Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN — 978-1-936263-40-0

LSTM and Transformers based methods for Remaining Useful Life
Prediction considering Censored Data

Jean-Pierre NOOT!?
Etienne BIRMELE!
Francgois REY?

! Institut de Recherche Mathématique Avancée, UMR 7501 Université de Strasbourg et CNRS
7 rue René-Descartes, 67000 Strasbourg, France
Jjnoot@unistra.fr
birmele@unistra.fr
2 Liebherr Components Colmar, Haut-Rhin, 68000, FRANCE
Jjean-pierre.noot@liebherr.com

francois.rey@liebherr.com

ABSTRACT

Predictive maintenance deals with the timely replacement
of industrial components relatively to their failure. It allows
to prevent shutdowns as in reactive maintenance and re-
duces the costs compared to preventive maintenance. As
a consequence, Remaining Useful Life (RUL) prediction of
industrial components has become a key challenge for con-
dition based monitoring. In many applications, in particu-
lar those for which preventive maintenance is the general
rule, the prediction problem is made harder by the rarity of
failing instances. Indeed, the interruption of data acquisi-
tion before the occurrence of the event of interest leads to
right censored data. There are few articles in the literature
that take that phenomenon into account for RUL prediction,
even though it is common in the industrial environment to
have a high rate of censored data.

The present article proposes a deep-learning approach based
on multi-sensor time series which allows to consider cen-
sored data during the training of the neural networks. Two
methods are proposed, respectively based on the Dual As-
pect Self-Attention based on Transformer proposed by
(Z. Zhang, Song, & Li, 2022) for non-censored data and on a
recurrent neural network. Their evaluation on the C-MAPSS
benchmark dataset shows, compared to the state-of-the-art
RUL prediction methods, no loss in the absence of censoring,
and outperformance on censored data.

Jean-Pierre NOOT et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

1. INTRODUCTION

Technology and electronic developments of sensors nowa-
days allow the collection of huge amounts of data on me-
chanical and industrial equipment, in particular time se-
ries measuring their evolution over time. The definition of
the maintenance schedule, which is crucial for the industry,
therefore shifts to predictive, or condition-based mainte-
nance (CBM). The latter is defined by opposition to the his-
torical preventive maintenance, for which the maintenance
schedule is pre-defined, each component being replaced
at fixed time intervals. CBM avoids replacement of healthy
components, and therefore reduces costs, by determining
a dynamic schedule depending on the real-time monitor-
ing of the system. A crucial step is therefore the estimation,
given the actual status of the system, of the Remaining Use-
ful Lifetime (RUL) of a component, that is the time before
its failure.

Several approaches exist to create CBM models for RUL es-
timation (Arena, Collotta, Luca, Ruggieri, & Termine, 2021),
most of them being model-based methods, data-driven meth-
ods or hybridisation of those approaches.

Model-based methods consider the physical phenomenon,
for instance corrosion or fatigue, that leads to the failure. A
mathematical model is used to simulate the studied mech-
anism and to get a RUL prediction (Tinga & Loendersloot,
2019). A precise physical and mechanical knowledge is how-
ever needed to build physical-based models. Moreover, this
approach results in highly complex models when applied to
large scale industrial systems composed with a lot of subsys-
tems.

Data-driven methods regroup approaches that rely on stochas-
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tic models or statistical analysis to create fault detection
models not directly mimicking the underlying physics. It
may consist in statistical algorithms to diagnose battery fault
(Y. Zhao, Liu, Wang, & Hong, 2017), stochastic processes to
mimic the degradation processes (Garay & Diedrich, 2019)
or evolving fuzzy models for semiconductor health manage-
ment (Boutrous, Bessa, Puig, Nejjari, & Palhares, 2022).

Data-driven methods include machine learning algorithms,
which have been extensively used by the Prediction and
Health Management community to establish predictive main-
tenance rules. Multiple linear regression durability models
were for instance used to predict the fatigue life of automo-
tive coil (Kong, Abdullah, Schramm, Omar, & Haris, 2019),
or SVM classifiers for fault detection in vehicle suspensions
(Jeong & Choi, 2019). In (Vasavi, Aswarth, Pavan, & Gokhale,
2021), a kNN classifier is used to detect fault by predicting
vehicle health using real time data, while (Patil et al., 2018)
relies on decision trees and gradient boosting regressor for
RUL prediction.

Deep learning, like machine learning methods, allow to have
no physical or mechanical knowledge of the studied system.
In recent years, numerous articles have demonstrated the
effectiveness of those methods for RUL prediction. The data
at hand being mainly time series, the developed methods
focus on architectures widely used to treat sequential data.
Recurrent neural networks like Long-short-time-memory
(LSTM) (Zheng, Ristovski, Farahat, & Gupta, 2017), or Con-
volutional neural network (CNN) (Sateesh Babu, Zhao, &
Li, 2016) and recently Transformers (Z. Zhang et al., 2022),
which were adapted from the original Transformer archi-
tecture (Vaswani et al., 2017) to deal with time series are
popular method used to perform RUL predictions.

The presence of right-censored data is an important issue
in many real-life industrial applications, which is not taken
into account by most methods. Indeed, when the current
policy on the field application is predictive maintenance,
equipment’s are renewed before failure, leading to numer-
ous time-series in the dataset for which the RUL is unknown.
One way to deal with such data is to use the survival ap-
proach based on Cox models that has been successfully
transposed from medical analysis to maintenance analysis
(Chen et al., 2020; Yang, Kanniainen, Krogerus, & Emmert-
Streib, 2022). An alternative is the ordinal regression (OR)
approach where the RUL prediction is replaced by a vector
of predictions encoding the failure time (Vishnu, Malhotra,
Vig, & Shroff, 2019).

The present paper deals with a new deep-learning method
based on ordinal regression to predict RUL on censored data.
It relies on two main contributions regarding the state of the
art. Firstly, the DAST model (Z. Zhang et al., 2022) based on
Transformers is adapted to an ordinal regression framework.
Secondly, it is put onto competition with an improved of

the LSTM-OR model (Vishnu et al., 2019) to obtain the final
prediction rule.

To illustrate its performance, the proposed method is run on
the C-MAPSS Turbofan NASA benchmark dataset, and com-
pared to state-of-the-art methods, able to consider censored
data or not. The benchmark dataset is being characterized
by the absence of censor, the latter is artificially introduced
at various levels. The proposed method is comparable to
the best methods on non-censored data and better when a
significant amount of data is censored.

2. RELATED WORK

As stated in the introduction, the aim of this study is to con-
sider the RUL prediction problem when the learning dataset
is right-censored. That situation is common in applications,
as such a censoring corresponds to components changed
before the failure. This section introduces the main ideas
of the DAST (Z. Zhang et al., 2022) and LSTM-OR (Vishnu
et al., 2019) architectures, and then builds upon those ideas
to propose a novel method for RUL estimation on censored
data.

Beforehand, let us introduce the notations which will be
used throughout the paper.

For a given unit, we denote by:

e T* the time of failure,

¢ C the censoring time if relevant, that is if the unit is
replaced before failure,

e T =min(C,T*) the observed time of replacement,

e X the time series of the p sensors data, xi ; being the
measure of sensor k at time ¢,

¢ Zthe optional of vector covariates, that is characteristics
of the unit which are not varying with time.

Let us fix a maximum value R, for the RUL estimation,
which is standard procedure (Heimes, 2008; H. Li, Zhao,
Zhang, & Zio, 2020) and is relevant for the applications, as
it focuses on the precision of the method on the period pre-
ceding the failure. At a given time point ¢, we then define
the lifetime to predict by

R; =min(T* - £, Rynax)

Note that this lifetime is observed in the training set only
when T* = T. If not, the only available information is that
Ry =zmin(C - £,R4x).

All the variables in that section are in fact indexed by the
number i of the considered unit, for instance when comput-
ing aloss. That index is omitted unless necessary for reading
purposes.
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2.1. Dual Aspect Self-Attention based on Transformer (DA-
ST)

The DAST model is an encoder-decoder, with the specificity
of a double encoding, using a time step encoder and the
sensor encoder.

i( Sensor Encoders j

Positional Encoding

[ Input Embedding ]
Encoder

S s

00000
s QOO0 O
00000

Figure 1. Original DAST architecture (Z. Zhang et al., 2022)

The input data of the DAST architecture consists in a decom-
position of the times series X by a sliding window processing
of width W, as shown in Figure 2. The input is thus a list of
matrices (X;), each of size (p, W):
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Figure 2. Example of sliding window of size W for time-series
on 3 sensors

The data of each window are normalized to equalize the
amplitude for each sensor and completed with positional
encoding to keep track of the relative time positions of the
columns as well as constant lines corresponding to the co-
variates Z. It is also enriched for each sensor by the mean
value and the slope of the linear regression as a function of
time, as proposed in (Song et al., 2020).

The originality of DAST is to consider these inputs in two
dimensions. On the one hand, the enriched matrix X; is
given as input of the time step encoder, which encodes
through self-attention scores per time point the dependency
between the vectors of data at different time points. On the
other hand, its transpose X? is given as input to the sensor
encoder which uses the same architecture to encode and
capture the dependency information between the sensors.
A final fusion layer finally allows to mix both encodings into
a final one, which contains the importance of different com-
binations of sensors and time steps at the same time. That
information is valuable in the context of RUL estimation and
is processed by the decoder part of the architecture to obtain
a prediction.

As the prediction is a scalar corresponding to R;, the model
is trained using a RMSE loss, that is the square root of the
mean squared prediction error when summing over all units
i and time points ¢.

2.2. Ordinal Regression for RUL Estimation with censored
data

In various applications, the complete lifetime of the units
is not systematically available as the components may be
changed before failure, leading to right-censored lifetime.
Direct RUL estimation requires the complete lifetime of the
components in the learning data set and thus discards such
data, which may represent most of the available data. One
possible method to integrate both right-censored and un-
censored lifetime data, is the ordinal regression approach
developed in (Vishnu et al., 2019).

The key idea is to discretize the object to be estimated, by
replacing the RUL R} by a binary vector of the component
status in the future. To do so, two integers L and K are fixed
and the status of the unit is checked one time every L cycles
(or time points in the time series). The new target is then a
vector Y, of length K where

0 if T>t+kL,
i.e. the unit is healthy after k * L cycles,
1 if T<t+kL and T=T%,
i.e. the unit has failed before k * L cycles,
- if T=st+kL and T=C,
i.e. the unit status is unknown after k * L cycles

Ytk =

t is the time of the current time step and k is the index of Y;.
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Let us for example consider L =10 and K = 10:

e if the component fails after 75 cycles,
Y;=(0,0,0,0,0,0,0,1,1,1),

e if the component is replaced after 75 cycles but be-
fore failure Y; = (0,0,0,0,0,0,0,-,-,-). The last three ele-
ments are masked as no status appropriate for learning
is available.

Unit 6 1 X Failed

Unit 5 Replaced before failure
Unit 4 Replaced before failure

Unit 3 X Failed
Unit 2 Replaced before failure

Unit 1 X Failed

>
>

Time

Figure 3. Right-censored data: unit 2, 4 and 5 are censored
to the right, they were still healthy when replaced

A learning phase applied on the binary vectors of the train-
ing set allows then to obtain a prediction rule, as initially
proposed using an LSTM architecture (Vishnu et al., 2019).
The prediction for a given unit at time ¢, denoted by Y;, is a
vector of K probabilities indicating the probability of failure
before the corresponding time steps.

As the problem has become a binary classification prob-
lem, the learning is done using the binary cross-entropy
(BCELoss). It is however adjusted for right-censored data
by discarding all coordinates equal to - in the Y vectors. For
example, if Y; = (0,0,0,0,0,0,0, -, -, -), its contribution to the
loss is only computed on the seven first coordinates. In other
terms, the loss is the sum over all units i and times ¢ of

K
BCE(Y,,Y) ==Y (yexlog@ei) + A= yri)logl— )

k=1
(2)
where the term in the sum is set to 0 whenever y; \ is masked.

2.3. The proposed method

We consider a framework to deal with censored data using
the OR encoding with the following step:

1. Adapt the DAST architecture to the OR framework by
adding a sigmoid layer, leading to the DAST-OR archi-
tecture. After training, it outputs a vector (Y[) of length
K for every time point in a time series.

2. Following (Chaoub, Voisin, Cerisara, & lung, 2021) which
studies LSTM for RUL prediction, a feed-forward-layer
is added in the LSTM-OR architecture, between the
LSTM and the sigmoid output layer.This model is de-
noted as LSTM-MLP-OR. It outputs an alternative vec-
tor (Y,) of length K for every time point in a time series.

3. Map every vector Y, into a predicted RUL Ry, following
(Vishnu et al., 2019):

R 1 X
Ri=Rmax(1—= Y 911) 3)
K k=1

with R;;,4x = KL being chosen as the length of the time
interval covered by Y.

4. Select the best model in terms of RMSE loss of this RUL
prediction on the validation data.

Note that the RUL estimation introduced step 3 is of prac-
tical use, but also allows comparison with methods in the
literature estimating directly the RUL.

Moreover, to reduce randomness, 10 train of each model are
performed, leading to two options:

1. The simple model: The model with the best loss on the
validation dataset is chosen.

2. Theensemble model: We consider an ensemble of mod-
els, the final prediction corresponding to the average
prediction of the 6 best models among the 10 models
trained.

3. EXPERIMENTAL EVALUATION
3.1. The CMAPSS dataset

The performance of the proposed method is evaluated on
the C-MAPSS (Commercial Modular Aero Propulsion Sys-
tem Simulation) dataset, which is used as a benchmark for
RUL estimation methods. It simulates run-to-failure trajec-
tories of turbofan engines (Saxena, Goebel, Simon, & Eklund,
2008) in two different operating conditions and two failure
modes, leading to four sub-datasets FD001, FD002, FD003
and FD004. The characteristics of the four sets are sum-
marized in Table 1. Each trajectory contains the following
variables:

1. aunit number corresponding to the component identi-
fier,

2. atime variable corresponding to the number of cycles
performed,

3. the simulation parameters (operating condition and
failure modes),

4. the simulated data from 21 sensors.

Table 1. Summary of C-MAPSS dataset

[ C-MAPSS sub-datasets | FD001 | FD002 | FD003 | FD004 |

Train trajectories 100 260 100 249
Test trajectories 100 259 100 248
Operating condition 1 6 1 6
Fault modes 1 1 2 2
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Figure 5. LSTM-MLP-OR architecture

3.2. Data preprocessing and censoring

Sensors having a constant value during the experiment are
removed, leaving 14 sensors for datasets FD001 and FD003,
and 21 for datasets FD002 and FD004. Data standardization
is processed on the remaining sensors by removing the mean
and scaling by standard deviation.

Right-censoring is artificially added to the data, with rates
pc € 0%, 20%, 50%, 70%, 90%)]. More precisely, for every
censor rate p, the corresponding fraction of the units are
randomly chosen, and, for each selected unit, the time series
are truncated prior to failure at a random moment. When
pc =90%, it leads to a train set where only 10% of the units
have a known RUL, and approximately 45% of the initial data
is kept.

Finally, to be able to chose the best models during the train-
ing, each sub-dataset is divided into a training set and a
validation set, 20% of randomly chosen units joining the
validation set.

3.3. Trained models

Three architectures are trained on the four datasets of the
CMAPSS data:

1. DAST for RUL (Z. Zhang et al., 2022),
2. LSTM-MLP-OR,
3. DAST-OR.

Moreover, each of them are trained ten times, and those
results are used to derive a single and an ensemble model
for each architecture. Ensemble models are denoted with
the addition of a final E, for instance DAST-ORE for the en-
semble version of DAST-OR.

We also consider the model BEST-ORE which is chosen be-
tween DAST-ORE and LSTM-MLP-ORE based on the RMSE
on the validation dataset.

Seven different models are thus obtained, which can be fairly
compared, on exactly the same preprocessing, censoring, as
well as training, validation and test sets.

For all models, we use R;;;; = 130, and for the methods
relying on ordinal regression, we consider Y vectors consist-
ing on K = 13 coordinates corresponding to the status every
L =10 cycles.

3.4. Hyperparameters of the models

The hyperparameters employed for the DAST are those de-
scribed in the original article (Z. Zhang et al., 2022), except
for number of epochs that is set to 250 with early stopping.
They are summarized table 2.

The hyperparameters for DAST-OR are essentially identi-
cal. Table 3 presents those which are specific to DAST-OR
(sigmoid output layer and loss) or are chosen different (a
manual tuning on the window size gave better results). The
number of epochs is set to 500 with early stopping.

The hyperparameters of the LSTM-MLP-OR model mainly
correspond to the article introducing LSTM-OR (Vishnu et
al., 2019). However, not all parameters being explicitly de-
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Table 2. Hyperparameters of DAST

Value

1 MLP layer with 64 neurons,
activation: Linear

N =2 Sensor encoder blocks
with H =4 heads

N = 2 Timestep encoder blocks
with H = 4 heads
N =1 Decoder block

with H = 4 heads

1 MLP layer with 64 neurons,
activation: ReLU

1 MLP layer with 1 neurons,
activation: Linear

Hyperparameter

Input embedding

Sensor encoder

Time step encoder

Decoder

Output layer

Final output layer

Learning Rate 0.001
Batch Size 256
Dropout 0.2
Window Size 40 for FD001 and FDO003,
60 for FD002 and FD004
Optimizer Rectified Adam
Loss RMSE

Table 3. Hyperparameters of DAST-OR

Value
1 MLP layer with 13 neurons,
activation: Sigmoid
60 for FD001 and FDO003,
80 for FD002 and FD004
Loss BCELoss

Hyperparameter

Final output layer

Window Size

tailed in the original article, manual tuning has been applied
to the LSTM-MLP-OR model with a few trials on the valida-
tion set.

3.5. Results on uncensored data

This part focuses on the comparison of the results obtained
on data without censoring. Table 4 shows the results for the
seven trained models on each of the four datasets, with vari-
ous state-of-the-art methods. Note that the seven methods
are trained with the same preprocessing and separation into
training and validation sets, whereas the reported values
for other methods correspond those indicated in the corre-
sponding publications. Small variations may therefore not
be significant.

On FDO0O01, results of DAST-ORE are equivalent to the re-
sults of DAST and F+T. On FD002 results of LSTM-MLP-OR
and LSTM-MLP-ORE are significantly better than the re-
sults obtain with DAST, and equivalent to results obtain with
MLP+LSTM and F+T. On FD003 DAST-ORE perform better
than other models of the state of the art. The results of
LSTM-MLP-ORE are equivalent to the result of MLP+LSTM
and F+T. On FD004 LSTM-MLP-ORE perform significantly
better than other models. All the OR method proposed are
significantly better than the LSTM-ORCE.

Two main conclusions can be drawn from those results. The
first is that, even if OR models were designed to handle
right-censored data, the obtained results on uncensored
data are equivalent to those found in the literature with
models specifically made for direct RUL estimation. The
second interesting fact to note is the dependence on the
number of operating conditions in the dataset (cf Table 1).
Differences between sets FD001 and FD003, with a unique
operating condition, and sets FD002 and FD004, with six
different ones, are commonly found in the state of the art
(C. Zhao, Huang, Li, & Yousaf Igbal, 2020) (Sateesh Babu et
al., 2016) (C. Zhang, Lim, Qin, & Tan, 2016) (Zheng et al.,
2017) (X. Li, Ding, & Sun, 2018). Furthermore, the number
of inputs used between is different. In this study, it appears
that DAST-based methods are more powerful when the op-
erating condition is unique, while LSTM-based outperform
them when there are 6 operating conditions. Learning both
architectures and keeping the best on the validation set, as
does BEST-ORE, is therefore useful.

3.6. Results on censored data

The results on the C-MAPSS dataset for each right-censored
rate are detailed in Tables 6 and 5. The former compares the
proposed ensemble methods to the ensemble LSTM-ORCE
method (Vishnu et al., 2019) for the data subsets (FD001 and
FDO004) and censoring rates studied in that article. The train
and validation sets being different, small variations should
not be interpreted. However, it clearly indicates a better
performance of DAST-ORE on FD001 and a significant im-
provement with LSTM-MLP-ORE due to the supplementary
MLP layer on FD004.

Table 6 shows the results for the models listed in section 3.3
trained on the same training and validation data. For read-
ability, BEST-ORE is not indicated, but the associated RMSE
is always the lowest among the RMSEs of LSTM-MLP-ORE
and DAST-ORE.

The FD0O01 dataset has more simple operating conditions
and more simple failure modes than the other C-MAPSS
sub-datasets. On FD0O01 the DAST-ORE model has the best
RMSE for each percentage of right-censored value. With
the increase of p., the RMSE is slowly deteriorating and
reach it’s worst value at p. = 90%, which is not a surprise as
the learning data becomes less informative. Other models,
especially LSTM-based ones, show a bigger deterioration
with increasing censoring.

The results are similar on FD003, which has also only one
operating condition but two failure modes. The best over-
all results are obtained with DAST-ORE. Moreover, the in-
creasing of the RMSE for highly censored data is milder for
DAST-ORE than for competing methods.

FD002 and FD004 are considered more complex than FD001
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Table 4. RMSE results on the C-MAPSS dataset without censoring

Model [ FD001 [ FDO002 [ FDO003 [ FD004 [ Average RMSE ]
LSTM-MLP-OR 14.24 12.00 17.27 15.35 14.94
LSTM-MLP-ORE 13.20 12.77 13.84 14.75 13.64
DAST 12.35 16.48 13.43 19.89 15.54
DAST-E 12.22 15.44 12.89 16.14 14.17
DAST-OR 12.16 15.62 9.64 16.20 13.41
DAST-ORE 11.57 15.55 8.54 18.01 13.42
BEST-ORE 11.57 12.77 8.54 14.75 11.91
DAST (Z. Zhang et al., 2022) 11.43 15.25 11.32 18.36 14.09
LSTM-ORCE (Vishnu et al., 2019) 14.62 - - 27.47 -
MLP+LSTM (Chaoub et al., 2021) 13.26 12.49 13.11 13.97 13.21
F+T (Lai, Liu, Pan, & Chen, 2022) 11.43 13.32 11.47 14.38 12.65
Table 5. Results RMSE on C-MAPSS
FDO001
pc | LSTM-MLP-OR | LSTM-MLP-ORE | DAST | DAST-E | DAST-OR | DAST-ORE
0% 14.24 13.20 12.35 12.22 12.16 11.57
20% 15.42 14.01 13.69 12.59 12.73 12.51
50% 15.09 15.96 15.41 13.37 13.39 12.99
70% 17.83 17.97 15.38 14.08 14.28 12.51
90% 30.02 26.76 16.78 17.17 17.01 15.80
FD002
pc | LSTM-MLP-OR | LSTM-MLP-ORE | DAST | DAST-E | DAST-OR | DAST-ORE
0% 12.00 12.77 16.48 15.44 15.62 15.55
20% 15.43 13.01 14.09 13.80 16.37 18.51
50% 13.71 13.15 15.08 14.18 15.39 16.58
70% 14.24 13.24 16.10 14.74 16.71 17.73
90% 16.44 13.61 15.85 15.08 25.23 17.00
FDO003
Pe LSTM-MLP-OR | LSTM-MLP-ORE | DAST | DAST-E | DAST-OR | DAST-ORE
0% 17.27 13.84 13.43 12.89 9.64 8.54
20% 15.69 12.80 13.55 12.53 10.03 8.81
50% 13.97 13.46 16.04 12.57 11.69 10.14
70% 21.72 21.13 20.88 15.32 13.46 12.20
90% 38.74 30.66 22.34 22.88 19.59 16.09
FD004
Pe LSTM-MLP-OR | LSTM-MLP-ORE | DAST | DAST-E | DAST-OR | DAST-ORE
0% 16.23 14.75 19.89 16.14 16.20 18.01
20% 15.66 14.42 18.32 15.23 18.01 16.93
50% 16.00 14.67 17.46 15.66 17.43 19.49
70% 16.59 15.11 17.32 17.10 14.84 20.83
90% 18.85 15.47 19.79 17.21 22.41 22.14

Table 6. RMSE results on FD001-FD004 with censor

pc | LSTM-MLP-ORE | DAST-ORE | LSTM-ORCE

FD001
50% 15.96 12.99 15.98
70% 17.97 12.51 16.57
90% 26.76 15.80 20.38
FD004
50% 14.67 19.49 30.62
70% 15.11 20.83 31.27
90% 15.47 22.14 38.41

and FD003, because they mix several operating conditions.
In both cases, the LSTM-based models outperform the DAST-

based ones, as for uncensored data, with a small advantage
for the LSTM-MLP-ORE ensemble method. In those two
cases, the decrease of performance with growing censoring
is remarkably low.

The conclusion of this study is therefore two-fold. First, the
competition between LSTM and DAST-based architectures
remains relevant with censored data, as different conditions
may lead to different rankings of those methods. Second,
OR-based methods allow to obtain a reasonable loss of per-
formance when the real time of failure is missing for most of
the learning data.

As prescribed in (Saxena et al., 2008), the results were evalu-
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Figure 6. Example of results on one units of each sub-dataset

ated by the RMSE on the predictions of the last time-point
of the time-series in the test set. To illustrate more visually
the results of the different methods, Figure 6 provides some
plots of the predictions of the ensemble methods for ran-
domly picked time series on different datasets and censoring
rates.

3.7. Asymmetric score evaluation

Prediction on C-MAPSS should also be evaluated by the
asymetric score (Saxena et al., 2008) defined by
R}l-sR, _1

K/ —Ry
e 13 -1

ifR,—R;=0
ifR,—R; <0

Score =

That score corresponds to a higher penalty for overestima-
tion rather underestimation of the RUL.

Table 7 shows the scores for the ensemble methods DAST-E,
DAST-ORE and LSTM-ORE. If the results are rather coher-
ent with the RMSE comparisons for FD001 and FD003, the
advantage of LSTM-based methods compared to DAST-E is
less clear for FD002 and FD004.

However, it has to be noted that the OR-based methods
were trained with a symmetric BCELoss which does not take
into consideration a different penalty for over and under-
estimations. In terms of binary vectors, it means a higher
penalty for a close to 0 coordinate in Y; when the truth is 1
(the fan is predicted running when it actually failed, which
is an over-estimation of the RUL) than for a prediction close
to 1 when the truth is 0.

A possibility to introduce this asymmetry would be to con-
sider a modified loss by replacing Equation 2 by

~

BCE(Y;, V) == ) (ayiklog(@ei) + (1= yii)log(l— i)

k=1
4)
where a > 1 is a hyperparameter to be optimized.

4. CONCLUSION

This work addresses the challenge of estimating the Remain-
ing Useful Life (RUL) of industrial components from time
series data with no prior physical model of the system and
a high rate of censored data. It does so by considering two
data-driven deep-learning architectures relying on the ordi-
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Table 7. Score results on C-MAPSS

FDO001
Pc LSTM-MLP-ORE | DAST-E | DAST-ORE
0% 341.00 201.17 206.48
20% 410,63 232,49 269,68
50% 631,91 252,89 296,04
70% 1279,51 458,45 261,79
90% 4566,18 808,5 500,21
FD002
Pc LSTM-MLP-ORE | DAST-E | DAST-ORE
0% 708,28 638,34 978,48
20% 753,57 531,06 1891,21
50% 751,84 544,1 1412,07
70% 786,58 647,39 1362,25
90% 860,19 849,25 1286,1
FD003
Pc LSTM-MLP-ORE | DAST-E | DAST-ORE
0% 322,06 206,94 103,65
20% 250,9 192,28 111,17
50% 267,75 223,95 143,29
70% 1611,57 437,85 272,35
90% 3100,45 2797,84 447,64
FD004
Pc LSTM-MLP-ORE | DAST-E | DAST-ORE
0% 1741,67 2262,98 2739,62
20% 1772,3 1518,44 2591,59
50% 1434,33 2206,4 2788,02
70% 2096,04 2470,12 3863,9
90% 1689,67 1194,16 2903,72

nal regression approach introduced in (Vishnu et al., 2019)
for RUL estimation. One of them is an improved version
of the LSTM-OR method by (Vishnu et al., 2019), the sec-
ond is an adaptation to censored data of the DAST model
introduced in (Z. Zhang et al., 2022).

These approaches are shown to perform as well on the C-
MAPSS data as the existing direct RUL estimation methods
found in the literature on uncensored data, and better on
censored data.

Furthermore, the two proposed architectures are shown
to be complementary, as they outperform each other de-
pending on the complexity of the dataset. Therefore, in the
context of estimating the lifespan of components, it is in-
teresting to put them in competition, considering that this
approach should yield favorable results regardless of the
complexity of the data and the rate of right-censored data.

CODE AVAILABILITY

The code was written in Pytorch and is available at https://git-
lab.math.unistra.fr/jnoot/rul_estimation_cmapss
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