i = 1, . . . , Nc, and that the kernel function can be
written as a sum of exponential functions as in Section 2.2.
Hence, a system whose thermal response can be described ac-
curately by a thermal network can also be described by ther-
mal kernels, with the advantage that in the kernel approach
less parameters need to be determined from temperature mea-
surements.

To start the derivation, we notice that the ODE system Eq. (8)
can be written in matrix form as

CṪ(t) = HT(t) +RI2(t), (10)

where T is a vector with the temperatures of all compart-
ments, where R is a Nc-dimensional vector containing the
values of the resistances, and where C and H are appropriate
matrices containing the values of the coefficients h, α and C.
Let us rewrite Eq. (10) as the generic linear system

Ṫ(t) = −AT(t) + F(t), (11)

where A = −C−1H and F(t) = C−1RI2(t). Let T(0) =
T0 be a known initial condition. It is simple to verify by
differentiation that the solution of Eq. (11) is given by

T(t) = e−AtT0 +

∫ t

0

e−A(t−s)F(s) ds, (12)

where we denote by e−At the matrix exponential to distin-
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guish it from the scalar exponential (e.g., et).

The matrix A is not symmetric but it is diagonalizable with
real eigenpairs.1 Recall that for any diagonalizable matrix
A = VΛV−1, where V is the matrix with the eigenvectors
{vj}Nc

j=1 of A as columns, and Λ = diag(λ1, . . . , λNc) is the
matrix of the eigenvalues, it holds

e−At = Ve−ΛtV−1 = Vdiag
(
e−λ1t, . . . , e−λNc t

)
V−1.

This implies that if (λ, v) is an eigenpair of A, then (e−λt, v)
is an eigenpair of e−At. Let w be an arbitrary vector in RNc

and let {cj = (V−1w)j}Nc
j=1 be the components2 of w in the

basis formed by the eigenvectors of A, i.e., the scalars such
that

w =

Nc∑

j=1

cjvj .

Hence, applying e−At to w gives

e−Atw =

Nc∑

j=1

cje
−Atvj =

Nc∑

j=1

cje
−λjtvj .

Assume for simplicity and without loss of generality that T0 =
0. Replacing the decomposition above into Eq. (12) with
w = C−1RI2(s) shows that

T(t) =

∫ t

0

Nc∑

j=1

cjvje
−λj(t−s)I2(s) ds,

where cj = (V−1C−1R)j . Hence, the temperature of the
i-th compartment satisfies

Ti(t) =

∫ t

0

Nc∑

j=1

αije
−λj(t−s)I2(s) ds,

where αij = Vijcj . This shows that the temperature of the
i-th compartment can be indeed written as in Eq. (9) for

ki0(t) =

Nc∑

j=1

αije
−λjt,

1Since A = −C−1H, with H symmetric and C diagonal and positive
definite, we can write

A = C−1/2ÃC1/2,

where Ã = −C−1/2HC−1/2. The matrix Ã is real and symmetric, and
hence can be diagonalized with real eigenpairs, which in turn implies that
A is diagonalizable with real eigenpairs.

2Since the matrix A is in general not symmetric, the vectors V do not form
a orthonormal basis of RNc . If A is symmetric, it holds V−1 = V⊤ and

cj = (V−1w)j =

Nc∑

i=1

(V⊤)jiwi =

Nc∑

i=1

Vijwi = ⟨vj ,w⟩,

where ⟨·, ·⟩ is the Euclidean scalar product, which gives the more recogniz-
able decomposition on a basis of orthonormal eigenvectors.

which is a sum of exponential functions as the approxima-
tions we employ in Section 2.2. Consider now that for each
k = 1, . . . , Nc the resistance of the k-th compartment in-
creases by a quantity ∆Rk. We can write the overall kernel
defining the temperature of the i-th compartment as

ki(t) =

Nc∑

j,k=1

Vij

(
V−1C−1

)
jk
Rke

−λjt

+

Nc∑

j,k=1

Vij

(
V−1C−1

)
jk

∆Rke
−λjt.

We see that ki has the form of the kernel of Eq. (3) with

kik(t) :=

Nc∑

j=1

Vij

(
V−1

)
jk
e−λjt,

which is the kernel associated to an increase in the k-th re-
sistance as seen by the i-th element of the thermal network.
Note that since the resistances do not appear in the expression
of the system matrix A = −C−1H, the time scales λj in the
kernels kik are the same as the ones of the original kernel.

3.1. Generalization: kernel structure of thermal problems

The considerations above for thermal networks and the kernel
structure of their solution applies more widely. In a linear
approximation, heat transfer can be described by

CṪ = LT+ u, (13)

where L is an operator describing both heat conduction H
and coupling to the ambient α, and u is the heat injected in
the system. In the specific case of a thermal network, the tem-
peratures are vectors and the operators (finite dimensional)
matrices. However, this equation may also describe a temper-
ature field with a partial differential operator describing heat
conduction on a physical domain Ω. For x ∈ Ω, the local
operator C = C(x) is the specific heat capacity and the dif-
ferential operator L(x) = −∇k(x) · ∇ − k(x)∆ describes
heat conduction with a space-dependent heat conductivity k
defined on Ω.

Note that Eq. (13) is linear in temperature, the operator L
is self adjoint due to the symmetric nature of heat diffusion,
and the field C is a (local) positive scalar. Normalizing the
temperature T̃ = C1/2T and multiplying Eq. (13) by C−1/2,
we see that the operator occurring on the right hand side of
the equation for T̃ (C−1/2LC−1/2) is also self-adjoint. The
spectral theorem then guarantees that this operator has real
eigenvalues and orthogonal eigenfunctions that span the full
space. Formally, the solution can be expressed in terms of the
exponential operator eLt as

T̃ =

∫ t

0

eL(t−s)ũ(s) ds, (14)

5

Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN – 978-1-936263-40-0

Page 101



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

where ũ = C−1/2u. For practical calculations, one has to
expand in the eigenvectors as shown in the explicit example
above. The general solution (14) has the same structure as
the thermal kernels (1), which is hence a generic form for this
type of linear heat diffusion problems. Therefore the expo-
nential form of the kernel function can be derived indepen-
dent of the assumption of an underlying thermal network as
an approximation taking the dominant eigenmodes of L into
account.

4. NUMERICAL EXPERIMENTS

In this section, we present a series of numerical experiments
demonstrating the usefulness, accuracy, and robustness of our
approach.

4.1. Scenario 1: Simple network

The first test setup we employ in experiments is represented
schematically in Fig. 1(a). We consider an electrical device,
e.g., a power protection device such as a breaker or a switch,
which protects an electrical installation. The device connects
the installation to a power source (e.g., the grid) with two
electric contacts between busbars, one per side of the device.
We assume that the device is equipped with a temperature
sensor. We consider the problem of monitoring the ECR of
the two contacts using the temperature sensor of the device.

In order to simulate this scenario, we use a three-compartments
thermal network as shown in Fig. 1(b). In the network, the
center element represents the device, and the lateral elements
the two contacts. We suppose that the three compartments
are exposed to the same ambient temperature Tamb, which
we assume without loss of generality to be equal to zero.

Cont. 1 Device Cont. 2

Po
w

er
so

ur
ce

In
st

al
la

tio
n

Temperature sensor

I(t) I(t)

(a)

C1, T1 C2, T2 C3, T3

Tamb Tamb Tamb

R1I
2
1 R2I

2
2 R3I

2
3

α1 α2 α3

h12 h23

(b)

Figure 1. Setup for numerical experiments. (a) Schematic
representation of a power protection device connecting an in-
stallation to a power source with two electric contacts. (b)
Thermal network used to simulate the scenario.

The values of the coefficients Ci, αi, Ri for i = 1, . . . , 3, as
well as of the hij for (i, j) ∈ {(1, 2), (2, 3)}, given in Table
1, are fixed to values which are realistic for a typical electric
device. We determine the base kernel k0 associated with the
temperature sensor placed on the device fixing I = 1kA and
simulating the network temperatures for 0 ≤ t ≤ 5 h. Simu-
lated data are obtained with an implicit numerical discretiza-
tion of Eq. (10) on a time grid with time step equal to 1min.
We then extract the device temperature T2 and compute k0
using Eq. (4), where Ṫ2 is computed by finite differences. We
determine the kernels k1 and k3 associated to an increase of
R1 and R3 following the procedure outlined in Section 2.1
with ∆Ri = Ri, i.e., we double the ECR value to determine
the kernel associated to a fault in the i-th contact.

Table 1. Coefficients of the thermal network in Fig. 1.

α [WK−1] R [µΩ] C [JK−1] h [WK−1]

1 1.0 100 3500 –
2 2.0 50 3500 –
3 3.0 100 3500 –
12 – – – 0.75
23 – – – 0.55

We measure the error on the i-th resistance as

erri =

∣∣∣∆̂Ri −∆Ri

∣∣∣
Ri +∆Ri

, (15)

where ∆̂Ri is the inferred increase in resistance and Ri is
the nominal value of the i-th resistance (i.e., before increase).
Note that the numerator in the right-hand side of Eq. (15) is
equal to |Ri + ∆̂Ri − (Ri +∆Ri)|, i.e., the absolute differ-
ence between the increased resistance and its inferred value.
Hence, the error metric above is a relative error between the
inferred and the true values of the increased resistance, rather
than the resistance increase.

We generate 200 values of resistance increases (∆R1,∆R3)
randomly as ∆Ri ∼ U(0, Ri), independently for i = 1, 3.
This means that the ECR degrades in all experiments, with
values up to twice the original. For each pair of increases in
the resistances, we generate 12 hours of temperature T2 with
sampling time 1min, always with the same current I defined
by

I(t) =





1 kA, t ≤ 1 h,

0 kA, 2 h < t ≤ 5 h,

0.7 kA, 5 h < t ≤ 9 h,

0.3 kA, t > 9 h.

(16)

The error in the estimation procedure, computed using Eq.
(15), is summarized with boxplots in Fig. 2(a). We see that
both resistances are estimated very accurately over the whole
dataset of 200 experiments. Specifically, the error on R1

never exceeds 0.1%, and the error on R3 never exceeds 1%.
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We repeat the same experiment but increase either R1 or R3

while keeping the other resistance to its nominal value. We
repeat the inference 200 times per resistance with random in-
crements as above. This experiment is relevant for applica-
tions, as the ECR of one contact only could undergo a rapid
degradation, while all others could stay constant. Results,
given in Figs. 2(b) and 2(c), demonstrates that also in this
case the inference procedure is very accurate in determining
the increased resistance values.

(a) (b) (c)

Figure 2. Percentage relative error in inference of two in-
creased resistances given one temperature sensor. (a) Simul-
taneous increase of R1 and R3. (b) Only R1 is increased. (c)
Only R3 is increased. Model configurations given in Fig. 1,
test setup given in Section 4.1. Box-plot whiskers indicate
1.5 times the interquartile range, dots indicate outliers.

4.2. Scenario 2: The impact of adding a sensor

We consider a more complex configuration consisting of a
thermal network with 6 compartments connected on a line,
i.e., such that hij = 0 if j /∈ {i − 1, i + 1} for i, j =
1, . . . , 6. We assume that all parameters appearing in Eq. (8)
are known, including nominal resistance values. Nominal pa-
rameter values are of the same magnitude as those of Table 1.
Similarly to Section 4.1, we then increase randomly the resis-
tances up to double their value and infer the increase increase
with the procedure described in Section 2.3. The current used
to excite the network with increased resistances is given in
Eq. (16). We compare results obtained observing one tem-
perature of the network only, T2, and with two temperatures,
T2 and T6. Note that when we observe one temperature we
have one kernel k0 and 6 additional kernels for the increase
of Ri, i = 1, . . . , 6. When we observe two temperatures,
we have one base kernel per sensor, and 6 additional kernels
corresponding to an increase in resistance per sensor, for a to-
tal of 14 kernel functions. We recall that the method to infer
the resistance increase with multiple sensors is described in
Section 2.4.

Results, given in Fig. 3, demonstrate that errors can be as
high as 60% on the fifth and sixth resistance (using the metric
of Eq. (15)) when only the temperature R2 is measured. This
is because the thermal impact of the sixth compartment on

the second is weak, and diluted by heat diffusion through the
network. If we observe both T2 and T6, the error on all resis-
tances is extremely low in most cases (below 0.01%), except
of some outliers for which the error is above 50% error on
R6. This experiment nevertheless shows the benefit of equip-
ping an electric device with an additional temperature sensor,
especially if the device consists of many components that are
thermally interconnected.

4.3. Scenario 3: Model misspecification

The method we present in this report to determine contact re-
sistances relies on accurate determination of the kernel func-
tions k0 and ki for i = 1, . . . , N . In a realistic setting, the
kernel k0 can be simply determined by applying a step current
and measuring the temperature increase, or with any other
system identification approach using data measured on the
real device. For the kernels ki, instead, we would need to in-
crease artificially each resistance by a known quantity before
applying a step current. It could be difficult, or unfeasible,
to obtain such a controlled increase in practice, especially in
a device-specific fashion. We could instead determine ker-
nels that fit an entire fleet of devices, modulo the variability
due to different installations. Specifically, we could use an
experimental or simulated setup to determine universal resis-
tance kernels k̃i that are common to a whole fleet of devices,
maintaining a base kernel k0 that is specific to an individual
installed device. The inferred resistances are then obtained as
the solution to the linear system

K̃⊤K̃∆̂R = K̃⊤(T−K0), (17)

where K̃ is built as in Section 2.3 using the fixed, univer-
sal kernels k̃i. The major concern with this approach is the
misspecification between the real kernel function k0 and the
universal ones ki, especially in terms of incompatible time
scales.

Summarizing, the procedure that we propose to deal with in-
stallation specificity would consist of the following steps:

• Determine a universal base kernel k̃0 in an experimental
or simulated setup;

• Use k̃0 to determine universal kernels k̃i for each resis-
tance that needs to be monitored;

• For each installation of the device, redetermine device-
specific base kernel k0 applying constant current load;

• When needed, infer an increase in resistances using Eq.
(17).

We test the procedure above using the three-compartment net-
work of Fig. 1, with coefficients given in Table 1. In order to
simulate installation-specific conditions, we modify multiple
times the value of the coefficients αi as α̃i ∼ logN (αi, σ),
for i = 1, . . . , 3, where a large value of σ mimics devices
that are very sensitive to different installations. We consider
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(a) Compartment 2 sensed (b) Compartments 2 and 5 sensed

Figure 3. Inference of five resistances varied simultaneously in a six-compartment network. (a) One temperature sensor. (b)
Two temperature sensors. Test setup given in Section 4.2. Box-plot whiskers indicate 1.5 times the interquartile range, and dots
indicate outliers.

σ = 0.4, 0.2, 0.1, 0.05, and for each of these values we gen-
erate 200 values at random of the coefficients α to simulate
200 installations of the same device. Then, we infer the resis-
tances R1 and R3 using Eq. (17). Note that we do not apply a
resistance increase in this case, and just attempt to infer how
impactful is a change of the nominal conditions onto the ker-
nels.

Results, given in Fig. 4, demonstrate that re-calibrating only
the base kernel k0 for each installation is sufficient for keep-
ing good accuracy in the inference of the resistances. More-
over, we see that a good inference result (below 1% except
some outliers) can be achieved even for devices that are sub-
ject to high variability when installed (see the spread in tem-
perature development in case σ = 0.4). We note that lower
installation specificity results in smaller variability in the in-
ferred resistances (see the width of the box-plots in case σ =
0.05).

4.4. Scenario 4: Noisy data

In all experiments above, we employed noiseless data for de-
termining the kernel functions and for estimating the resis-
tances in the model. In this section, we assess the impact of
these two sources of noise on the estimation variability. We
consider the simple three-element network of Fig. 1 with pa-
rameters as in the experiments above. We compute the base
kernel k0 and the kernels ki associated to resistances i = 1, 3
by perturbing the temperature response to a step current with
a Gaussian source of noise ηk ∼ N (0, σ2

k), where σk > 0.
Then, we excite the system with the current profile of Eq. (16)
and perturb the temperature response with a Gaussian source
of noise ηd ∼ N (0, σ2

d), where σd > 0. We then infer the
resistance increase without changing its value in the model,
i.e., data is generated by imposing ∆Ri = 0. We repeat
the experiment for noise scales σd and σk ranging between
10−4 and 10−1, and for each combination of σk and σd we
repeat the experiment M = 50 times. At each j-th repeti-

tion, we record the estimated resistance variations ∆̂R
(j)

1 and

∆̂R
(j)

3 . We measure variability in the estimation as the sum
of the population standard deviations of the two estimated re-
sistance increases, i.e.,

variability = std

({
∆̂R

(j)

1

}M

j=1

)
+std

({
∆̂R

(j)

3

}M

j=1

)
,

where std(·) denotes population standard deviation. We re-
peat the estimation twice: once with raw kernel functions
computed with Eqs. (4) and (5), and once by fitting expo-
nential functions as explained in Section 4.4

Results, given in Fig. 5, demonstrate that the method we de-
velop here is robust with respect to random sources of noise.
As expected, the variability is a growing function of both σk
and σd. We remark that fitting exponential functions to the
kernels has a beneficial effect on the inference accuracy. In-
deed, it can be noticed in Fig. 5 that the variability is slightly
lower when thermal kernels are fitted with exponential func-
tions.

5. CONCLUSION

We introduced a novel method based on thermal kernels to
monitor the condition of an electric device given temperature
measurements. This method allows the calculation of tem-
peratures at specific locations for general linear heat diffusion
problems including thermal networks, for which we demon-
strated an equivalence analytically.

Thermal kernels are simple to fit to data due to their non-
parametric nature, which prevents issues of poor identifiabil-
ity. Indeed, the parameters of thermal networks as simple as
the one of Fig. 1 can be cumbersome or even impossible to
determine if only one of the compartments equips a tempera-
ture sensor, unless good priors on the parameters are available
due to physical considerations or from the results of high-
fidelity and high-cost simulations. This issue is completely
circumvented by thermal networks, which absorb the effects
of all the parameters of an equivalent network approach into
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Figure 4. Results for four scales of model misspecification σ. Experiment setup in Section 4.3.

(a) Fitted kernels (b) Raw kernels

Figure 5. Estimation variability as a function of noise in the
determination of the kernel functions (σk, horizontal axis),
and in the data used for estimating the resistance values (σd,
vertical axis). The contour values are in µΩ (a): Exponential
fit for the kernel functions. (b): Raw kernel functions. Exper-
iment setup in Section 4.4.

a simple data-driven linear transfer function.

We believe that thermal kernels should be preferred to ther-
mal networks to monitor the linear heat sources (e.g., electri-
cal resistances) of devices that are not equipped with a multi-
tude of sensors, which would be required to fit the parameters
of the network.

We suggest that future investigation may exploit the equiva-
lence of thermal kernels and networks, e.g., to study whether
knowing the former can be beneficial to improve the identifi-
ability of the latter.

REFERENCES

Boodi, A., Beddiar, K., Amirat, Y., & Benbouzid, M. (2022).
Building thermal-network models: a comparative anal-
ysis, recommendations, and perspectives. Energies,
15(4), 1328.

Brastein, O., Ghaderi, A., Pfeiffer, C., & Skeie, N.-O. (2020).
Analysing uncertainty in parameter estimation and pre-
diction for grey-box building thermal behaviour mod-

els. Energy and Buildings, 224, 110236.
Brastein, O. M., Lie, B., Sharma, R., & Skeie, N.-O. (2019).

Parameter estimation for externally simulated thermal
network models. Energy and Buildings, 191, 200–210.

Hoffmann, M. W., Wildermuth, S., Gitzel, R., Boyaci, A.,
Gebhardt, J., Kaul, H., . . . Tornede, T. (2020). Inte-
gration of novel sensors and machine learning for pre-
dictive maintenance in medium voltage switchgear to
enable the energy and mobility revolutions. Sensors,
20(7), 2099.

Raue, A., Karlsson, J., Saccomani, M. P., Jirstrand, M., &
Timmer, J. (2014). Comparison of approaches for pa-
rameter identifiability analysis of biological systems.
Bioinformatics, 30(10), 1440–1448.

Stosur, M., Szewczyk, M., Sowa, K., Dawidowski, P., & Bal-
cerek, P. (2016). Thermal behaviour analyses of gas-
insulated switchgear compartment using thermal net-
work method. IET Generation, Transmission & Distri-
bution, 10(12), 2833–2841.

BIOGRAPHIES

Giacomo Garegnani is a scientist at ABB
corporate research. He obtained a PhD in
Mathematics from EPFL in 2021, with a
thesis on inverse problems involving partial
and stochastic differential equations, and on
probabilistic numerical methods. His re-
search interests include uncertainty quantifi-
cation of numerical solvers, model identifi-

ability, and statistical inference for condition monitoring.

Kai Hencken is a corporate research fellow
at ABB corporate research. He obtained a
PhD in Theoretical Physics from the Uni-
versity of Basel in 1994. He was a post-doc
at the University of Washington from 1995
to 1997 and at the University of Basel from
1997 to 2005, where he received his Habil-
itation in 2000 and is a lecturer since. In

2005 he joined the theoretical Physics group at ABB corpo-

9

Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN – 978-1-936263-40-0

Page 105



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

rate research. His research interests include the combination
of physical modeling with statistical methods to solve prob-
lems related to industrial devices, as well as developing diag-
nostics and prognostics approaches.

Frank Kassubek obtained a PhD in Physics
from the University of Freiburg in 2000
(“Electrical and Mechanical Properties of
Metallic Nanowires”). At ABB corporate
research, he works on a wide range of top-
ics including modeling of electrical systems
and sensors, plasma and arc physics, and
PHM topics.

10

Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN – 978-1-936263-40-0

Page 106


