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ABSTRACT

Maintenance plays an important role in fulfilling the goals of
the Prognostics and Health Management (PHM) field. As of
now, no publication has addressed the impact of imperfect
repair actions from the prognostics perspective. Imperfect
repairs introduce complexities, altering system degradation
processes and increasing prediction uncertainties, thereby im-
pacting the accuracy of Remaining Useful Life (RUL) predic-
tions. To fill this gap in the literature, the study proposes de-
veloping a robust prognostic model adaptable to post-repair
operations. The prognostic model that will be developed is
stochastic since stochastic models have already proven their
adaptability to unseen test data. However, further develop-
ment of such models is needed to deal with data on repaired
systems. In addition to that, the implementation of a Bayesian
Extension allows uncertainty interpretability to be considered
to account for the uncertainty coming from the repair action
itself but also from the different sources of uncertainties that
have not been studied in the field of prognostics.

1. PROBLEM STATEMENT AND STATE-OF-THE-ART

Prognostics and Health Management (PHM) is a field that
provides users with a thorough analysis of the health condi-
tion of a system which allows users to maximize the oper-
ational availability, reduce maintenance costs, and improve
the system’s reliability and safety (Tsui et al., 2015). PHM
includes the following modules: data acquisition, diagno-
sis, prognosis, and decision-making (Moradi & Groth, 2020).
Prognosis takes the information of the data coming from data
acquisition alone or both the information of diagnosis and
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data acquisition. The output of prognosis is then the pre-
diction of the Remaining Useful Life (RUL) of the system,
which is the time left before the system reaches failure.

Prognostics plays a vital role in decision-making processes,
guiding actions like system retirement or maintenance
scheduling. Maintenance strategies vary from perfect mainte-
nance (replacement) to imperfect maintenance (repair), with
the latter being favored for its cost-effectiveness (Do Van et
al., 2013). (Bougacha et al., 2020) conducted a review on
post-prognostic decision-making, particularly focusing on
aerospace applications. Existing approaches in this review
typically consider current degradation levels or use prog-
nostics assuming the system is as good as new to inform
maintenance decisions. (Nguyen & Medjaher, 2019) de-
veloped a Deep Learning-based framework that covers the
entire process from data-driven prognostics to maintenance
decisions. However, the framework’s limitation lies in its
consideration of only perfect maintenance. To the best of
the author’s knowledge, (Welz et al., 2017) is the only work
that has addressed repair actions in prognostics, emphasizing
the importance of including data from repaired systems to
enhance prediction accuracy. Yet, this study lacks reporting
on RUL prediction and corresponding confidence intervals,
providing only an average error of failure time.

Therefore, a significant research gap exists in the current lit-
erature regarding how to perform prognostic when the engi-
neering system has been subjected to imperfect maintenance.
In other words, there is a need to develop prognostic models
that perform accurately when trained on data from systems
with no repair but tested on systems repaired one or more
times. This gap is notable given PHM’s predictive mainte-
nance and cost reduction goal.

Understanding the effects of repair actions on prognostic
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models is crucial, as repairs can alter the degradation pro-
cess of a system. As a consequence, it will negatively af-
fect the performance of the prognostic model by the decrease
in the accuracy of RUL predictions, and an increase in the
uncertainty of the predictions. Thus, it will reduce the re-
liability and robustness of prognostics, which will raise con-
cerns about the eligibility of prognostics for decision-making.
Therefore, many questions arise to deal with such a sce-
nario. Should prognostic models consider dependencies be-
tween pre and post-repair operations? How can the prognos-
tic model acknowledge the health recovery of the system?
And how can uncertainty arising from repair actions be man-
aged effectively?

To address the consideration of imperfect repairs in prognos-
tics, it is necessary to develop a robust prognostic model that
allows for interpretable uncertainty given the increased un-
certainty expected from the repair actions. Understanding the
concepts of robustness and uncertainty management, along
with the challenges they present, is essential.

Robustness, defined as a system’s ability to perform accept-
ably across various conditions, poses a challenge in prognos-
tics due to the lack of adaptation mechanisms in existing mod-
els. Attempts have been made to improve robustness, such
as using adaptive batch normalization or domain adversarial
neural networks. Still, challenges persist, with high errors
in terms of accuracy, along with instability and noise in the
predictions

Exceptionally, the Adaptive Non-Homogeneous Hidden
Semi-Markov Model (ANHHSMM) demonstrated adaptable
capabilities (Eleftheroglou et al., 2020). This stochastic
model was trained with 8 composite specimens under fatigue
loading, and later on, tested with 3 specimens, also under
fatigue loading, and suddenly experienced an unexpected
phenomenon. The model provided good results, however, it
has not been validated for a case study involving repairs.

Uncertainty management is the second challenge when per-
forming prognostics with data from repaired specimens in the
test set. Uncertainty management is defined as the identifica-
tion of sources of uncertainty and the reduction of uncertainty
by leveraging data to better characterize the inherent prog-
nostic uncertainties, thereby reducing their impact on RUL
predictions (Sankararaman, 2015).

However, to identify uncertainty it is first necessary to quan-
tify it. Uncertainty quantification (UQ) is already a challenge
in data-driven prognostics when using ML models that are
deterministic by nature. Such models usually do not report
UQ in their RUL predictions, as seen in (Zhu et al., 2020; Ma
& Mao, 2020; Ren et al., 2020; Zhang et al., 2023; Cheng et
al., 2022). In contrast, some publications address uncertainty
quantification when using stochastic models or particle filters,
but they provide broad confidence intervals, which results in

a lack of valuable information for decision-making (Huang
et al., 2017; Cadini, Sbarufatti, Cancelliere, & Giglio, 2019;
Cadini, Sbarufatti, Corbetta, et al., 2019; Moghaddass & Zuo,
2014; Liu et al., 2018).

To handle broad ranges of confidence intervals is then nec-
essary to perform uncertainty management. But even though
some data-driven prognostic models allow UQ, then it is nec-
essary to identify the sources of uncertainty. The classical
categorization divides uncertainty into aleatory and epistemic
(Der Kiureghian & Ditlevsen, 2009). However, as the authors
themselves have mentioned, such categorization is artificial
and it depends mostly on the modeler’s choice and the ap-
plication, which is why it is common to see disagreement on
how to disentangle uncertainty by using this categorization.

In (Eleftheroglou et al., 2020), a more relevant categorization
for prognostics is proposed, identifying five sources of un-
certainty: past uncertainties from manufacturing processes,
present uncertainty about the system’s health, future uncer-
tainty, model uncertainty, and prediction method uncertainty.
This new framework has not been applied to real-life scenar-
ios yet, with existing literature still relying on the classical
categorization.

2. EXPECTED CONTRIBUTIONS

There is no relevant literature addressing imperfect repair ac-
tions from the perspective of prognostics. Therefore, this re-
search will serve as a first attempt to address this issue by de-
veloping a robust prognostic model that can be trained with
degradation histories of systems that have not been repaired
and then tested on degradation histories of repaired systems.
Thus, the contribution to the field is a prognostic model that
has an adaptation mechanism and can take into account the
dependencies between pre and post-repair operation, as well
as include the recovery of the system after repair.

Additionally, a Bayesian extension is considered because it
allows the estimation of a subjective probability. Unlike the
frequentist approach, where the statistics are calculated based
on the entire population. This is undesirable since calculating
the uncertainty based on the statistics of the entire popula-
tion when they have been subjected to different conditions
has no purpose. Instead, the Bayesian approach works under
prior knowledge and available data (Bayarri & Berger, 2004).
Even more, the model should include the uncertainty coming
from the repair. Identifying this and calculating this source
of uncertainty allows for more interpretability in UQ that al-
lows future uncertainty management to have more valuable
information for the decision-making process. As mentioned
earlier, the classical categorization of uncertainty is not suit-
able for prognostics. Thus, this research attempts to tackle
uncertainty quantification from another perspective that has
not been implemented in the literature to date.
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3. RESEARCH PLAN

The research plan is divided into three main parts:

• Experimental Campaign: since there is no available
dataset for prognostics that includes maintenance ac-
tions, the first step is to perform an experimental cam-
paign. The experiments consider materials mostly used
in aviation structures, such as metals and composites.
This phase of the research also involves the analysis
of the experimental data, in terms of the effects on the
degradation process and a comparison study on how the
performance of different prognostic models that are com-
monly used are affected when dealing with this data.

• Development of the prognostic model: As mentioned
in Section 1, it is necessary to develop a prognostic
model that has an adaptive mechanism. After a litera-
ture review, the most suitable model for this application
is the ANHHSMM, however, the model needs the ad-
dition of variables to take into account the repair of the
system as well as the relaxation of some assumptions.
Therefore, in this part of the research, the work would
consist of developing the mathematical model, including
the programming implementation.

• Bayesian Extension: Finally, the last part of the research
involves the Bayesian extension that allows more inter-
pretable uncertainty in the prognostic model by identify-
ing sources of uncertainty.

As of now, the work that has already been done corresponds
to the experimental campaign. The research group performed
experiments with open-hole aluminum specimens of material
7075-T6. Each specimen had dimensions 300x45x2 [mm]
and a central hole of 6 [mm] diameter. The aluminum spec-
imens were subjected to constant amplitude fatigue, with a
maximum stress of 100 [MPa], frequency of 5 [Hz], and ratio
of 0.1. The training data consists of 5 degradation histories
of specimens from run to failure. The testing data consists
of 5 specimens, also from run to failure. However, the test-
ing specimens were repaired at cycle 14000 with a composite
patch to cover the fatigue crack.

Figure 1 shows health indicators derived from experimental
data using a neural network developed by the research team.
Training trajectories are depicted in blue shades while test-
ing trajectories are in red shades. For visualization, only two
trajectories per training and testing set are shown. Notably, a
distinct shift in cluster values occurs around cycle 14000 in
the testing trajectories, indicating specimen health recovery
post-repair. From the plot, it is evident that testing specimens
had a longer lifetime, in comparison with the training speci-
mens, due to the repair.

By using this data, a preliminary comparison between prog-
nostic models has been done by the use of SVR and MLP. The
results show the poor performance of both of these models

Figure 1. Experimental data of metal specimens for training
and testing set.

with an average RMSE value for the test dataset of 131.0119
and 131.4693, respectively. This preliminary comparison
shows the lack of adaptability of the models. Future work
involves the comparison of more complex prognostic mod-
els such as Long Short-Term Memory (LSTM) and the AN-
HHSMM.

Part of the work in progress, is a literature review on un-
certainty quantification in various prognostic models high-
lights the challenge in data-driven prognostics, particularly
with ML models. Despite their high accuracy, ML models
struggle with uncertainty quantification due to their determin-
istic nature. Another limitation is their reliance on the classi-
cal categorization of uncertainty into aleatory and epistemic
types. The review compares methods for quantifying these
uncertainties in ML models and implements a new prognostic
measurement for Hidden Markov Models (HMMs) to assess
stochastic models’ ability to capture relevant uncertainties in
prognostics, including past and future sources.

4. CONCLUSIONS

PHM is a field that assesses the health of an engineering sys-
tem to perform predictive maintenance. Therefore, prognos-
tics are key when predicting the health of the system and give
valuable information for decision-making. However, within
the prognostic field, a research gap exists when considering
maintenance actions, such as repair. Repair is a common pro-
cedure that can have an impact on the degradation process of
the system, and, therefore, it will negatively impact the per-
formance of a prognostic model if this data is not part of the
training set.

This research attempts to develop a robust prognostic model
that can be trained with systems that have never been repaired
and tested with systems that have been repaired one or several
times. Even more, the research will also address UQ chal-
lenges such as the quantification of sources of uncertainty
under the new categorization allowing more interpretability
of uncertainty.
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