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ABSTRACT

In the mining industry, primary digging units such as wheel
loaders are critical components due to their position at the
start of the process chain. Consequently, the cost of unex-
pected downtime is high: this motivates efforts to provide an
early warning of faults using remote diagnostics.

Machines are equipped with sensors that measure machine
health. Some sensors are highly correlated and a model based
on machine learning techniques can leverage such relation-
ships across sensors to detect within-group abnormalities.

Autoencoders are auto-associative artificial neural networks
which are trained to compress and rebuild the original input
with minimal loss. The information is stored in the lower
dimensional hidden layers as an internal coding. This is sus-
ceptible to a phenomenon called spillover, where the error in
a single input can propagate through the network, corrupt-
ing the coding and biasing the entire reconstructed data. A
denoising autoencoder is a more robust variation on the tra-
ditional autoencoder, trained to remove noise and build an
error-free reconstruction.

We created a denoising autoencoder to utilize the noise re-
moval on corrupted inputs, and rebuild from working inputs.
While this technique is novel to this problem it remained sus-
ceptible to spillover. We show our findings and discuss future
work for anomaly detection techniques in correlated data.

1. INTRODUCTION

Collection of telemetry data is becoming commonplace on
mobile mining plants and other key elements in the mining
process. Starting from basic payload and availability data,
improvements in on-site network bandwidth have supported
an increase in the scale of data collection (Siegel & Lee,
2012). Mining shovels and loaders record readings from hun-
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dreds of sensors, with sampling periods ranging from 100ms
to 1s. This provides a clear picture of the state of the machine,
its components, and the surrounding environment. Sensor
data can be analysed to uncover symptoms of developing faults
by monitoring the machine health over time. This enables the
machine operator to make data-driven maintenance decisions,
and reduce the cost in unplanned downtime and process in-
terruptions. From the point of view of the manufacturer, this
supports the development of better products and services.

While each sensor measures a unique environmental factor,
some sensors jointly collect information on the same under-
lying phenomenon. For instance, there may be both temper-
ature and current sensors in each phase winding of the same
motor, which collectively measure the overall amount of me-
chanical work produced. Likewise, sensors across mechan-
ically coupled motors are expected to produce readings that
adhere to strong relationships. These sensors are said to ex-
hibit dependence, where the levels of dependence can vary
from being entirely independent to highly correlated.

Dependent sensors form correlated groups which have an added
benefit of verifying the integrity of each channel in the group.
Indeed, as the readings from sensors can be expressed as
functions of one another, we can infer a sensor’s reading from
other group values. This inference can then be compared to
the actual sample, to ensure the usual relationships between
the dependent sensor values still hold. This approach is used
to detect anomalies: if the relationships between dependent
sensors are violated, it could indicate a faulty sensor, or a
fault in the equipment being sensed. The interrelated sen-
sor measurements also create a redundancy in the data, which
can therefore be compressed in a lower dimension. The low-
dimension data can then be decompressed back to original
values by applying the known relationship to other sensors in
the group.

Modeling highly correlated data with a single corrupt channel
gives rise to a problem called spillover; a dimensionality re-
duction induced error when faults in a single input propagate
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through the group reconstructions. Spillover is a problem as it
“dilutes” any errors from a channel into the remaining healthy
channels. The faulty channel corrupts the basis dimension,
and from this incorrect coding, the error is propagated to ev-
ery channel upon decoding.

To demonstrate spillover, suppose we have four inputs X1···4
with an identical value x. Because the values are all highly
correlated the dimensionality reduction perfectly encodes the
inputs to a single value (x). The coding is directly mapped
to the four outputs in the decoding stage. Now let us sup-
pose one of the channels, X1 instead has an error term a,
which gives us a corrupt value of X1 = x + a. The mean
of these values becomes x + a/4. Upon reconstruction, the
faulty channel exhibits a reconstruction error: X̂1 = x+ a/4
instead of X1 = x+a. While this is desirable, we notice that
the three other healthy channels also have an induced error of
a/4 compared to their input value. The error “spills over” to
the non-faulty channels.

The spillover effect means the reconstruction error on individ-
ual outputs are not proportional to the corresponding input’s
deviation from normality. In our previous example, an ideal
output would have X̂1···4 = x, or what the values should be
if the sample were error-free. The only reconstruction error
would be on X1 and would be equal to a while the other nor-
mal outputs (X̂2···4) would have zero reconstruction error.

The spillover effect is inversely proportional to the number
of channels in a group as a single error contributes 1/N of
the spillover effect to other channels. There are two meth-
ods to minimize or remove spillover. The first is by adding a
larger number of correlated channels to a model. This is done
by increasing the number of sensors recording the underlying
phenomena and validating the current channels. This is not
a practical solution as it overburdens a machine with sensors
and increases the number of redundant data points. A better
option is to build a model which is robust to corruptions in a
minority of inputs, and thus avoids spillover.

This paper focuses on building an improved model for anomaly
detection using the method previously outlined to avoid the
spillover problem altogether. We will focus our work on highly
dependent sensor data that share the same lower dimensional
basis.

2. OBJECTIVES

This approach presented in the previous section has the ad-
vantage of being easily automated. An entire dataset can be
mined to uncover dimensionality-reduction relationships us-
ing statistical methods, or machine learning-based modeling.
We can feed one of these methods a sample of time-series
data produced by a machine in healthy condition, and extract
relationships that are typical of a machine in good condition.
This gives a baseline to monitor how well incoming data ad-

heres to these relationships. The system we present in this
paper searches for broken relationship across a group of de-
pendent sensors that indicates a possible departure from nor-
mality. The cause may be due to various reasons; a faulty
sensor, a change in the underlying relationship, or a differ-
ence in environment, all of which represent a fault or failure.
The type of event we are most interested in predicting is one
that highlights a change in the environment, that can be solved
with a maintenance intervention.

3. RELATED WORK

In this section, we first provide an overview anomaly detec-
tion techniques, and then focus on the techniques that exploit
strong relationships between dependent sensors.

3.1. Expert Models

The most time consuming model is one manually coded by
an expert (Witten, Frank, Hall, & Pal, 2016). A human writes
rules that describe their perception of normal operation into
code and this code is run against some dataset to detect anoma-
lies. As the working environment of each machine is differ-
ent, a new model may be required for each machine. This is
time consuming and subject to human error and requires ex-
perience and good knowledge of the data to place in manual
checks. Preferably we would search for a model that can be
easily generalized and automatically trained on data from the
same machine (Langley & Simon, 1995).

3.2. Autoregressive Models

The autoeregressive model uses an anomaly detection method
based on a forecasting approach. Forecasts are issued based
on sensor readings, using some mathematical relationship be-
tween past, current and future data. Forecast values are com-
pared to actual sensor readings, and an anomaly is detected
when residuals exceed a certain threshold.

A univariate autoregressive model uses the sum of weighted
coefficients from previous time measurements to predict fu-
ture values (Fitzmaurice, Davidian, Verbeke, & Molenberghs,
2008; Akaike, 1969). This model is most suitable for mod-
eling periodic trends, where an effect is most apparent from
previous time measurements. As many phenomena are de-
pendent on the overall state and operation of the machine, the
data in our study will appear irregular when observed over
time. Example of irregularities occur when starting and stop-
ping the machine at arbitrary times, or switching between a
digging task and relocation of a mobile digging unit. A uni-
variate autoregressive model is unsuitable for our application
as machines are not deterministic or time independent.
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3.3. Autoencoders

An autoassociative model aims to perform an identity map-
ping given some restraint. That is, it will attempt to reproduce
its input on the output side, so long as the sample’s values val-
idates some relationship. If the input sample does not fit these
constraints, the model will output a sample which is as close
as possible to the input, but that also meets constraints.

If the relationships in the autoassociative model are built over
healthy data, then further healthy data will be recreated. In
contrast, loss of fidelity on the output side is a sign that there
is an anomaly in the input data. Therefore the anomaly de-
tection step amounts to searching for discrepancies between
the input and output of the model, which has been built using
healthy data.

Autoencoders (AE) are a type of autoassociative model based
on dimensionality reduction. An input layer is mapped to a
lower dimension (coding layer) then rebuilt by reversing the
mapping (Goodfellow, Bengio, Courville, & Bengio, 2016).
The process of mapping to a lower dimension is referred to
as “encoding” and rebuilding the original sample from the
codings is “decoding”. An advantage of AEs is that the AE
only needs to be trained once and, this is an offline process.
Once training is complete, the AE can quickly process inputs
through a set of matrix multiplications. This is in contrast
with clustering techniques where the distances or proximity
metrics need to be evaluated at each run for both normal sam-
ples, and those yet to be classified as anomalous (Desmet &
Delore, 2017).

3.3.1. Principal Component Analysis Autoencoders

Principal Component Analysis (PCA) is a form of dimen-
sionality reduction which performs a linear mapping to a set
of lower dimensional basis vectors, which are listed in de-
scending order of maximized variance. The least explained
dimensions are dropped, and the model is reconstructed from
the lower dimension. This ensures maximum information
about the dataset is retained (Géron, 2017; Friedman, Hastie,
& Tibshirani, 2001). This method is useful to model re-
dundant data, as minimal information is lost when mapping
highly correlated inputs to the N best principal components
(Christopher, 2016).

Decoding is performed by an inverse mapping of the encod-
ing. Normal samples will have most of their variance on the
principal components, and will be rebuilt with minor loss. On
the other hand, abnormal samples which are not well modeled
by the PCA process will exhibit large variance on the “minor”
components – which the AE omits. In the case of abnormal
samples, the omission or minor component values amounts to
a loss of information. This prevents the faithful reconstruc-
tion of anomalous samples as it is expected from an AE. PCA
has the advantage of being a deterministic algorithm which

Figure 1. Artificial Neural Network.

produces optimal and reliable outputs. It is extremely fast to
build the model and to compute projections. However, its ma-
jor limitation is the inability to map non-linear relationships.

3.3.2. Artificial Neural Network Autoencoders

Many models can be described in terms of an artificial neu-
ral network (ANN). At a high level, an input layer is passed
through a number of hidden layers before returning a desired
transformed output. An ANN is shown in Figure 1 where an
input layer is passed through transformations as they propa-
gate through the hidden layers with different levels of abstrac-
tion (LeCun, Bengio, & Hinton, 2015).

Artificial neural networks can be trained to map inputs to out-
puts, which makes it an AE. For the remainder of this paper,
neural network architectures are implied when we refer to
AEs. The dimensionality reduction is achieved by restrict-
ing the number of neurons in the central hidden layer. With-
out this constraint, the neural network would simply learn the
identity function. Unlike its PCA counterpart which can only
use linear manifolds, the ANN AE supports advanced nonlin-
ear mappings. However, it is important to note that an ANN
with linear activation, mean squared error (MSE) loss func-
tion and a single hidden layer is equivalent to PCA. The num-
ber of neurons in the central hidden layer are equivalent to the
number of top principal components retained.

3.3.3. Denoising Autoencoders

In this paper, we introduce a particular training method to
produce a “denoising autoencoder”. A denoising AE is trained
by purposefully corrupted samples as inputs and given the
“true” samples as target output. The result is an AE which is
trained to deal with noisy inputs in a way that they do not af-
fect the coding (Sakurada & Yairi, 2014). The result is a “de-
noised” output where not only anomalies can be identified,
but the channel(s) responsible for the error are also clearly
identified.
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3.3.4. Hierarchical Extreme Learning Machines

An Extreme Learning Machine (ELM) is a single layered
ANN with randomly assigned weights and biases in the first
and hidden layer. These parameters are not tuned after ran-
domization but instead the weights and biases from the output
layer allow for training (Huang, 2014; Cambria et al., 2013)

This had led to promising research in Hierarchical Extreme
Learning Machines (HELMs) for the detection and isolation
of faulty channels in correlated inputs (Michau, Palme, &
Fink, 2017; Hope, Resheff, & Lieder, 2017). After training,
the hidden layer (or coding) is extracted and passed through a
single point classifier to quantify a deviation from normality.
This method avoids the spillover problem as machine health
is summarized as one statistic: the deviation from healthy
data. If the statistic returns a faulty reading, The original hid-
den layer is used to determine where the fault lies. Both meth-
ods are worth exploring further, but for this paper we choose
to investigate a denoising autoencoder.

4. CASE STUDY

The purpose of this paper is to create a denoising autoen-
coder to objectively scan and validate individual inputs in
highly correlated data. The autoencoder will selectively re-
move noise from inputs to reconstruct an anomaly-free sam-
ple. By harnessing the denoising effect to map faulty inputs to
their expected value, the denoising autoencoder should inde-
pendently map inputs, avoiding the dependent spill-over ef-
fect induced in other models.

4.1. Preparing data

Data were queried from Komatsu telemetry databases on four
highly correlated motor temperatures for a single articulated
wheel loader machine. 28 days of data were collected from
the 10th November 2017 to 8th December 2017 with a sam-
pling period of 100ms, giving a total of 3545799 time points.

4.1.1. Cleaning and resampling data

The data were rebinned to 30 second intervals, as we ob-
served the motor temperatures were unlikely to greatly change
in under 30 seconds. Re-sampling was performed by cal-
culating the median of 3000 non-missing data values. The
median was chosen over mean to reduce the significance of
outliers from faulty data. Re-sampling reduced the number
of points in the 28 day period down to 56484. Missing data
were filled by linear interpolation as the temperature was ex-
pected to slowly change between any of the last two observed
values. Samples of data are shown in Figures 2 and Figure 3.

The data from November exhibited healthy behaviour with
no faults and was chosen as the training data, consisting of
40503 points (72% of the dataset). In December an intermit-
tent fault became apparent in one of the channels. The tem-

Figure 2. Loader temperature data November 2017

Figure 3. Loader temperature data December 2017 (channel
1 displays intermittent anomaly)

perature reached unrealistically high levels in a few seconds
– diagnosed as a sensor error. As December data had a good
distribution of working and faulty data, it was chosen as the
test data, consisting of 15982 points (28% of the dataset).

4.2. Setup and experiment

We developed a denoising autoencoder in Python 3.6 using
the Google TensorFlow library (Zaccone, Karim, & Men-
shawy, 2017). The model is trained by introducing errors into
individual channels with a Gaussian N(0,50) deviation, cho-
sen to teach the model how to become more robust to a range
of errors. For each input, 20% of the data is injected with
an error so that a total of 80% of the data is noisy. The re-
maining 20% of data is left clean. The dataset is then shuffled
to avoid learning time dependence patterns then fed as inputs
to the training routine, where the target is the original clean
sample. Thus, we utilize the denoising effect to teach the AE
to produce the original sample, given its corrupted version.

4.2.1. Hyperparameters

Beyond the training process, ANNs have a set of hyperpa-
rameters that must be tuned to achieve optimal performance.
In our case, tunable parameters are:

• network architecture
• activation function
• weights and biases initialization
• loss function
• number of epochs
• learning rate

The network architecture and activation function are adjustable
hyperparameters to produce the optimal model. The remain-
ing parameters adjust the learning rate. They have no direct
consequence on the final trained model but instead influence
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training time and escaping local minima to achieve the opti-
mal model.

Network architecture is the most important feature for this
problem, as it determines the dimensionality reduction,
and how well the network can detect noise and imple-
ment ways to remove it. The task of choosing a network
architecture is made difficult by the infinite number of
architectures to choose from. Because the channels are
highly correlated and redundant, we start with an archi-
tecture featuring a single hidden layer with one hidden
node. We then increase the number of nodes in the hid-
den layer up to 100, and trial 2 additional layers with up
to 10 nodes per layer.

Activation function sets the ANN AE apart from PCA by
choosing the activation functions in hidden layers. We
trial sigmoid, tanh and leaky rectified linear unit (leaky
RELU) with leaks in steps of 0.05. We also trial a leak
of zero, corresponding to a linear activation function.

Weights and Biases are initialized using Xavier initializa-
tion. Weights are sampled from a truncated normal dis-
tribution with standard deviation of 0.1, and biases are
set to a constant value of 0.1 (Glorot & Bengio, 2010).

Learning rate was tested in 10-fold magnitude steps be-
tween 10−6 and 10−1.

Optimizer used ADAM optimization based on the success-
ful use in previous literature (Kingma & Ba, 2014; Géron,
2017; Goodfellow et al., 2016).

Epochs We find that learning rate coupled with ADAM op-
timizer and Xavier initialization converged consistently
after 5000 epochs.

5. RESULTS

For each set of hyperparameters, we train three models to en-
sure consistency in results. No difference was observed be-
tween the iterations. We made three main discoveries from
our experiment with detecting anomalies in highly correlated
inputs using a denoising AE.

1. Larger network architectures provided no benefit
The denoising autoencoder was trained on different net-
work architectures, but we found that increased complex-
ity did not provide any performance improvement. The
simplest architecture (single hidden layer with one node)
performed identically to networks with a larger depth and
width. This is due to the highly correlated nature of the
data. All inputs can be represented by a single dimen-
sion so additional nodes in any layer become redundant
and shared the coding value including errors. Additional
layers provided no benefit as the error propagates from
the smallest hidden layer.

Figure 4. Raw Data.

Figure 5. Reconstruction Error.

2. A non-linear activation function performed best
The model performed best with a linear activation func-
tion. The leaky RELU activation function performed as
well as linear activation functions. We assume this is due
to the fact that the input data were linearly correlated,
therefore linear activation functions perform best.

3. The denoising AE did not remove spillover
The third finding is a direct consequence of the first two.
The minimal topology with a linear activation function
performed almost equivalent to PCA. This is because a
near-optimal model, one with a single node in the hidden
layer can be achieved. Since there is only one hidden
node, the other layers do not develop the ability to re-
move noise so the outputs remained susceptible to spillover.
The denoising effect slightly adjusted (or blurred) the
weighting of each input to the hidden layer and this “blur-
ring” effect was the only difference between the denois-
ing autoencoder and PCA.

A denoising AE with a single hidden layer and linear activa-
tion function is shown to demonstrate the spillover effect.

Figure 4 shows a sample of the spillover effect induced from
the denoising autoencoder. Channel 1 has an error result-
ing from an intermittent sensor wire connection. The “mean”
curve shows the AE coding. Because of an error in channel 1
the coding is artificially high.

Figure 5 shows the reconstruction error (comparing the orig-
inal data to the model). The channel 1 curve which is respon-
sible for the error exhibits the highest error which spills over
to the three other channels. Hence channels 2,3,4 are overes-
timated during the reconstruction process, since the coding is
artificially raised by the error in channel 1.
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6. CONCLUSION

In this paper we have discussed the application of denoising
AEs. Our aim was to train a model to remove errors from in-
puts to train the model, given error-free inputs. This is help-
ful not only to detect anomalous samples, but also to pinpoint
in which channel are affected. The largest finding from our
experiment is that our denoising autoencoder did not inde-
pendently remove errors from the channels in highly corre-
lated data. Instead the model continued to be susceptible to
spillover. This is in spite our attempts to increase the network
architecture and activation functions. We assume the train-
ing became stuck in a local minima, which consists of taking
the average of all inputs as the coding. This solution indeed
measurably reduces the reconstruction error, yet the global
minima (i.e. a true denoising encoder) might have been too
distant (in terms of training steps) from this local minima to
be attained.

Neural networks are universal approximators, i.e. able to
model any function given a sufficiently large architecture to
deal with the complexity of the problem. Therefore, the the-
ory indicates that an ANN AE could produce our desired de-
noising behaviour. Future research will focus on understand-
ing why the model became stuck in a local, sub-optimal min-
ima. This could be due to training, or because even the largest
of architecture we used was still too small.
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