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ABSTRACT 

Lithium ion batteries suffer a performance decrease in 

normal use, which leads to an end to the usability of those 

batteries under the defined application. Accurate estimation 

of the useful lifetime of the batteries is important in order to 

achieve high energy efficiency and cost reduced designs. 

However, the aging of a lithium ion battery has a non-linear 

behavior and the models available nowadays are far from 

completely describing it. Thus, estimation algorithms are 

applied in order to improve the accuracy of current models. 

In this sense, this paper evaluates different stochastic tools 

applied to typical capacity fade models in order to increase 

the accuracy of the useful life estimations at a specific aging 

state. The chosen capacity fade models are semi-empirical 

models based on power laws, exponentials and polynomials 

which represent in a simple way the capacity decrease of 

lithium ion cells under specific conditions. The degradation 

data used in this paper is obtained from LiFePO4-graphite 

(LFP) and LiNi0.8Co0.1Al0.1O2-graphite (NCA) aged cells. 

Particle Filter (PF) and Gaussian Process Regression (GPR) 

based stochastic algorithms are applied to improve 

especially the End of Life estimation. The comparison of the 

algorithms is performed based on a innovative comparison 

framework that discriminates external uncertainty effects.  

The benefits and limitations of the algorithms are quantified 

by the relevant metrics defined in the comparison 

framework. As a result, some guidelines on key aspects on 

the design and implementation of the algorithm are 

provided. 

1. INTRODUCTION 

Due to their outstanding properties, lithium ion batteries 

(LIBs) are one of the most used energy storage devices in 

different applications such as portable electronic devices, 

electric vehicles and stationary back-up energy storage 

systems. However, the consequences of the failure of a 

battery can have different levels of severity on those 

applications ranging from reduced performance to non-

fulfilment of the operational requirements to even 

catastrophic failures. An efficient method for battery 

monitoring would greatly improve the reliability of such 

systems (Goebel, Saha, Saxena, Celaya, & Christophersen, 

2008), which will lead to the suitable sizing of the system 

and to a reduction on its cost (high energy efficiency and 

cost reduced design). 

Nonetheless, the fact is that the monitoring or the prediction 

of the characteristics of the battery along its lifespan 

(prediction of the degradation and the remaining useful life 

(RUL)) done with certainty is not a trivial issue (Si, Zhang, 

& Hu, 2016). Firstly, it is almost impossible to observe the 

battery internal electrochemical process. Secondly, the 

aging of a LIB is a non-linear and time variable system 

(Rezvanizaniani, Liu, Chen, & Lee, 2014). Thirdly, 

environmental uncertainties affect the production and the 

performance of these LIBs (dynamic environments induce 

changes in the physics of failure (Si et al., 2016)). Based on 

this, it could be stated that a reasonable and appropriate 

degradation model applied on a LIB RUL prognosis 

problem has to take into account uncertainty of battery 

behaviour and uncertainty of the internal characteristics 

(Rezvanizaniani et al., 2014). 

To take into account the effect of those uncertainties in the 

battery monitoring, and more precisely in RUL prognostics, 

stochastic tools are commonly applied to aging models 

(Gorjian, Ma, Mittinty, Yarlagadda, & Sun, 2009). In these 

cases, the RUL prediction is based on stochastic degradation 

processes and performance degradation data modelling. 

Thanks to the stochastic degradation process 
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implementation, the distribution of the RUL is inferred, 

which allows the quantification of the uncertainty of the 

predicted results (Wu, Fu, & Guan, 2016). There are many 

available stochastic algorithms that can be applied to LIB 

RUL prognostic problems, and additional ways of 

implementing each one on the problem at hand. However, 

there is not a clear way of deciding which one should be the 

chosen one in each case. 

Motivated by the lack of guidelines on the selection of the 

suitable prediction tool, this paper pursues a detailed 

evaluation of some configurations of popular stochastic 

algorithms in order to help researchers on that selection 

step. Among the available stochastic algorithms, the 

analysed ones in this paper are the GPR (with different 

covariance functions) (Richardson, Osborne, & Howey, 

2017), (Zhou et al., 2018) and the PF (with different 

resampling methods) (H. Zhang, Miao, Zhang, & Liu, 

2018), (Duong & Raghavan, 2018). 

The characteristics of the tested cells and the applied aging 

models are explained in Section 2. The used stochastic tools 

(GPR and PF) are described in Section 3. The comparison 

approach is summarized in Section 4. The obtained results 

are shown in Section 5. The discussion and description of 

the results are presented in Section 6. Finally, Section 7 

contains the conclusions and future work proposals. 

2. LITHIUM ION BATTERY AGING MODEL 

The proposed aging model is based on a semi-empirical 

capacity decrease model in terms of available dischargeable 

capacity. The goal of the proposed method is to describe the 

aging behaviour and estimate the End of Life (EOL) in 

terms of available dischargeable capacity as the result of a 

RUL prognosis problem. This is applied to degradation data 

obtained from 2 different LIB technologies (NCA and LFP). 

2.1. NCA cell 

The aging data from the NCA cell has been taken from 

NASA’s data repository (Saha & Goebel, 2007). Among the 

different available data repositories, the battery “B0005” is 

the chosen one due to its length and because the same 

battery was used in recent studies (Duong & Raghavan, 

2018) (H. Zhang et al., 2018). 

The selected NASA dataset consists on a rechargeable 

18650 Gen 2 Li-ion cell with a rated capacity of 2Ah. The 

experiment was conducted through three different 

operational profiles (charge, discharge and impedance) at 

room temperature. Charging was performed in a constant 

current at 1.5A until the battery voltage reached 4.2V and 

continued in constant voltage mode until the charge current 

dropped to 20mA. The discharge runs were stopped at 2.7V. 

The experiments were conducted until the capacity 

decreased to the specified EOL criteria of 1.4Ah (Tao et al., 

2017). 

(Saha, Goebel, & Christophersen, 2009) and (Goebel et al., 

2008) used an exponential growth model shown in Eq. (1), 

where 𝜃  represents the internal battery model parameter 

such as the available discharge capacity in each state of 

health, 𝑡 represents the amount of cycles done and 𝐶 and 𝜆 

represents the relevant decay parameters. 

𝜃 = 𝐶𝑒𝑥𝑝(−𝜆𝑡) (1) 

In contrast to the previous model, many other authors 

(Duong & Raghavan, 2018), (H. Zhang et al., 2018), (Chen 

& Pecht, 2012) proposed the capacity decrease model 

shown in Eq. (2) for the collected aging data in the NASA’s 

data repository. 𝑎, 𝑏, 𝑐, 𝑑 represent the inner parameters that 

needs to be fitted, 𝑡 is the amount of cycles done and 𝑐𝑎𝑝 is 

the available discharge capacity in each cycle. 

𝑐𝑎𝑝(𝑡) = 𝑎 ∙ 𝑒𝑥𝑝𝑏∙𝑡 + 𝑐 ∙ 𝑒𝑥𝑝𝑑∙𝑡 (2) 

On the other hand, according to (Saha & Goebel, 2009), in 

order to effectively determine the End of Life (EOL) of a 

LIB, we need to understand how the different operational 

modes, namely charge, discharge and rest, influence the 

discharge capacity. The model shown in Eq. (3) is based 

partly on their proposal, where the self-recharge during test 

is represented as an exponential process as suggested by 

data (dependant on the rest period between cycles 𝑘  and 

𝑘+1 (Δ𝑡𝑘 ) and the cumulative capacity fade between rest 

periods (Δ𝐶𝑘 )) and the capacity fade is described by the 

reduction of the previous discharge capacity ( 𝐶𝑘 ) by a 

constant (𝛽3). 

𝐶𝑘+1 = 𝐶𝑘 + 𝛽1𝑒𝑥𝑝(−𝛽2 Δ𝑡𝑘⁄ )Δ𝐶𝑘 − 𝛽3 (3) 

2.2. LFP cell 

The aging data from the LFP cell has been taken from 

CIDETEC’s own database. This cell consists on a 

homemade cell with a rated capacity of 15Ah. The 

experiment was part of the test plan matrix shown in Table 

1. Among them, the data set that holds more data has been 

chosen: the data from the test line nº 7.   

Table 1. Test matrix design aimed to evaluate Cycling life. 

 

Test Tº [ºC] 𝑆𝑂𝐶𝑖𝑛𝑖 [%] DoD [%] 𝐶𝑟𝑎𝑡𝑒 [-] 
1 15 90 70 1 

2 15 80 50 2 

3 15 70 30 3 

4 30 90 50 3 

5 30 80 30 1 

6 30 70 70 2 

7 45 90 30 2 

8 45 80 70 3 

9 45 70 50 1 
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The test plan in test line nº 7 comprised a periodically 

cycling and measurement test: after cycling 300 cycles at 

the defined conditions, the measurement test was performed. 

The cycling test comprises a discharge at constant current of 

1C (15A) at 45ºC, starting at a 90% initial State of Charge 

(𝑆𝑂𝐶𝑖𝑛𝑖) and ending once a 30% Depth of Discharge (DOD) 

is fulfilled. The charge is performed at constant current of 

2C (30A) at 45ºC until the 90% 𝑆𝑂𝐶𝑖𝑛𝑖  is reached. The 

measurement test comprised standard capacity, resistance 

and power measurements at 25ºC. 

The capacity fade model applied to the data of interest is 

based on a power law shown in Eq. (4), where 𝑄 represents 

the available dischargeable capacity obtained in the 

measurement tests, 𝐴ℎ  represent the discharged capacity 

along the cycling tests and 𝑃 is the power law that contains 

the effect of the tested stress factors on the cycling tests 

(temperature (Tº), initial State of Charge (𝑆𝑂𝐶𝑖𝑛𝑖), Depth of 

Discharge (DOD) and current rate (𝐶𝑟𝑎𝑡𝑒)). 

𝑄 = 𝐴ℎ𝑃 (4) 

3. STOCHASTIC TOOLS 

The stochastic tools manage parameter sets of chance 

variables (Doob, 1934). Thanks to the stochastic tools, the 

uncertainty can be taken into account, as well as the 

historical evaluation of the data. The Particle Filter and the 

Gaussian Process Regression are part of the available 

stochastic tools that can deal with those variables and that 

are present on today’s studies of LIB RUL prognosis 

problems (Richardson et al., 2017), (Zhou et al., 2018), (H. 

Zhang et al., 2018), (Duong & Raghavan, 2018). 

3.1. Particle Filter 

Particle Filter (PF) is a sequential Monte Carlo method, 

which estimates the state Probability Density Function 

(PDF) from a set of particles and their associated weights (J. 

Zhang & Lee, 2011). It is based on the idea of Monte Carlo 

method to solve the integral operation in the Bayes 

estimators. It estimates the state PDF from a set of 

“particles” and their associated weights (X. Zhang, Miao, & 

Liu, 2017). The use of weight adjusts the state PDF to its 

most likely form. Thanks to the use of state PDF, an 

appropriate management of inherent estimation uncertainty 

is allowed (J. Zhang & Lee, 2011). This provides non-linear 

projection in forecasting (Heng, Zhang, Tan, & Mathew, 

2009). 

The particles are inferred recursively by two alternate 

phases. The first phase is the prediction where the value of 

each particle for the next step is estimated by previous step 

information. No measurement or observation is involved in 

this step. The second phase is the update where the value of 

each particle estimated in the prediction phase is compared 

with measurements and updated accordingly (J. Zhang & 

Lee, 2011). 

In LIB RUL prognostics problems, the capacity estimate 

(�̂�𝑡+1) can be calculated by adding the product between the 

normalized weight of each particle 𝑗 (𝑤𝑡+1
𝑗

) and the capacity 

estimated value obtained on each particle (𝑄𝑡+1
𝑗

) described 

in Eq. (5) (Chen & Pecht, 2012). 

�̂�𝑡+1 = ∑ 𝑤𝑡+1
𝑗

𝑄𝑡+1
𝑗

𝑁𝑗

𝑗=1

 (5) 

The same proposal can be applied to estimate the states 

(�̂�𝑡+1) using the state of each particle (𝜃𝑡+1
𝑗

) (see Eq. (6)) 

(Arulampalam, Maskell, Gordon, & Clapp, 2002). After 

this, the capacity can be calculated using the equations of 

the capacity decay model shown in the previous Section. 

𝜃𝑡+1 = ∑ 𝑤𝑡+1
𝑗

𝜃𝑡+1
𝑗

𝑁𝑗

𝑗=1

 (6) 

In both cases, the weight is updated with the posterior PDF. 

Since the posterior PDF (𝑃(𝑄𝑡+1|𝑦0:𝑡+1) or 𝑃(𝜃𝑡+1|𝑦0:𝑡+1)) 

is usually unknown, importance sampling principle is used 

to sample 𝑄𝑡+1
𝑗

 or 𝜃𝑡+1
𝑗

 from an importance density 

( 𝑞(𝑄𝑡+1|𝑄𝑡 , 𝑦0:𝑡+1)  or 𝑞(𝜃𝑡+1|𝜃𝑡 , 𝑦0:𝑡+1) ), and the 

corresponding weights can be updated by the Eq. (7). 

𝑤𝑡+1 ∝ 𝑤𝑡
𝑗 𝑃(𝑦𝑡+1|𝑄𝑡+1)𝑃(𝑄𝑡+1|𝑦𝑡)

𝑞(𝑄𝑡+1|𝑄𝑡 , 𝑦0:𝑡+1)
 (7) 

The prior PDF of the capacity can be described by the Eq. 

(8), where the capacity posterior PDF of the capacity can be 

calculated by Bayes’ rule like in the Eq. (9). 

𝑃(𝑄𝑡+1|𝑦0:𝑡) = ∫ 𝑃(𝑄𝑡+1|𝑄𝑡)𝑃(𝑄𝑡|𝑦0:𝑡)𝑑 𝑄𝑡 (8) 

𝑃(𝑄𝑡+1|𝑦0:𝑡+1) =
𝑃(𝑦0:𝑡+1|𝑄𝑡+1)𝑃(𝑄𝑡+1)

𝑃(𝑦0:𝑡+1)

=
𝑃(𝑦𝑡+1|𝑄𝑡+1)𝑃(𝑄𝑡+1|𝑦0:𝑡)

𝑃(𝑦𝑡+1|𝑦0:𝑡)
 

(9) 

If choosing the marginal likelihood of the posterior PDF, the 

update of the weights can be reduced to Eq. (10), and thus, 

reduced to Eq. (11). 

𝑤𝑡+1 ∝ 𝑤𝑡
𝑗
𝑃(𝑦𝑡+1|𝑄𝑡+1) (10) 

𝑤𝑡+1 ∝ 𝑤𝑡
𝑗
𝛿(𝑦𝑡+1 − 𝑦𝑡+1

𝑗
) (11) 

Similarly, if choosing the marginal likelihood, the posterior 

PDF can be simplified to Eq. (12). 
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𝑃(𝑄𝑡+1|𝑦0:𝑡+1) ≈ 𝑃(𝑦𝑡+1|𝑄𝑡+1)

≈ ∑ 𝑤𝑡
𝑗
𝛿(𝑄𝑡+1 − 𝑄𝑡+1

𝑗
)

𝑁𝑗

𝑗=1

 
(12) 

Between the two proposals available on the literature, the 

PF algorithms developed for this study estimate the inner 

states of the capacity fade models (the fitting parameters on 

the models). Besides, for calculus, instead of using the delta 

of Dirac (𝛿), a Gaussian distribution function is used. In this 

way, the neighbor values are praised instead of praising only 

the equal values and despise the rest. On the same line, the 

fact is that an initialization set artificially could improve the 

tracking ability of the PF based prognostic method (Wang, 

Yang, Zhao, & Tsui, 2017). This paper proposes an 

initialization that assumes the first state of every particle to 

be randomly normally distributed and the first weights to be 

uniformly distributed. 

Among the disadvantages of this stochastic tool, there are 

two main problems: Particle degradation and sample 

impoverishment (X. Zhang et al., 2017). In order to reduce 

them, system importance resampling of the particles is 

commonly carried out on each iteration that the pre-set 

resampling threshold is not reached. This helps in 

maintaining the track of the state vector even under the 

presence of disruptive effects like un-modelled operational 

conditions (Goebel et al., 2008). In the literature, the most 

common approaches are the basic Systematic Resampling 

(SR) (Arulampalam et al., 2002), the Multinomial 

Resampling (MR) and the Residual Resampling (RR) 

(Douc, Cappé, & Moulines, 2005). The algorithm of the 

three resampling methods are available in (Li, Bolic, & 

Djuric, 2015). 

3.2. Gaussian Process and Gaussian Process Regression 

The Gaussian Process (GP) is based on the statistical 

learning theory and adapts well to high dimensions, small 

samples, nonlinearities and other complex problems with a 

strong generalization ability (Wu et al., 2016). 

In a GP, observations occur in a continuous domain (time or 

space) and every point is associated with a normally 

distributed random variable. This supposes that every finite 

collection of those random variables has a multivariate 

normal distribution and that every finite linear combination 

of them is normally distributed. Supported by those 

assumptions, a GP defines a probability distribution over 

functions (see Eq. (13)) which are composed by a mean 

function (Eq. (14)) and a covariance function (Eq. (15)). In 

this way, the degradation trends are learnt from battery data 

sets with the combination of GP functions. 

𝑓~𝐺𝑃(𝑚(𝑥), 𝑘(𝑥, 𝑥′)) (13) 

 

𝑚(𝑥) = 𝐸(𝑓(𝑥)) (14) 

𝑘(𝑥, 𝑥′) = 𝐸[(𝑓(𝑥) − 𝑚(𝑥))(𝑓(𝑥′) − 𝑚(𝑥′))] (15) 

Typically a GP uses a mean function equal to zero with the 

aim of describing all the system by the covariance function. 

This configuration is typically adopted because the 

covariance function is flexible enough to model the true 

mean arbitrary well (Rasmussen, 2006). However, in case of 

having prior knowledge of the system such as the capacity 

decay model in LIB RUL estimation problems, it is 

interesting to express this prior information as the most 

probable result of the systems in form of the mean function. 

This configuration of GP is able to describe the uncertainties 

of the prior knowledge by the covariance function. The 

chosen configuration for this paper is the last one. 

In Gaussian Process Regression (GPR), the distribution 

(over functions) obtained by the GP is used as a prior for 

Bayesian inference (Eq. (16)). The calculated prior does not 

depend on the training data, but specifies some properties of 

the functions (the objective is to learn properties of the prior 

in the light of the training data) (Rasmussen, 2006). The 

calculation of the posterior will provide the predictions for 

unseen test cases. Then, the joint distribution of the desired 

test set is evaluated where the training set covariance (K), 

training-test set covariance (K∗) and the test set covariance 

(K∗∗) are calculated. 

[
𝑓
𝑓∗

] ~𝒩 ([
𝜇
𝜇∗

] , [
K K∗

K∗
𝑇 K∗∗

]) (16) 

Since the values for the training set 𝑓  are known, the 

conditional distribution of 𝑓∗  given 𝑓  can be calculated by 

Eq. (17) (this is the posterior distribution for a specific set of 

unseen test cases). 

𝑓∗|𝑓~𝑁(𝜇∗ + K∗
𝑇𝐾−1(𝑓 − 𝜇), K∗∗ − K∗

𝑇𝐾−1𝐾∗) (17) 

In the same way, the mean and the variance of the posterior 

can be deducted from here (Eq. (18) and Eq. (19) 

respectively). 

𝑚𝑝(𝑥) = 𝑚(𝑥) + K∗
𝑇K−1(𝑓 − 𝜇) (18) 

𝑘𝑝(𝑥, 𝑥′) = K∗∗ − K∗
𝑇K−1𝐾∗ (19) 

The estimation attained with this Bayesian inference is 

noiseless, however, it is something common to have noise in 

the observations of regression applications. In the GP 

models, such noise is easily taken into account. The easiest 

way of adding the noise effect in the observation is to 

assume that the noise is Gaussian and independent. In this 

scenario, the noise variance is added to the covariance 

values of each test point respect to the same test point 

(𝑘𝑝(𝑥, 𝑥′);   𝑥 = 𝑥′) (Eq. (20)). 
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K𝑦 = 𝐾 + 𝜎𝑦𝐼 (20) 

To sum up, the GPR can model the behaviour of any system 

through the combination of the appropriate GP and prior 

knowledge. However, an appropriate GP means selecting an 

appropriate covariance function, which is an important and 

difficult problem (Long, Xian, Jiang, & Liu, 2013). Studies 

of LIB RUL prognosis problems have applied covariance 

functions such as the Squared Exponential (SE) covariance 

function (Eq. (21)), the Matérn (Ma) covariance function 

(Eq. (22)) (Richardson et al., 2017) and the neural network 

(NN) covariance function (Eq. (23)) (Zhou et al., 2018). 

𝑘𝑆𝐸(𝑥𝑝, 𝑥𝑞) = √𝜋𝑙𝜎𝑝
2𝑒𝑥𝑝

(−
(𝑥−𝑥′)2

2(√2𝑙2)
)
 

(21) 

𝑘𝑀𝑎(𝑟) =
21−𝑣

Γ(𝑣)
(

√2𝑣𝑟

𝑙
)

𝑣

𝐾𝑣 (
√2𝑣𝑟

𝑙
) (22) 

𝑘𝑁𝑁(𝑥, 𝑥′)

=
2

𝜋
sin−1 (

2�̃�𝑇Σ�̃�′

√(1 + 2�̃�𝑇Σ�̃�)(1 + 2�̃�′𝑇Σ�̃�′)
) 

(23) 

4. COMPARISON FRAMEWORK 

This paper aims at contributing on the selection of the 

appropriate stochastic tool applied on LIB RUL prognosis 

problems, in concrete those used on capacity fade models. 

However, in order to help on the stochastic tool selection 

process, a comparison of both tools needs to be done, so 

firstly, a proper comparison approach is required. The 

proposed comparison framework is based on several trials 

designed to minimize the induced sources of uncertainty of 

the applied inputs on the stochastic tools. Once run the 

trials, the merits of each tool are quantified by some defined 

key metrics. 

4.1. Design of the trials 

The design of the trials needs to keep in mind that many of 

the sources of uncertainty on the RUL estimation are 

“inputs” to the prognostic algorithm. These uncertainties on 

the “inputs” can penalize the algorithm if the information 

regarding these “inputs” is incorrect; it would not be 

reasonable to penalize or accept an algorithm according to 

the fitness of the prediction respect to the ground truth data 

in case the algorithm did not have access to an accurate 

degradation model and/or an accurate estimate of the future 

conditions of the component/system (Sankararaman, 

Saxena, & Goebel, 2014). That is why it is necessary to 

develop a rigorous comparison approach to separate: 

- The evaluation of correctness of information 

regarding these “inputs”. 

- The evaluation of the prognostic algorithm itself. 

This paper proposal aims to somehow control the 

uncertainty of the “inputs” when designing the trials, which 

will allow evaluating the prognosis algorithm itself. The 

idea is, firstly, to apply different prior knowledge describing 

the behaviour of the system (the different capacity decay 

models of the NCA cell proposed in the literature) and 

secondly, to apply data from another system that shares 

similarities but which is not the same (the data from the LFP 

cell). In this way, the correctness of the “inputs” for each 

stochastic tool can be discriminate, making possible the 

evaluation of the prognostic algorithms themselves. 

Similarly, the prognostic algorithms called PF and GPR 

have many settings that change the obtained results. Our 

goal is to compare the PF and the GPR, but since their 

results depend on the used configuration (such as the 

resampling method on PF and the covariance function on 

GPR), different recent settings of these prognostic 

algorithms are evaluated. The PF is set with 3 common 

resampling methods: SR, MR and RR; and the GPR is set 

with 3 different covariance functions: SE, Ma and NN. 

The whole test matrix is shown in Table 2. 

Table 2. Trials of the stochastic tools 

 

Test 

nº 

Stochastic 

tool 

Cell Aging 

model 

Differential 

characteristic 
1 

Particle Filter 

NCA 

Eq. (1) 

SR 

2 MR 

3 RR 

4 

Eq. (2) 

SR 

5 MR 

6 RR 

7 

Eq. (3) 

SR 

8 MR 

9 SR 

10 LFP 

Eq. (4) 

SR 

11 MR 

12 RR 

13 

Gaussian 

Process 

Regression 

NCA 

Eq. (1) 

SE covariance 

14 Ma covariance 

15 NN covariance 

16 

Eq. (2) 

SE covariance 

17 Ma covariance 

18 NN covariance 

19 

Eq. (3) 

SE covariance 

20 Ma covariance 

21 NN covariance 

22 LFP 

Eq. (4) 

SE covariance 

23 Ma covariance 

24 NN covariance 

 

In the process of running all the trials defined above (Table 

2), some parameters have been maintained constant to be 

able to compare both prognostics tools and their different 

configurations in equal terms. These parameters are 

resumed in Table 3. 
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Table 3. Affecting parameters. 

 

Parameters Value Description Used in 

N 1/2 Training data set. PF + GPR 

L 1/4 Validation data set. PF + GPR 

EOLNASA 1.3182 Capacity value at 7/8. PF + GPR 

EOLLFP 80.456 Capacity value at 7/8. PF + GPR 

𝑝_𝑘𝑜𝑝 1000 Particle quantity. PF 

𝑁𝑒𝑓𝑓 50% Resampling threshold. PF 

 

4.2. Comparison Metrics 

Once designed and run the trials, the obtained results need 

to be quantified in order to be compared. The proposed 

comparison focuses on 4 aspects described by the metrics 

resumed in Table 4: 

 The improvement on the fitting of the model. 

 The error on the desired state estimation. 

 The uncertainty level of the estimations. 

 The computing load of the tool. 

Firstly, the ability of the tool to adapt to the data of the 

tested system is checked. This is quantified by the Root 

Mean Squared Error (RMSE) (Eq. (24)) on the whole data 

set, differencing the error obtained on the training data set 

from the error obtained on the prediction data set. 

RMSE = √
1

𝑁
∑(𝑥𝑖 − 𝑥𝑖)2

𝑁

𝑖=1

 (24) 

Secondly, the EOL estimation error is evaluated. The 

Relative Accuracy (RA) of the predicted EOL is checked 

(Saxena, Celaya, Saha, Saha, & Goebel, 2010). The metric 

is described in Eq. (25), where the 𝐸𝑂𝐿𝑚 is the measured 

EOL value and 𝐸𝑂𝐿𝑒 is the estimated EOL value. 

RA = 1 −
|𝐸𝑂𝐿𝑚 − 𝐸𝑂𝐿𝑒|

𝐸𝑂𝐿𝑚
 (25) 

Thirdly, the uncertainty level of the estimation is evaluated 

through measurements on the PDF. The probability of 

estimating the real EOL by the tool is used to know if the 

uncertainty is under-estimated and the PDF width is used to 

check in contrast, if the uncertainty is over-estimated. The 

PDF calculation on each algorithm is evaluated in a 

different way. The PDF in the algorithms based on GPR is 

defined by the variance achieved in the prediction step and 

the joint Gaussian distribution property of GP. The PDF in 

the algorithms based on PF is defined by the density 

distribution of the RUL estimations of each particle 

obtained at the last learning step. 

Fourthly, the computing load of the tool in the computer is 

measured by the computing time per training data point. For 

this, the mean time of the obtained time in 5 runs is 

measured. 

Table 4. Description of the comparison metrics. 

 

Metric Description 
Training 

RMSE 

Root Mean Squared Error (RMSE) on the learning 

data set (ordinate). 

Prediction 

RMSE 

Root Mean Squared Error (RMSE) on the 

prediction data set (ordinate). 

RA Relative Accuracy (RA) of the predicted EOL 

respect to the measured EOL (abscissa). 

EOL P 

value 

The probability of estimating the measured EOL 

value (from a normalized PDF). 

PDF width The width of the PDF in the ordinate axis with a 

68% confidence range. 

Computing 

time / data 

The computing time of generating the prediction 

divided by the length of the prediction data set. 

 

5. RESULTS 

The parameters used in the evaluated algorithms are 

achieved by grid search under restrained conditions defined 

in Table 3. The created grids are filled with logarithmic 

stepped values. Once created the grids, the optimum 

parameters for each algorithm’s configuration have been 

chosen by a cross validation on the defined validation data 

set. Then, the trials described in Table 2 have been run. 

The achieved prognosis results in all the trials are shown in 

Figure 2. The legends of each object on Figure 2 have been 

removed and shown in Figure 1 because they do not allow 

the proper visualization of the results and they are repeated 

in every chart. 

 
Figure 1. Legend of the results obtained in each trial. 

 

Finally, the metrics used for comparison described in Table 

4 have been calculated and written in Table 5.  
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Figure 2. Results of the trials defined in Table 2. The dark blue is the PDF; the blue points are the measurement of the available dischargeable capacity 

(observation); the red line is the fitting capability of the applied prognostic tool (filtered observation); the yellow points are the fitting of the learning 

data set with MATLAB’s lsqcurvefit function (lsqcurvefit); the purple points are the future estimation calculated by the prognostic tool (prediction); 

and the rest 3 lines represent different threshold (green is the end of the training data set, blue is the end of the validation data set end, red is the EOL 

value). 

Table 5. Metrics used to compare the prognosis tools. 

 

Comparison 

Metrics 

Eq. (1) Eq. (2) Eq. (3) Eq. (4) 

PF GPR PF GPR PF GPR PF GPR 

SR MR RR SE Ma NN SR MR RR SE Ma NN SR MR RR SE Ma NN SR MR RR SE Ma NN 

Test nº 1 2 3 13 14 15 4 5 6 16 17 18 7 8 9 19 20 21 10 11 12 22 23 24 

Training 

RMSE 

0.00
304 

0.00
278 

0.00
319 

0.00
892 

0.00
430 

0.01
681 

0.00
209 

0.00
193 

0.00
197 

0.00
892 

0.00
430 

0.01
610 

0.01
282 

0.01
340 

0.01
249 

0.00
410 

0.00
140 

0.01
718 

0.07
764 

0.06
691 

0.12
235 

0.37
549 

0.53
603 

0.34
715 

Prediction 

RMSE 

0.02

048 

0.02

323 

0.02

511 

0.07

325 

0.01

442 

0.02

207 

0.01

723 

0.01

739 

0.01

718 

0.07

325 

0.01

442 

0.02

545 

0.07

725 

0.06

998 

0.07

561 

0.03

148 

0.12

230 

0.05

376 

0.25

791 

0.25

275 

0.27

888 

0.95

824 

0.62

522 

0.19

901 

RA [x10-3] 6.85 0 6.84 260 34.2 0 41.1 47.9 41.1 260 34.2 13.7 109 95.9 109 6.84 NAN 75.3 19.0 20.6 12.7 257 36.5 38.1 

EOL P value 0.00

308 

0.00

335 

0.00

268 

0.00

368 

0 124

5.23 

0.00

188 

0.00

231 

0.00

252 

0.00

368 

0 0 0.00

234 

0.00

284 

0.00

228 

0.00

554 

0 6.08
E-12 

0.00

314 

0.00

264 

0.00

259 

6.48
E-06 

0 0.00

395 

PDF width 8.28

8 

13.7

78 

15.6

22 

189 Inf 0.00

064 

13.6

2 

14.9

76 

12.2

83 

189 Inf 0.00

072 

6.70

8 

5.35

9 

16.6

32 

137 Inf 3 120.

048 

77.8

75 

140.

279 

751

50 

Inf 147 

Computing 

time / data 

0.03

630 

0.03

789 

0.03

779 

0.03

022 

0.00

486 

0.04

893 

0.03

864 

0.03

817 

0.03

911 

0.01

497 

0.00

449 

0.06

212 

0.10

956 

0.10

946 

0.10

825 

0.01

235 

0.00

467 

0.08

027 

0.03

559 

0.03

645 

0.03

993 

0 0.00

086 

0.00

260 
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6. DISCUSSION 

First of all, note that the achieved results aim at evaluating 

the prognosis tools. The fact is that the learning step is 

larger in the prognosis tools than in the aging models due to 

the validation step needed in the applied optimization 

method (grid search). Therefore, any comparison between 

aging models and prognosis tools in this case would be 

inappropriate. However, thanks to the variety of aging 

models, we could discriminate the effect of the aging 

models on the obtained results and achieve our goal of 

evaluating the tools themselves and their different 

configurations. 

A graphical display of the results obtained in each trial is 

shown in Figure 2 and the relevant metrics described in 

Section 4 are shown in Table 5. Thanks to the relevant 

metrics, the different configurations of the algorithms can be 

evaluated quantitatively while supporting the discussion by 

the qualitative evaluation of the graphs. The evaluation of 

the algorithms is divided in 4 parts: 

1) The fitting error of the estimations respect to the 

ground data is evaluated by the first 2 metrics (“Training 

RMSE” and “Prediction RMSE”). According to the 

obtained values, the trial where the training data set is fitted 

the best is the trial nº 20 and the worst is the trial nº 23 (both 

run with the GPR + Ma covariance f). On the other hand, 

the best results in the fitting of the prediction data set 

(partially used in the cross validation) are obtained in the 

trial nº 14 and nº 17 (both run with the GPR + Ma 

covariance f) and the worst in the trial nº 22 (GPR + SE 

covariance f). This results show that the GPR is both, the 

best and the worst option when fitting the available data set 

on prognosis problems parametrized by grid search and 

cross validation. 

Going further on this evaluation, it can be seen that the PF 

shows better results than the average except for the results 

obtained with the Eq. (3) (in both, in training and in 

prediction data sets), where the results obtained with the 

GPR are the ones under the average value. Checking the 

metrics on the graphs, it can be seen that the algorithms 

based on PF have inaccurate estimations on the first data 

points of the training data set. These first fitting errors 

increase the error of the fitting metric on the training data 

set, which explains the fact of not achieving the best results. 

However, it can also be seen that once these algorithms 

achieve a proper estimation, the next estimations fit 

accurately the rest training data set. This explains why the 

obtained fitting values are under the average. This applies to 

all four cases except for one case, where the obtained values 

surpass the average. The results obtained with Eq. (3) show 

that the fitting of the training data set as well as the fitting of 

the prediction data set of the algorithms based on PF are not 

within the best. The fact is that the proposed model in Eq. 

(3) describes the capacity fade by a constant, but it is not a 

constant. The system shows a decrease on the capacity fade 

rate. This supposes that the model by itself is not able to fit 

well the data. In the case of the algorithms based on PF, the 

predictions are only based on the model parametrized with 

the last learned inner states. This means that the achieved 

fitting errors are as low as the best achievable by the model 

itself. This cannot be improved. On the other hand, the 

algorithms based on GPR are able to add to the prior model 

un-modelled behaviors of the system (learned on the 

training step). This leads to a more complete model that can 

get and gets lower fitting error values on the validation and 

prediction data set. However, it can also be seen that the 

trial nº 20 gets the higher fitting error on the prediction data 

set, even though being an algorithm based on GPR. This 

algorithm does not perform well on the prediction data set 

even though holding a validation fitting error under the 

average (used on the parametrization and validation of the 

algorithm). This type of behavior appears when an 

overfitting is done. The tool is over-fitted on the validation 

step and that leads to inaccurate future predictions, 

increasing considerably the prediction fitting error. 

2) The error on the estimation of the defined EOL 

(the capacity value at 7/8 of the data set) is evaluated by the 

Relative Accuracy (RA). According to the obtained values, 

the trials with the best RA on the defined EOL value are the 

nº 2 (PF + MR) and nº 15 (GPR + NN covariance f). In this 

case, the exact prediction has been achieved with both 

algorithms. The worst relative accuracy is achieved on the 

trial nº 20, where the result is never predicted (“NAN”, not a 

number). As explained before, the algorithm applied on the 

trial nº 20 is over-fitted, leading to wrong prediction values. 

Additionally, it can be seen that in average, the worst values 

are achieved on trials nº 13, nº 16 and nº 22 (GPR + SE 

covariance f). Checking this on the graphs, it can be seen 

that the prediction done by the GPR with the SE covariance 

function starts losing the learned effect and ends making 

predictions based uniquely on the model itself. This means 

that the obtained RA values in those cases are the same as 

the RA values obtained by the models themselves. 

Extending and deepening the analysis, it can be seen that the 

algorithms based on PF show RA values with the same 

magnitude and below the average. This means that in 

general, the algorithms based on PF are above the GPR 

algorithms in terms of RA values. However, it can be seen 

that the GPR with NN covariance function achieves the best 

RA values with the NCA battery data, but the worst RA 

value with the LFP battery data. Two of the possible reasons 

behind this are: (1) the available amount of data (not enough 

to learn the un-modelled behaviour of the system) and (2) 

the adequacy of the hyper-parameters or the correctness of 

the data. In this case, the proposed comparison approach has 

not been able to discriminate the uncertainty of the “inputs” 

and it cannot be known why the RA values are the best in 3 

of 4 cases and the worst in the other case, but it gives hints 

on the potential of this algorithm. 
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3) The uncertainty level of the estimations is 

evaluated by the analysis of the PDF width and the 

probability of estimating the real EOL value (“EOL P 

value”). These two metrics along with the RA could be 

considered the most important metrics on prognostic tool 

evaluation. At a first glance, it could be seen that the 

configurations of GPR with Ma and SE covariance 

functions are not appropriate for uncertainty evaluation. The 

PDF obtained with these algorithms have width values 

higher than the real EOL value itself. The uncertainty is 

overestimated in those cases. The configuration of the GPR 

with NN covariance function, on the other hand, has such 

low PDF width values in three of the four tested cases that 

the probability on estimating the real EOL value gets 0 

unless an exact prediction is done such as in the trial nº 15. 

The uncertainty is underestimated in those cases. The results 

obtained by the algorithms based on PF show differences 

when the “inputs” change but not big ones: the probability 

of estimating the real EOL remains similar in all the trials 

and looking at the graphs, it looks like the PDF widths are 

not under-estimating the uncertainty. In this case, it is not 

possible to confirm if the values estimate properly the 

uncertainty since the correctness of these metrics depends 

on the specifications of the application, which are not 

available in this study. However, it is clear that the tested 

algorithms based on PF are better than the tested algorithms 

based on GPR in terms of uncertainty evaluation. 

4) The computing load of the tool on the PC is 

evaluated by the computing time per training data point. In 

this case, there is practically no difference in the algorithms 

based on the PF in terms of data points, which means that 

there is a common linear relation of the training data points 

and the computing time on each configuration of the PF. 

Nevertheless, the algorithms based on GPR show big 

differences depending on the amount of training data points 

(between NCA data and LFP data), which means that the 

relation of training data points and the computing time could 

be exponential, leading to the curse of dimensionality. This 

is a key aspect in on-line applications. Among the 

configurations of the algorithms based on GPR, the one with 

NN covariance function requires more time than the others, 

so this would be the worst in terms on computing load. 

Analysing the results as a whole, it could be seen that the PF 

works similar in every case and with all the tested 

configurations (resampling methods), showing the huge 

possibilities that give this stochastic filter in prognostic 

problems. In all cases, the EOL measurement is in the 

generated probability distribution and the relative accuracy 

does not overcome the 10%, which in one case goes down 

to a 0%. On the other hand, the tested GPR configurations 

cases have shown the best results in most of the evaluated 

metrics, but they also have shown the worst values in the 

critical ones (RA, PDF width and EOL P value), showing 

the potential of the algorithms based on GPR but also the 

deficiencies on the tested configurations.  

7. CONCLUSION 

In this paper, two prognostic tools (GPR and PF) with 

several different configurations are applied to different case 

data (aging data of NCA and LFP cells) and different prior 

knowledge (capacity fade models) in a LIB RUL prognosis 

problem. The chosen prognostic tools have been then 

compared quantitatively according to some interesting 

metrics (see Table 4) supported by a qualitative comparison 

of the graphs shown in Figure 2. 

Taking into account that the key to get useful prognostics is 

not only an accurate remaining life estimation, but also an 

assessment of the confidence of the uncertainty estimation 

(Goebel et al., 2008), the best prognostic tool tested in this 

study would be any of the algorithms based on PF. The 

calculated PDFs have a relatively reduced width in all the 

trials and the real EOL value can be found inside the 

probability distribution with a confidence higher than 68%. 

On the other hand, the algorithms based on GPR could only  

underestimate or overestimate the uncertainty of the EOL 

prediction, which is important not to do so (Sankararaman et 

al., 2014). In case of the GPR with Se covariance function, 

the PDF width is too big to consider the uncertainty 

estimation as appropriate (PDF width values higher than the 

the RUL value itself). Besides, it predicts EOL values equal 

to the ones obtained with the capacity fade model alone, 

which suggests that this configuration would not be 

interesting to improve the prior knowledge in prediction 

applications. In case of the GPR using the Matérn 

covariance function, the PDF width in all the trials is too big 

(infinite) even though if in some cases, the EOL estimation 

values (RA values) are among the best ones. This means 

that the estimated EOL value cannot be believed. An 

example of this asseveration can be found on the results 

obtained in the trial nº 20 where the predictions never reach 

the EOL threshold (NAN). In case of the GPR with NN 

covariance function, the results are far away from the ones 

obtained with the algorithms based on PF like the other 

GPR configuration, but it is worth noting that this is the 

algorithm that shows more potential among all the tested 

ones. Even though this algorithm requires improvement on 

the PDF estimation (the estimated PDF width is too narrow 

and the real EOL values stays out of the estimated 

probability distribution on 2 of the 4 tested cases, having a 

probability lower than 32% of estimating the real EOL), it 

achieves the best RA results on 3 of the 4 tested cases. The 

improvement of this algorithm could be achieved by (1) an 

improvement on the covariance function by adding or 

multiplying a covariance function to the NN covariance 

function, (2) an improvement on the aging model, (3) a 

reduction of the given uncertainty by the data or (4) an 

improvement on the parametrization algorithm. 

For future works, a more robust comparison framework will 

be developed which will try to discriminate completely the 

effect of the uncertainties on the “inputs” of the stochastic 
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tools while also improving the algorithm. In the same way, 

the “Prognosis Horizon” and the “α-λ performance” metrics 

will be added on a 5
th

 evaluation of the results. Besides, a 

need of synthesizing the results is detected, which will be 

attended. Finally, improvements will be applied to lead to a 

better understanding of the potentials of the algorithms and 

to lead to an easier selection of the appropriate algorithm in 

LIB RUL prognosis problems. 

NOMENCLATURE 

DOD Depth of Discharge 

EOL End of Life 

GP Gaussian Process 

GPR Gaussian Process Regression 

LFP LiFePO4-graphite cell technology 

LIB Lithium-ion battery 

Ma Matérn covariance function 

MR Multinomial Resampling 

NCA LiNi0.8Co0.15Al0.05O2-graphite cell technology 

NN Neural Network 

PDF Probability Density Function 

RMSE Root Mean Squared Error 

PF Particle Filter 

RR Residual Resampling 

RUL Remaining Useful Life 

SE Squared Exponential covariance function 

SOC State of Charge 

SR Systematic Resampling 

Tº Temperature 
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