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ABSTRACT

This study focuses on a critical aspect of implementing prog-
nostics and health management (PHM) for assets: the creation
of a descriptive dataset. In real-world applications, dealing
with sparse and unlabelled big data is common, particularly in
industries like production lines where complex subprocesses
are monitored by multiple sensors. Moreover, selective appli-
cation of quality control means that much of the data lacks
information about end properties, making datasets provided
by manufacturers unsuitable for PHM frameworks. This work
aims to bridge the gap between raw production data and PHM
frameworks, focusing on steel manufacturing management.
In the context of steel manufacturing, compromised surface
quality, characterized by thicker oxide layers chipping during
milling, has been observed. We propose inferring compro-
mised coils by analyzing temperature profiles directly before
the coiling station to address this. Deviations from the goal
temperature profile can indicate compromised surface quality,
eliminating the need for tedious oxide layer thickness mea-
surements, which are not feasible for continuous hot strip
milling processes. The available dataset comprised multiple
years of production, with no direct indication of the surface
quality. Exploratory clustering analysis was the first step in
the lack of labels. Even though indicative of the underlying
pattern of the healthy/damaged coils distinction, three short-
comings were identified. Clustering was solely based on the
similarity between the temperature profiles of the coils, so
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no domain knowledge was included regarding the goal tem-
perature profile. Additionally, since different steel grades
have different goal profiles, the model needs to be specifically
trained for each grade. Also, a soft classification between
healthy and damaged can provide more detailed information
about the surface quality. Coils with low-confidence classifi-
cations can be identified and treated accordingly, thereby im-
proving PHM framework performance by providing a dataset
with only high-confidence samples. To tackle these issues, an
expert-knowledge-based normalization technique and feature
engineering, paired with synthetic labelling, contributed to
the creation of a soft neural network classifier. This study
presents the reality of handling real-world data for PHM ap-
plications and highlights the need for careful and informed
feature extraction. This ensures the seamless integration of
PHM frameworks into real-world systems, ultimately enhanc-
ing production yield by improving end-product quality.

1. INTRODUCTION

The 4th industrial revolution led to a skyrocketing increase in
the available data in production and manufacturing lines. Sen-
sors were developed and installed throughout the processes,
and computer-operated regulating devices were retrofitted to
production equipment. This not only meant that the manu-
facturing process could be guided by preset rules that were
constantly tailored to the real measurements of the system
but also that an enormous amount of data became available.
Manufacturers, suspecting these data’s value, made sure to
gather and store them in databases. However, the vast majority
of the available data are unstructured and unlabelled, leading
to their under-utilization.
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The unstructured nature of big data gathered from multiple
sources during production is one of the main challenges of
applying prognostic health management (PHM) frameworks
(Zio, 2022). Data quality greatly affects performance, espe-
cially for fault detection (FD), which is usually the first task
during a PHM framework. The need to identify anomalies and
deviations from the normal operating condition of the asset
arises, but data are usually high-dimensional with non-smooth
distribution densities. This makes their reconstruction and, in
turn, the distinction between healthy and abnormal, challeng-
ing.
In order to tackle the high-dimensionality of the data, the chal-
lenge of informative feature extraction (FE) arises (Jardine,
Lin, & Banjevic, 2006), in the hope of projecting the data into
manifolds of lower dimensionalities, where the underlying
classes become distinguishable. Traditional pre-processing
techniques include statistical feature extraction in the time
domain (Caesarendra & Tjahjowidodo, 2017), fast fourier
transform (Z. Wang, McConnell, Balog, & Johnson, 2014),
discrete wavelet transform (Z. Wang et al., 2014), continuous
wavelet transform (Kankar, Sharma, & Harsha, 2011), mor-
phology operators (Gush et al., 2018) and principal component
analysis (Choi, Lee, & Lee, 2005). Adding to that, in the lat-
est years, due to the ever-increasing applications of machine
learning (ML) and deep learning (DL) in computer science,
numerous successful applications for FE for PHM frameworks
have been demonstrated. Categorical adversarial autoencoders
(Liu et al., 2018), stacked autoencoders (Y. Wang, Yang, et al.,
2020), generative adversarial networks (Jiang, Hong, Zhou,
He, & Cheng, 2019; Xia et al., 2022), deep convolutional net-
works (Wu & Zhao, 2018) and deep belief networks (Y. Wang,
Pan, Yuan, Yang, & Gui, 2020), are examples of ML and DL
frameworks to extract lower dimensionality representations of
big data.
However, it becomes apparent that DL does not provide a
universal solution to FE (Zhao et al., 2019). Great effort and
resources are associated with designing and training a suc-
cessful DL model, and usually, the impressively performing
but complex architectures make the DL networks task- and
domain-specific. In this work, presented with a big real-world
dataset from steel manufacturing, a data science and funda-
mental approach for feature extraction is followed. The aim is
to showcase that even highly complex datasets with high vari-
ability, can be handled with expert-driven analysis, proving the
discriminating power of informative features. The following
sections will describe the issue under consideration and the
available dataset (Section 2), followed by an overview of the
applied methods (Section 3), the findings (Section 4), and a
concluding discussion (Section 5).

2. PROBLEM STATEMENT AND DATASET DESCRIPTION

Steel strips are being widely used for numerous applications
across multiple domains, such as the automotive industry, the

aerospace industry, chemical equipment and light manufactur-
ing, all of which, among others, have increasing demands con-
sidering surface quality. However, surface defects can appear
during manufacturing, which significantly diminishes the end
surface quality of the manufactured steel strips. Known root
causes of surface quality defects are material defects, process
defects and corrosion defects (Z. Wang, Wang, & Chen, 2020).
Material and process defects can be more easily mitigated by
tailoring the material’s composition and manufacturing pro-
cess (i.e. rolling forces, timely inspection and replacement of
rollers). Unfortunately, corrosion defects are, by nature, more
challenging. The low stability of the typical three-layer oxide
composition of steel (hematite Fe2O3, magnetite Fe3O4 and
wustite Fe1−yO) at the low coiling temperatures, the pres-
ence of other elements in low-carbon steel, the presence of
inclusions, the continuous cooling conditions, the temperature
gradient across the width of the strip, the absence or lack of
oxygen in the centre regions, all affect the oxide evolution
(Chen & Yuen, 2001; Deng et al., 2017). The extensive study
of Min K. et. al. (Min, Kim, Kim, & Lee, 2012) revealed a
correlation between the thickness of the oxide layer and the
surface quality. This is attributed to the fact that a thicker
oxide scale is more brittle and, thus, more prone to chip off.
As demonstrated by Min K. et al. (Min et al., 2012), measur-
ing the oxide layer thickness during production is not feasible.
Production must be halted, and the oxide layer formation must
be frozen (i.e., by spraying molten glass on the surface). This
process can quickly become costly and counterproductive for
a real-world application. This fact, combined with the fact
that practical scale differs from lab-grown (Deng et al., 2017),
led our team to try to develop a way to infer it indirectly from
production measurements.
The first step towards achieving this goal is creating a labelled
dataset from historical data containing coils with deteriorated
and pristine surface quality. We theorize that, by observing the
steel strip’s coiling temperature (CT) profile, major deviations
from the goal temperature and, more importantly, rapid fluctu-
ations, can indicate a chipped-off oxide layer. The reasoning
behind this is that when the oxide layer chips off, some parts
of exposed steel appear on the surface that have drastically
different emissivity than the oxides, throwing off the pyrome-
ter temperature measurements. Thus, the need to distinguish
faulty cases from normal ones from sequential data arises.
The dataset in hand consists of the process parameters, the
CT profiles and the material properties of the manufactured
steel strips from the hot strip milling (HSM) process of Tata
Steel Europe ©. Due to the great variability in the CT pro-
files as well as the goal temperatures, a single steel grade was
chosen, considering its observed troublesome behaviour dur-
ing milling (the details of which will not be disclosed due to
confidentiality). After data cleaning, the remaining dataset
consists of 3768 CT profiles, that will in turn, be used for the
development of the classification algorithm.
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3. METHODS

Given the dataset’s unlabelled nature, an exploratory cluster-
ing analysis was the first step towards processing the dataset to
discover the expected underlying pattern of healthy and dam-
aged coils. Afterwards, a domain-specific normalization was
introduced to the sequential data to assist towards creating a
universal framework independent of the steel grade. This is of
high importance since a great number of different steel grades
are produced. Therefore, if the developed framework is grade-
specific, it will need to be trained for each grade specifically,
making it counter-productive. Two different FE techniques
were realized and contrasted: a domain-agnostic one and an
expert-knowledge-based one. Finally, synthetic labels were
created to facilitate the training of a neural network (NN) soft
classifier to discriminate the produced coils into healthy and
damaged ones (meaning with chipped-off oxides and pristine
surface quality, respectively).

3.1. K-means with Dynamic Time Wrapping

Clustering analysis is one of the first steps in processing unla-
belled data, due to its ability to uncover underlying patterns
and connections in the dataset without requiring any prior
knowledge. A well-known and established clustering algo-
rithm is the k-means algorithm (Lloyd, 1982). The k-means
algorithm strives to partition the n available observations into
k clusters, where each observation belongs to the cluster with
the nearest mean, referred to as the centroids. The original al-
gorithm works by minimizing the squared Euclidean distances
between the centroids and the observations. An immediate
issue can be observed when the algorithm is tasked with clus-
tering sequential data. The Euclidean distance between two
points A and B can be calculated by Eq. (1), with δ being the
distance between the elements.

D(A,B) =
√
δ(a1, b1)2 + · · ·+ δ(aT , bT )2 (1)

If A and B are sequences with A = ⟨x, y, x, x⟩ and B =
⟨x, x, y, x⟩, their Euclidean distance according to Eq. (1), will
be great, even though intuitively, they sequences are similar.
This is attributed to the inability of the Euclidean distance to
capture similarities that are shifted in time. For that reason,
the dynamic time wrapping (DTW) metric is introduced. Its
main attribute is that it can capture similarities between se-
quences independently of the velocity (Sakoe, 1971). The
way to achieve this is by aligning the coordinates inside the
sequences by minimizing Eq. (2), whereAi is the subsequence
⟨a1, . . . , ai⟩.

D(A,B) = δ(ai, bi) + min




D(Ai−1, Bj−1)
D(Ai, Bj−1)
D(Ai−1, Bj)



 (2)

Even though DTW can effectively find the optimal alignment
between sequences and provide a single score for similarity,
k-means requires the calculation of a cluster prototype (the
centroid), which is the average of the assigned observations.
Petitjean et al. (Petitjean, Ketterlin, & Gançarski, 2011), pro-
posed the DTW barycenter averaging (DBA) algorithm, which
iteratively calculates the barycenter of a set of sequences for
the k-means algorithm. Later on, a differentiable function
for computing the soft minimum of all of the alignment costs
increases performance and reduces arithmetic complexity, re-
ferred to as soft-dtw algorithm (Cuturi & Blondel, 2018). For
the aforementioned reasons and considering the large size of
the dataset, the soft-dtw algorithm is chosen.

3.2. Domain-specific Normalization

One of the main issues with the given application for the
distinction between good and bad coils is the great difference
between the goal CT profiles for different steel grades. The
difference lies not only in the temperature but also in the shape
of the wanted goal CT profile. Some steel grades require a
coffin-shaped CT profile where the head and the tail of the coil
are hotter than the middle section. Adding to that, steel strips
that belong to each coil are not manufactured equally. The
manufacturer provides a range of properties for each grade,
and thus, the final goal CT profile depends on the exact needs
of the specific order. This inevitably leads to the inability to
generalize any realized framework since it would need to be re-
designed and explicitly trained for each available steel grade.
The authors try to alleviate this dependency by normalizing
the CT profiles with the goal CT. Let traj1 = ⟨t1, t2, . . . , tF ⟩
and its respective goal CT goalct = ⟨g1, g2, . . . , gF ⟩. The
normalized CT profile is calculated with the following:

traj1
j
norm =

tj − gj
gj

, j = [1, F ] (3)

For the remaining of the analysis, the normalized trajectories
trajnorm will be used.

3.3. Feature Extraction

For the good/bad coil distinction, a NN classifier will be uti-
lized (as explained in Sec. 3.5). NNs are generally unable
to handle and interpret sequential data as inputs, excluding
recurrent NNs (RNN) (Amari, 1972). RNNs come with their
own set of limitations with lengthy sequential data, namely the
high computational complexity, the vanishing gradient prob-
lem and the often-required tedious hyper-parameter tuning. To
partially tackle said limitations, one can choose to split the
sequential data into overlapping windows, but the choice of
the length and overlap of the windows adds to the complexity
of choosing optimal hyperparameters. For the aforementioned
reasons, traditional fully connected layers (FC) will be used,
and thus, the CT profiles need to be represented with fea-
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tures. Two different techniques for FE are being contrasted:
A domain-agnostic approach where a plethora of features is
being extracted (statistical, temporal and spectral) and filtered
automatically, and an expert-knowledge-based one.

3.3.1. Domain-Agnostic FE

Given sequential data, a domain-agnostic FE refers to the
process where a variety of features are extracted without con-
sidering the nature of the data in the hope of capturing as many
characteristics as possible. In this study, the features extracted
were:

• Statistical: max, absolute max, min, kurtosis, standard
deviation, variation, mean, median, min, quantile, sum
of values, length, variance, variation coefficient, count
of values above/below mean value, first location of min
and max, length of longest strike above/below mean, root
mean square, sum of reoccurring values,

• Autocorrelation values (Yentes et al., 2013) for lag =
(1, 2, . . . , 10) and descriptive statistics on the aggregation
function (mean, variance, median, standard deviation)
over the autocorrelation,

• Approximate entropy (Yentes et al., 2013) with (m =
2, r = 0.1), (m = 2, r = 0.3), (m = 2, r = 0.5), (m =
2, r = 0.7), (m = 2, r = 0.9) with m the length of the
compared run of data and r the filtering level,

• Non-linearity measure with c3 statistics (Schreiber &
Schmitz, 1997) with lag = (1, 2, 3),

• Complexity-invariant distance (CID) with and without
normalization (Batista, Keogh, Tataw, & De Souza, 2014),

• Coefficients (0, 1, . . . , 14) of continuous wavelet trans-
form with Ricker wavelet for widths = (2, 5, 10, 20)
(Mallat, 1999),

• All the coefficients (real and imaginary part, angle and
absolute) of the fast Fourier transformation (FFT),

• Statistics of the absolute FFT (mean, variance, skew and
kurtosis),

• Binned entropy of the power spectral density with the
Welch method (Welch, 1967) ,

• Friedrich polynomial coefficients (Friedrich et al., 2000)
for order of 3,

• Value of the partial autocorrelation function (Box, Jenkins,
Reinsel, & Ljung, 2015) for lag = (1, 2, . . . , 10),

• Permutation entropy (Bandt & Pompe, 2002) with
dimension = (3, 4, . . . , 7),

• Sample entropy (Richman & Moorman, 2000),
• Time reversal asymmetry statistic (Fulcher & Jones, 2014)

with lag = (1, 2, 3).

(The values chosen for the parameters of the aforementioned
features are the commonly used values since tuning their val-
ues would require domain knowledge, defeating the purpose
of a domain-agnostic framework).
After all of the features are extracted, to limit the number of ir-

relevant features, the FRESH algorithm (Christ, Kempa-Liehr,
& Feindt, 2016) is deployed. It first performs the Kolmogorov-
Smirnov test (Massey Jr, 1951) independently for every feature
and calculates the p-value. Then, the FRESH algorithm uti-
lizes the Benjamini-Yekutieli (Benjamini & Yekutieli, 2001)
procedure under correction for dependent hypotheses to de-
cide which null hypothesis H0 to reject. Only the features
for which the H0 is rejected are kept. Finally, a Pearson
correlation analysis is performed to remove features that are
correlated with a value greater than 0.6, as this would indi-
cate that they are (weakly) linearly correlated. Correlated
features will get overweighted during the training, thus creat-
ing biased models whose results and generalizability can be
compromised.

3.3.2. Expert-knowledge-based FE

Contrary to the first FE method, where a plethora of well-
known features for sequential data are automatically extracted
and filtered, for the expert-knowledge-based FE, as the name
would suggest, a closer look at the data is required. After
examining a normalized sequence for both a known good
and a known bad coil (Figure 1), it becomes evident that the
discrepancy between the two different classes is apparent in
the time domain. Thus, the features that will be extracted
are going to be limited to the time domain, meaning that no
transformations to the data will be performed. The prominent
characteristics of coils with a compromised surface quality
are that they overshoot the upper and/or lower bounds of the
accepted temperature range, that they present drifts from the
goal temperature and, more importantly, they present abrupt
peaks of high amplitude.
Based on the above observations, we choose to extract the
features presented on Table 1. On the left column, the name
of the feature is presented, while on the right are the val-
ues of the parameters that are used for their calculation. It
is worth noting that the values of 0.05 and −0.05 were cho-
sen for the threshold of the count above, count below and
number crossing m features since the acceptable tempera-
ture range for the chosen steel grade is ±5%.
The number high peaks feature was engineered by the au-
thors for this specific use case. The appearance of high-
amplitude peaks is deemed detrimental to the classification of
the coils, so a new feature is introduced to identify the peaks
that have a standard deviation larger than 2 and return their
count. The pseudo-code for the implemented feature can be
found in Appendix.

3.4. Synthetic Labelling

Classification tasks are, by nature, handled by supervised al-
gorithms. Supervised algorithms depend on labelled data to
learn the decision boundary of the multidimensional manifold
upon which the data points lie. To that end, the Tata Steel
experts provided a set of 14 sequences of the steel grade under
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Table 1. Features extracted for expert-knowledge-based FE.

Feature Parameters
abs energy -

absolute maximum -
absolute sum of changes -

cid ce normalize = False
count above t = 0.05
count below t = -0.05

skewness -
longest strike above mean -

longest strike belowe mean -
maximum -

mean -
mean abs change -

mean change -
minimum -

number crossing m m = 0.05
m = -0.05

standard deviation -

number high peaks*
n = 2
n = 5
n = 10

consideration that were identified to have low surface quality
(one of which is shown in Figure 1b). Since the amount of
labelled data is deemed inadequate to train a classification
algorithm, the need to populate them arises. Upon inspection,
and due to its use in the clustering analysis (Section 3.1), the
DTW similarity metric is utilised. An ideal coil’s CT profile
would be identical to the goal CT profile. Leaning on that idea,
the DTW similarity of each coil to the goal CT is calculated
using Eq. (2). 76 coils with the highest score (indicating the
highest dissimilarity to the goal CT) combined with the 14
expert-annotated ones comprise the bad coils labelled dataset.
The 90 coils with the lowest DTW score form the good coils
dataset.
To guide the learning of the decision boundary, aside from
providing examples of the extreme cases of both classes, we
devised a labelled dataset of an extra 20 coils with interme-
diate DTW scores, half of which are used for training and
half for testing. (this dataset will be referred to as manually
annotated). This aims to not only provide information about
the more ambiguous cases during training but also to provide a
challenging test dataset that will assist in the evaluation of the
performance of the classification algorithm. Figure 2 shows
two of these coils. In conclusion, the final training dataset is
constructed by performing an 80/20 % random split on the ini-
tial 180 coils and then adding half of the manually annotated
dataset. The test dataset consists of the remaining data.

3.5. Neural Network classifier

A simple multilayer perceptron (MLP) is employed for the
classification task. MLPs are fully connected feedforward
NNs with non-linear activation functions. For the architecture
of the model, typical design guidelines were followed. It
consists of:
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Figure 1. Normalized CT profile examples of a (a) good and
a (b) bad coil

• Input Layer: where each feature is used as input for one
input node,

• Hidden Layer: with size = 64, relu activation function
and to avoid overfitting, a dropout layer (Srivastava, Hin-
ton, Krizhevsky, Sutskever, & Salakhutdinov, 2014) with
a dropout probability equal to 0.5,

• Output Layer: where, according to standard binary clas-
sification practice, it has size = 2 and a softmax activa-
tion function, which will output the membership proba-
bility of each sample to each class.

The simple and shallow architecture of the NN was chosen not
only due to its decreased computational cost but also to avoid
the tedious tuning and training of deep architectures.

4. RESULTS

As previously discussed, the clustering analysis is performed
on the raw data, while the classification is performed on the
features extracted from the normalized sequences as described
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Figure 2. Normalized CT profile examples of ambiguous coils.
The spike in the beginning is observed on most coils, so it’s
not an indication of bad surface quality. Thus, (a) is labelled
as good and (b) as bad (due to the peak at the end)

in Section 3.2. All of the code is written in Python, and the
NN model was developed using Pytorch. Prior to the training
of the NN, the training data are z-normalized. To avoid data
leakage, the test data are z-normalized separately from the
training data, utilizing the calculated scaling parameters of the
training data. Models are trained for 200 epochs or until there
is no improvement in the test accuracy. After the models have
converged, they are tasked with classifying the entire dataset
with all of the coils produced for the steel grade under con-
sideration. The entire dataset follows the same FE procedure
as the training set and is z-normalized with the pre-trained
scaling parameters. Coils with a membership probability of
less than 0.6 to either class are manually incorporated into
the bad coils class to enhance our confidence in the models’
predictions. Since the good/bad coil classification is the first
step towards applying a PHM framework, we can tolerate false
negatives, but we would like to avoid false positives. Since the
good coils are of no interest to the analysis, a more inclusive
bad coil class is preferred. First, the results of the clustering
analysis on the raw data will be showcased, followed by the
classification results with the introduced FE techniques.

4.1. K-means wth DTW

With the K-means algorithm, the number of cluster centres
needs to be chosen a priori. To ensure the best fit, the el-
bow method is applied utilizing the silhouette coefficient
(Rousseeuw, 1987). The results can be found in Table 2. As
expected, the optimal number of clusters is two, confirming
the prior assumption that the coils are split into good and bad
ones. Figure 3 shows the results from the clustering and the
calculated barycenters from the DBA algorithm. It becomes
apparent that the majority of the coils in cluster 1 stay inside or
close to the temperature boundaries, while bigger deviations
are observed in cluster 2. This leads to the conclusion that the
first cluster represents the good coils while the second clus-
ter, the bad ones. However, the clustering is far from perfect
since coils with high deviations and rapid fluctuations can be
observed in the first (good) cluster. Given that the clustering
analysis is the first exploratory step towards separating the
data in hand, the results are satisfactory in that the expected
underlying pattern of the data is actually observed. The high
number of miss-clustered coils and the lack of soft-assignment
capabilities means that it cannot be used as an end-to-end way
to separate the data.

Table 2. Results of elbow method for DTW k-means.

Clusters Silhouette Score
2 0.2556
3 0.1938
4 0.1844
5 0.1947
6 0.1454

4.2. Classification with domain-agnostic features

After following the procedure of the domain-agnostic FE and
filtering explained in Section 3.3.1, 111 features are left. The
mean achieved accuracy of the NN is 0.8274 over the test
data with 0.0180 standard deviation for 10 runs. The results
can be seen in Figure 4. It can be observed that while the
coils assigned in the bad class show a greater overall deviation
from the goal CT, a lot of misclassified coils can be observed
in the good class with highly fluctuating temperatures. This
performance was to be expected, considering the rather low
classification accuracy. To comprehend the low performance
of the classification model, a principal component analysis
(PCA) was performed on the extracted features with the goal
of projecting the samples in a two-dimensional space. The
calculated decision boundary is also drawn to enhance this
visualisation’s information. In order to achieve acceptable
classification performance, the different classes need to present
minimal overlap on the PCA space so that the classifier can
find a way to separate them. This visualization can be seen
in Figure 4c. A high overlap between the good and bad coils
can be seen, meaning that no possible decision boundary can
correctly separate the two classes, regardless of the choice of
the model.
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Figure 3. Clustering results with DTW K-means
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Figure 4. Classification results with domain-agnostic FE
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Figure 5. Classification results with expert-knowledge-based FE
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4.3. Classification with expert-knowledge-based features

Following the FE method described in Section 3.3.2, 20 fea-
tures are extracted. The same NN classifier architecture is
used with the only change in the number of input nodes, which
is altered to 20 to match the number of extracted features.
The mean achieved accuracy is 0.9636 over the test data with
0.0075 standard deviation for 10 runs. The results can be seen
in Figure 5. It becomes pretty apparent that the classification
of the coils is superior to all of the previously presented meth-
ods. The healthy coils present minimal deviation from the goal
temperature, with only a few coils that have a single abrupt
temperature fluctuation in their CT, attesting to the high accu-
racy of the classifier. This means that there is a very limited
number of false positive coils, which is highly important, as
discussed at the beginning of the current section. The same
visualization procedure is followed as before and presented
in Figure 5c. It can be seen that there is a clear separation
between the two classes and that the decision boundary lies
optimally between them. This clear separation of the two
classes explains the high performance of the rather simple
classification model.

5. DISCUSSION

The presented results pave the way for an important discussion
when it comes to handling real-world complex and big data.
After the clustering analysis was performed, the two expected
different classes of coils could be identified, that is, the good
and the bad class (referring to the CT profile and, in turn,
the surface quality). However informative the clustering was
in providing insight into the dataset, its performance was far
from acceptable, with a lot of misclassified (or rather miss-
clustered) coils. This is attributed to the fact that the K-means
with DTW distance metric is clustering coils strictly by com-
paring their shape to each other. No information regarding
the acceptable temperature range, the goal CT or what good
and bad coils are, is included. Adding to that, the k-means
algorithm does not provide a way to soft-assign clusters to
data points. Naturally, the next step would be to increase the
classification’s performance will achieving soft-classification
capabilities. The most obvious idea is to create a represen-
tation of the data to train a soft ML classifier. Due to the
increasing popularity of DL FE methods, a researcher would
most probably invest their time in developing complex and
computationally heavy models. These models’ task would be
to try and learn on their own latent representations of the data
that would effectively separate the different classes. With this
study, we would like to emphasize that traditional FE can be
as (if not more) effective for some datasets while reducing
the complexity, the computational load, and the overall time
invested in developing the FE method.
This is not to say that traditional FE can be applied universally,
without effort. This is the main takeaway from comparing
an automated traditional FE method that is domain-agnostic

with features that are specifically picked or engineered for
the application. For the domain-agnostic FE, a plethora of
famous and commonly used features for sequential data were
automatically extracted and filtered utilizing hypothesis tests
and correlation analysis. However, the resulting features fail
to capture the distinctive features of the data. This becomes
evident by the high overlap of the two classes presented in
Figure 4c, and is the culprit of the wrong classification of
the data. Spending the effort of manually labelling a small
fraction of coils and choosing the right features to represent
the data, successfully separates them and achieves the required
classification performance.
The next step for this framework is to verify that it works
universally for multiple steel grades, with minor or even no
modifications at all. After generating the healthy/damaged
coils dataset, the process parameters that lead to the damaged
state are intended to be identified. The end goal is to apply a
PHM framework that will be able to predict quality deteriora-
tion and provide alternative parameter settings to mitigate the
damage to the surface quality of the produced steel strips.

6. CONCLUSIONS

In this study, a real-world data set of manufactured steel strips
raises the importance and effectiveness of traditional FE, but
only if done appropriately, as described in Section 3.3.2 and
paired with manually annotated samples. Automated FE tech-
niques are deemed ineffective; thus, the extracted features
must be chosen carefully. This is achieved by keeping in mind
that they should capture the characteristics that associate them
with their corresponding class. The authors are by no means
undermining the importance of deep learning FE methods.
Their increasing popularity mainly stems from their success-
ful application in extracting latent representations of big data.
They would instead highlight that for some datasets, the effort
needed to develop them is unjustified; that is when a correctly
defined traditional FE method can solve the task.
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averaging method for dynamic time warping, with ap-
plications to clustering. Pattern recognition, 44(3), 678–
693.

Richman, J. S., & Moorman, J. R. (2000). Physiological time-
series analysis using approximate entropy and sample
entropy. American journal of physiology-heart and
circulatory physiology, 278(6), H2039–H2049.

Rousseeuw, P. J. (1987). Silhouettes: a graphical aid to the
interpretation and validation of cluster analysis. Journal
of computational and applied mathematics, 20, 53–65.

Sakoe, H. (1971). Dynamic-programming approach to contin-
uous speech recognition. In 1971 proc. the international
congress of acoustics, budapest.

Schreiber, T., & Schmitz, A. (1997). Discrimination power
of measures for nonlinearity in a time series. Physical
Review E, 55(5), 5443.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., &
Salakhutdinov, R. (2014). Dropout: a simple way to
prevent neural networks from overfitting. The journal
of machine learning research, 15(1), 1929–1958.

Wang, Y., Pan, Z., Yuan, X., Yang, C., & Gui, W. (2020).
A novel deep learning based fault diagnosis approach
for chemical process with extended deep belief network.
ISA transactions, 96, 457–467.

Wang, Y., Yang, H., Yuan, X., Shardt, Y. A., Yang, C., & Gui,
W. (2020). Deep learning for fault-relevant feature ex-
traction and fault classification with stacked supervised
auto-encoder. Journal of Process Control, 92, 79–89.

Wang, Z., McConnell, S., Balog, R. S., & Johnson, J. (2014).
Arc fault signal detection - fourier transformation vs.
wavelet decomposition techniques using synthesized
data. In 2014 ieee 40th photovoltaic specialist confer-
ence (pvsc) (p. 3239-3244).

Wang, Z., Wang, J., & Chen, S. (2020). Fault location of strip
steel surface quality defects on hot-rolling production
line based on information fusion of historical cases and
process data. IEEE Access, 8, 171240-171251.

Welch, P. (1967). The use of fast fourier transform for the
estimation of power spectra: A method based on time
averaging over short, modified periodograms. IEEE
Transactions on audio and electroacoustics, 15(2), 70–
73.

Wu, H., & Zhao, J. (2018). Deep convolutional neural network
model based chemical process fault diagnosis. Comput-

11

Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN – 978-1-936263-40-0

Page 841



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

ers & chemical engineering, 115, 185–197.
Xia, X., Pan, X., Li, N., He, X., Ma, L., Zhang, X., & Ding,

N. (2022). Gan-based anomaly detection: A review.
Neurocomputing, 493, 497–535.

Yentes, J. M., Hunt, N., Schmid, K. K., Kaipust, J. P., McGrath,
D., & Stergiou, N. (2013). The appropriate use of
approximate entropy and sample entropy with short data
sets. Annals of biomedical engineering, 41, 349–365.

Zhao, R., Yan, R., Chen, Z., Mao, K., Wang, P., & Gao,
R. X. (2019). Deep learning and its applications to
machine health monitoring. Mechanical Systems and
Signal Processing, 115, 213–237.

Zio, E. (2022). Prognostics and health management (phm):
Where are we and where do we (need to) go in theory
and practice. Reliability Engineering System Safety,
218, 108-119.

12

Proceedings of the 8th European Conference of the Prognostics and Health Management Society 2024 - ISBN – 978-1-936263-40-0

Page 842



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2024

APPENDIX

Algorithm 1 Pseudocode of number high peaks feature

Inputs:
x (list): the input sequence
n (int): the support of the peak (a peak of support n is defined as a subsequence of x where a value occurs, which is bigger

than its n neighbours to the left and to the right)
std t (int): the number of standard deviations that the peak’s value needs to surpass

Procedure:
x reduced = x[n : −n]
res = None
for (c = 0; c < n+ 1; c++) do

result first = x reduced > numpy.roll(x, c)[n : −n]
if res = None then

res = result first
else

res += result first
end if
res += x reduced > numpy.roll(x, c)[n : −n]

end for
idx peaks = np.where(res)[0] + n
hpeaks = 0
for idx : idx peaks do

if |x[idx]| > mean(x) + std t ∗ std(x) then
h peaks± 1

end if
end for
Output:
h peaks (int): the amount of peaks of support n with maximum value higher than std t times the standard deviation of x
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