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ABSTRACT 

The deterioration of cutting tools plays a significant role in 

the progression of subtractive manufacturing and 

substantially affects the quality of machined parts. 

Recognising this most organisations have implemented 

conventional methods for tool management. These reduce the 

economic loss associated with time-dependent and stochastic 

tool wear, and limit the damage arising from tools at end-of-

life. However, significant costs still remain to be addressed 

and more development towards tool and process prognostics 

is desirable. In response, this work investigates process 

deterioration through the acquisition and processing of 

selected machine signals. This utilises the internal processor 

of a CNC Vertical Machining Centre and considers the 

possible applications of such an approach for the prediction 

of tool and process health. This paper considers the 

prediction of tool and process condition with a discussion of 

the assumptions, benefits, and limitations of such 

approaches. Furthermore, the efficacy of the approach is 

tested using the correlation between an offline measurement 

of part accuracy and an active measure of process variation. 

1. INTRODUCTION 

It is known that cutting tool wear associated with metal 

removal contributes to a change in product form and hence a 

reduction in process accuracy and quality. Product form has 

been the motivation for a number of studies into quantifying 

the role that cutting tools play in process accuracy, and in 

determining the deterioration of cutting tool condition 

(Ahmed et al., 2016, 2017; Li et al., 2014; Liu et al., 2010; 

Zhang & Zhou, 2013). This is often through measurement of 

                                                        

Jacob L. Hill et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 United States License, which permits 

unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. 

the product geometry. However, most of these neglect the 

significance that many industries place on product tolerance. 

A failure of a part to comply with the specification equates to 

economic losses for most organisations. To that end, there 

exists a growing number of in-process solutions available for 

re-dimensioning of cutting tools. These include in-cycle-

gauging (ICG) approaches and programmed control solutions 

(including active process controls). These solutions hide the 

evidence of cutting tool wear and significantly hampers the 

possibility for post-process geometry measurement as an 

approach for tool condition monitoring (TCM). 

2. TOOL CONDITION MONITORING 

Within the wider context, TCM is defined as both the direct 

or indirect acquisition and processing of system information 

before, during or after a process, and the subsequent analysis 

and classification thereof. 

TCM is popular within academia and has subsequently been 

widely researched (Ambhore et al., 2015; Dongre et al., 2013; 

Liang et al., 2016; Prickett & Johns, 1999). However, despite 

the popularity within academia, TCM has not been adopted 

as successfully within industry. This could boil down to the 

stochastic element within the process, whereby the nature of 

the tools themselves and of the manufacturing processes 

introduce more influencing factors than is feasible to 

consider or account for (Engel et al., 2000). Alternatively, the 

cost vs benefits of such TCM systems confines them to 

academia. Promising in theory but impractical and expensive 

in context (Mitchell, 2007; Siddiqui, 2008; Wheeler et al., 

2010). Ultimately, however (In the current state) TCM has 

not been able to translate from the controlled conditions of 



 EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2018  

2 

 

academic research to the relatively messy applications within 

industry. This indicates a need to bridge the gap. 

From an industrial stance, and considering only the cutting 

tool, the typical approach by organisations is to act 

conservatively. Cutting tools are often assigned a finite 

working life, upwards of 20% less than the average working 

life, and often replaced at the discretion of the machine 

operator (Liu et al., 2015; Wiklund, 1998; Zhou & Xue, 

2018). This safety factor minimises unplanned machine 

downtime and maximises the measure of machine 

availability. However, whilst providing marginal peace of 

mind, this approach does nothing to accommodate the risks 

present from stochastic wear and at best increases cost 

(Aliustaoglu et al., 2009; Zhou & Xue, 2018). It therefore 

seems obvious that to reduce process waste requires the 

implementation of appropriate TCM approaches, especially 

those that employ tool and process prognostics (Grosvenor & 

Prickett, 2011). 

The manufacturing industry has moved towards smarter 

machines and a degree of condition based monitoring 

(CBM). Modern machining centres are often capable of 

actively monitoring their processes and adjusting to maintain 

speeds and/or feeds, or adjusting parameters to protect the 

machine from damage. This makes it common for modern 

vertical machining centres (VMCs) to be capable of 

identifying broken cutting tools or damaged spindles. Further 

innovation comes from the many involved industries towards 

the notion of ‘smart factories’ (Bosch Rexroth AG, 2015; 

MTConnect Institute, 2018; Siemens AG, 2018; Yamazaki 

Mazak, 2014). However, consensus on the necessary output 

or reaction from such systems is limited; many are content to 

provide the data with no liability for the process with the user 

being required to gather all the information possible in the 

hope that some will be useful. This indicates that efforts 

towards industry friendly solutions for active TCM and 

tool/process prognostics is desirable. 

3. TOOL AND PROCESS PROGNOSTICS 

In manufacturing, the theoretical potential, or ‘added value’ 

offered by the appropriate application of prognostics is 

apparent (Elattar et al., 2016; Jain & Lad, 2016; Rigamonti et 

al., 2016). In this context, it may be asserted that: 

 Process efficiency can be improved through prediction 

of machine and/or tool failures. This allows for 

appropriate remedial action to be determined early and 

hence applied quickly (Improving the measure of 

machine availability). 

 Risk can be reduced through detection and management 

of damaged or failing tools and equipment, hence 

reducing the occurrence of scrap products and limiting 

the effect of damaged tools on the process output. 

However, it is also evident that despite the theoretical 

potential, the majority of practical prognostic approaches 

remain limited in capability (Engel et al., 2000; Gugulothu et 

al., 2017; Line & Clements, 2006; Wheeler et al., 2010). 

Prognostic methods often suffer from issues that limit their 

adoption and the confidence in their use, including: 

False alarms - False alarms contribute to a reduction in 

effective useful life and come at a high cost to the process 

and the end-user both economically and in terms of 

confidence. Effort is required to reduce their impact for 

approaches to be accepted and successful (Bain & Orwig, 

2000; Wheeler et al., 2010). 

Prediction inaccuracy - Inaccurate predictions of tool and 

process health, or RUL, have the potential to result in 

unanticipated failures or for reductions in product quality to 

go unobserved. Many methods for prognostics claim high 

accuracy in use, however these claims are based on the 

enactment of given process conditions and often fail to 

translate from study to industry. The uncertainty this presents 

lowers the appeal of the given methods (Elattar et al., 2016; 

Line & Clements, 2006; Saxena et al., 2010). 

Process limitations - Many approaches are proven for one 

process and assumed applicable to similar processes. The 

process-specific nature of a chosen method can be a 

determining factor in the acceptance of a system. If the 

system benefits cannot be accurately quantified the approach 

is unlikely to gain acceptance (Elattar et al., 2016; Saxena et 

al., 2010; Wheeler et al., 2010). 

Nevertheless, depending on the process capability and/or the 

end-user requirements, the impact of the aforementioned 

issues can be reduced and in some cases neglected entirely. 

In these cases the potential process improvement offered by 

prognostics approaches is significant. 

This work presents the existing spindle control signals from 

a typical VMC, with consideration of both the benefits and 

limitations of the approach. Additionally, the change in 

cutting tool condition is investigated through a comparison 

between the control signals and the variation in part 

geometry. This will enable the detection and management of 

tool and process conditions, without impacting on the process 

performance, whilst complementing existing methods for 

controlling dimensional performance. This will demonstrate 

that even simple methods can be suitable when high 

expectations of process capability and variation are not 

overindulged. This sits within the wider context of improving 

tool management techniques in order to provide a basis for 

more accurate, reliable and repeatable machine operations. 
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4. METHOD 

This study employed a MAZAK Vertical Centre Smart 430A 

(VCS430A) VMC coupled with a MAZATROL Matrix 

Nexus 2 CNC Controller (NC). The VCS430A embodied a 

typical small scale VMC, commonly employed within the 

manufacturing industry by small and medium-sized 

enterprises (SMEs), whilst the NC embodied the typical 

intelligent control that seems popular in the current market. 

In continuation of recent work undertaken at Cardiff 

University (Ahmed et al., 2016, 2017), a series of regular 

artifacts were manufactured using fully flooded cutting 

conditions. The artifacts were monitored in process to capture 

the CNC process signals and assessed post-process to 

identify the variation in product accuracy. The method 

involved the manufacture of eight cylindrical artifacts per 

series, followed by single-axis slots cut in two groups of four 

(Figure 1). Each artifact was composed of four identical 

sections, each henceforth considered as a manufactured part 

(I.e., 48 parts per series – Inc. slots). The process continued 

until either four series’ (192 Parts) were completed or the 

cutting tool broke, whichever occurred sooner. 

 

Figure 1. CAD Model Illustrating Artifact Design and 

Significant Geometries 

The cutting tool used in this study was a 10mm, four-flute 

square-end-mill. The reasonably small size promoted a short 

lifecycle. In addition to the small size, the cutting tool was 

High Speed Steel (HSS), rather than carbide (Or similar), 

with no additional coating. The material information and 

process settings are identified in Table 1 and Table 2. 

Table 1. Product Material Specification 

Material Dimensions Type 

Bright Mild Steel 125x25x220 Flat Bar 

 

Table 2. Process Settings 

 Value 

Start Condition Pre-Used 

Cutting Speed (m/min) 52.0 

Spindle Speed (rpm) 1646.0 

Plunge Feed (mm/min) 111.8 

Loop 1 Feed (mm/min) 223.6 

Loop 2 Feed (mm/min) 279.5 

Total Parts 128.0 

Breakage TRUE 

4.1. Pre- and Post- Process Monitoring 

The initial cutting tool dimensions were acquired pre-process 

using online (in-machine) measurement of the cutting tool 

using a physical contact tool-setter. The part dimensions were 

acquired post-process using a Coordinate Measuring 

Machine (CMM), with a Renishaw Revo1 retrofit, and 

interfaced through Renishaw’s Modus software. 

The significant product geometries were defined as the 

driving dimensions and hence used for the evaluation of part 

accuracy. This included the artifact depth and the 

manufactured part diameter. Only the fourth part in each 

artifact was considered due to the evidence of uneven tool 

wear, as also observed by Wilkinson et al. (1996) and Ahmed 

et al. (2016, 2017). The slots were measured for their surface 

finish, but otherwise considered insignificant. 

To present the part accuracy in a suitable format illustrating 

the process variation and comparable with the spindle control 

signals the cross-sectional area (𝐶𝑆𝐴𝑃), per unit depth, was 

calculated (Eq. (1)). 

 |∆𝐶𝑆𝐴𝑃| = |
𝜋

4
. (𝑑𝑁

2 − 𝑑𝑃
2)| + ∆𝐶𝑆𝐴𝑃−1 (1) 

Where the resulting area is the difference between the 

nominal diameter (𝑑𝑁) and the actual diameter (𝑑𝑃). The 

CSA was used to define the parts, rather than a measure of 

volume, as the actual depth of cut per part cannot be derived 

from the finished product. 

4.2. In- Process Monitoring 

The acquisition of the CNC process signals utilised the VMC 

PLC and an external PC, with the CNC process signals 

transferred via Ethernet protocols in 504 byte packets. These 

packets were transferred to the local memory of a Hilscher 

CifX50E-RE interface board (HIB) with a per-packet delay 

Diameter, 𝑑𝑃 

Depth, 𝐷𝑂𝐶  

Slots 
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of 100ms, each being overwritten by the data within the 

following packet. Data was acquired from the local memory 

of the HIB through application of a simple C++ executable, 

created to monitor the VMC for activity, and initiate data 

acquisition during machining. This work considers only the 

acquisition of spindle motor load (SML) data. The process 

capability is summarised in Table 3. 

Table 3. VCS430A -> PC Communication Capability 

To enable a comparison between the SML change over time 

and the measure of part accuracy, the acquired data was 

converted from the original percentage load into energy 

consumed per part. To achieve this the signal was reverse-

engineered using the spindle speed-power-torque (SPT) 

characteristic for the spindle motor (Figure 2). 

 

Figure 2. Spindle Motor Speed-Power-Torque 

Characteristic, Adapted from Yamazaki Mazak UK Ltd 

(2015) 

This resulted in a curve illustrating the process energy 

required per part. To facilitate a comparison with the part 

geometry variation, any outliers were shifted to within the 

boundary of the overall trend through application of a 

Hampel filter. This achieved an approximation of the primary 

trend in the process variation. It is acknowledged that this 

method removes any variations due to differences in cutting 

speed, feed and depth, and that the probability this method 

hides stochastic elements of the process condition is high, 

however at this stage in this work this paper is primarily 

concerned with establishing a method that can be applied to 

the overall process condition. This will be extended later with 

the acquisition and analysis of more process signals using the 

installed system.  

4.3. Part-Process Comparison and Remaining Tool Life 

To quantify the part-process correlation and to identify the 

different stages in the tool condition, steps were taken to 

define the variation mathematically. This used polynomial 

approximations of the geometry and process signal 

variations. The initial approximations follow the general 

equation for a third order polynomial. The classification of 

these curves then followed a simple algorithm, summarised 

in the following steps: 

1. The curve was shifted to zero at the stationary point. This 

was found to be more stable when using partial data sets, 

than shifting by the mean average of the data. 

2. The data was split across zero with values normalised 

between zero and ±1 according to their sign. This 

emphasised the process change in the positive and 

negative gradients and separated the data into two parts, 

the new tool and the worn tool. 

3. The magnitude change in the slope of the first 

differential was calculated, per part, from the general 

equation. The resulting maximum and minimum values 

were taken as the change between stages (herein referred 

to as the characteristic curve). 

5. RESULTS 

5.1. Part Accuracy 

Initially, the variation in part geometry was established as the 

measure of process health (Figure 3). 

 

Figure 3. Estimated Stages of Tool Wear (GEO) 

 Capability 

Data Range (bytes) 0-504 

Sampling Frequency (Hz) 64 

Output 8-bit unsigned bytes 

A 

WS 2 WS 3 

ISO Material 

Limit 

ISO Part 

Limit 

WS 1 
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Characterising the variation in geometry is useful as the 

starting point for an in-process prediction of tool and/or 

process health. Colour is incorporated into Figure 3 to 

emphasise the different stages of tool wear. The green region 

(Parts 0-74) indicates the first two stages (WS 1 & WS 2), the 

rapid initial wear period and the subsequent period of gradual 

wear. The yellow and red regions (Parts 75-200) indicate the 

final stage (WS 3), the rapid wear to failure. The final wear 

stage is separated into two regions, one either side of the ISO 

8688-2:1989 limit, identified as stages three and four. Table 

4 indicates the stages of cutting tool wear, with an indication 

of their range (In parts) as estimated from the characteristic 

curve. 

Table 4. Estimated Stages of Tool Wear (GEO) 

It is observed from Figure 3 that the trend in process 

deterioration is visually similar in form to Taylor’s Tool Life 

curves (Ahmed et al., 2016; Taylor, 1906), and can be 

approximated by a third order polynomial (not plotted). It is 

noted that although the initial period of rapid wear appears to 

occur in region A, this is not the case. The tool is pre-used, 

hence past the initial wear stage. The rapid wear visible in 

Region A is attributed to a delayed increase in cutting speed 

from 36m/min to the desired 52m/min, hence shifting the 

state of wear proportionally (Kundrák & Pálmai, 2014). 

Also noted from Figure 3 is the recommended wear limit 

according to ISO 8688-2:1989. The standard recommends 

that HSS tools be replaced when their average flank wear 

reaches 0.3mm or when any local maximum is 0.5mm. The 

equivalent magnitude change in product CSA is 37.42mm2 

and was surpassed by the cutting tool after 142 parts. This 

indicates the cutting tool was utilised beyond the 

recommended limits and again highlights the problems with 

post-process investigations into tool condition. Little 

consolation lies behind the ability to point at a ruined part or 

tool and give a time of failure. 

The results corroborate the earlier statement that the tool is 

pre-used and hence primarily in the latter stages of tool life. 

Stage 4 is identified as failed due to exceeding the ISO 8688-

2:1989 recommended limit, and due to the tool breaking 

whilst machining of the last part. 

5.2. Spindle Process Signal Output 

Having identified the progressive process condition from the 

part geometry, it is possible to consider the in-process 

acquisition of SML signals. The output acquired is presented 

in Figure 4, illustrating the quantised nature of the data. 

 

Figure 4. Scatter Plot of Original SML Output Data 

The data was subsequently converted into energy 

consumption per part, presented in Figure 5.  

 

Figure 5. Estimated Stages of Tool Wear (SML) 

Colour is again incorporated to emphasise the different stages 

of wear. Parts 0-98 indicate the first two wear stages (WS 2), 

whilst parts 99-200 indicate the final wear stage (WS 3). The 

ISO 8688-2:1989 limit is copied from the geometry data and 

is hence applied at the same part (Part 142). The equivalent 

energy threshold is assumed equivalent to the result for said 

part at 20.34kJ. 

Table 5. Estimated Stages of Tool Wear (SML) 

Stage 1 2 3 4 

State USED USED WORN FAILED 

Scope 7 67 75 42 

Stage 1 2 3 4 

State USED USED WORN FAILED 

Scope 1 97 45 42 

A 

B 

WS 2 WS 3 

ISO Energy 

Limit 

ISO Part 

Limit 



 EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2018  

6 

 

It is observed that the gradual process change is similar to the 

variation in the part geometry and again marginally similar 

in form to Taylor’s Tool Life curves. It is also noted that 

Region A, as observed from the geometry data, can also be 

identified from the SML data, further emphasised by an 

increase in process fluctuations. The quantised nature of the 

original data is still evident, with significant ‘steps’ in the 

data. This partially limits the effectiveness of the approach, 

as incremental changes will be lost. 

Nevertheless, the approach also appears sensitive to process 

changes. Region B illustrates operator interference, where the 

process is stopped, adding unplanned machine downtime. 

The resulting process spike is significant, suggesting 

occurrences could be monitored. However as the information 

is derived from the spindle load, significant changes in 

spindle speed have the potential to produce similar results. 

Identifying the exact nature of the spikes in a practical 

application would hence require the consideration of 

additional information. If such information was available, 

this suggests the potential for improved estimations of 

machine availability. 

5.3. Part-Process Correlation & Remaining Useful Life 

As previously inferred, there is a degree of similarity between 

the changes in part geometry and the trend in SML output. 

Figure 6 illustrates directly the comparison between the 

geometry variation and the estimated energy range. The data 

has been standardized using Eq. (2). 

 

Figure 6. Change in Part CSA vs Estimated Energy Range 

 
𝑥𝑠𝑡𝑑 =

𝑥 − �̅�

𝜎
 (2) 

The SML output is presented as an area plot indicating the 

possible range, rather than an absolute value. This assumes 

that the quantised nature of the original output equates to the 

actual value being within the range of one equivalent unit 

(E.g. 4% has the value 𝛼, where 3.5% ≤ 𝛼 < 4.5%). This 

method hence considers the uncertainty in the given value. 

It is observed that the progression in part CSA is within the 

estimated SML range for all parts. However, it is noted that 

for each part the range is relatively large (1.26 units 

compared with a maximum measurement range of 5.20 

units). This indicates that the probability the CSA 

measurements will fall within the given energy region is 

high, irrespective of correlation. The uncertainty would be 

reduced with the acquisition of more precise data; however, 

in the absence of such data a more direct comparison is made 

(Table 6), assuming that the geometric approach is the gold 

standard. 

Table 6. Classification of Geometric and Process Signal 

Results in terms of Wear Stages 

Where MID identifies the inflection point and hence the point 

at which a tool progresses from mostly new to mostly worn. 

Negative differences indicate the SML result is higher (In 

part numbers) than the geometry result. 

It is considered that the SML output is more accurate than the 

geometry at identifying the pre-used nature of the tool, 

indicated by stage 1 ending on part one, however it is noted 

that this could occur due to the quantised nature of the data. 

It is also observed that the difference between the methods 

for three of the stages is equal to, or less than, one artifact (6 

Parts). The acceptance of this error margin depends on the 

nature of the process and the actual difference in condition 

over as many parts. Stage 2 is identified 24 parts behind the 

equivalent in geometry variation. Further investigation is 

required to determine the significance of this gap. 

The predominant limitation of this approach is that it utilises 

the variation in geometry as the most accurate measure of 

tool wear whereas research and industrial practice suggests 

otherwise. In industry tool offsets are applied to provide 

consistent component geometry. Such tool wear 

compensation will obscure the effect of wear from a 

geometry perspective. Hence, it is noted that the trends in 

geometric accuracy and process signal output are not 

anticipated to directly map one-another. In addition, the 

presented variations have been credited solely to a 

 Geometry SML Output Difference 

Stage 1 7 1 +6 

MID Stage 40 43 -3 

Stage 2 74 98 -24 

Stage 3 158 164 -6 
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breakdown in tool condition, whereas in reality additional 

influences will come from the process, machine and operator. 

The information presented serves as a preliminary 

investigation indicating the suitability for the process signals 

to be used as an alternative to geometry measurements. 

6. CONCLUSIONS 

This paper discussed the gap between academia and industry 

in terms of TCM and the possible causes for such. This 

identified some of the limitations in the current methods for 

TCM and the need for more robust solutions that not only 

allow for easy application within industry, but also progress 

away from the current craze for mass data. This is unless 

appropriate solutions are presented to manage and/or process 

said information. 

A fresh look was taken into the acquisition and processing of 

signals existing within the machine tool architecture. The 

signals were adapted to consider the energy consumption 

over time and indicated that process variations are 

observable, despite the approach being limited by the 

acquisition of quantised data. It was also observed that the 

variation in process energy is comparable to measures of 

tool/process condition from post-process measurement of 

manufactured parts. This indicated a potential for the 

approach to offer an in-process (active) assessment of tool 

and process condition, enabling a basis for more accurate, 

reliable and repeatable machine operations. This would be in 

lieu of using geometry variation for the prediction of tool and 

process health. 

It is acknowledged that further work is needed to support the 

analysis presented in this work, with consideration of 

additional process variables to further support the 

observations and assumptions made.  
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