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ABSTRACT

Increasing requirements for reliability of modern powertrains
can be achieved by predictive maintenance and reliability-
based control based on lifetime prediction. This contribution
presents lifetime prediction for a dry clutch, being an essen-
tial component of automated manual transmissions. Model-
based development of lifetime prediction requires knowledge
of dry clutch wear, which was identified in previous exper-
iments. The derived wear model allows estimation of char-
acteristic wear-dependent values, like friction lining material
losses and friction coefficient changes. Based on these esti-
mated values the presented lifetime prediction was developed
by fusing these estimated values into a health index (HI) de-
scribing the systems healthiness. Furthermore, the remaining
useful lifetime (RUL) becomes predictable from observations
of health index trend using an exponential weighted mov-
ing average. Whereby, this method is limited to linear wear
trends. Eventually, the presented lifetime prediction was im-
plemented and tested on real-time operating hardware simi-
lar to common transmission control units. In order to con-
trol the system lifetime in normal operation, target trends for
health index and predicted remaining useful lifetime were de-
fined. Based on trend deviations, a fuzzy-logic based control
strategy was realized, which sets the optimization target for a
reliability-based control. Thus, the optimization target can be
varied between comfort-optimized or wear-optimized clutch
engagements. Finally, an outline of reliability-based control
concepts is given.

Daniel Strommenger et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

1. INTRODUCTION

The demand for reliability throughout the modern powertrain
is steadily increasing. Unexpected failures usually cause in-
tolerable costs and can endanger vehicle occupants. In or-
der to meet these increasing requirements, the application of
reliability improving concepts, like predictive maintenance
and reliability-based control, is necessary. Usually, these ap-
proaches require estimation and prognosis of system healthi-
ness and remaining lifetime.
Lifetime prediction is a common research topic for different
mechanical systems. In general, prediction of remaining use-
ful lifetime can be done either data-driven or model-based.
Data-driven approaches are useful when wear influences at
least one measured quantity. However, existing system sen-
sors are mostly not usable for data-driven wear prediction
due to inaccuracy. Therefore, additional sensors, for exam-
ple, vibration sensors for bearing monitoring, need to be inte-
grated into the mechanical system. This results in two disad-
vantages: the physical wear behaviour might be interpreted
incorrectly from sensor signals, because the physical wear
behaviour is unknown, and application of additional sensors
increases costs. As an alternative, model-based approaches
can be used for remaining useful lifetime prediction. Model-
based prediction requires identification of a wear model by
measurements on a component test bench. By identification,
a detailed physical insight is generated on the one hand. On
the other hand, the identification process costs much effort.
An application of lifetime prediction for clutches by a data-
driven approach was shown in (A. P. Ompusunggu, Vanden-
plas, Sas, & van Brussle, 2012). Wear of a wet clutch was pre-
dicted from three features, which were extracted from mea-
sured speed and clutch actuator pressure. These features were
fused in a system health index. Remaining useful lifetime
was predicted based on this health index by a weighted mov-
ing average. Another data-driven approach for dry clutches
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was presented in (Ramalingam, Prasad, Regalla, & Srinivasa
Prakash, 2017). Lifetime prediction by using measured clutch
actuator position was illustrated, but a proof of concept was
missing. A general approach for model-based lifetime pre-
diction for a dry clutch was shown in (Watson, Byington,
Edwards, & Amin, 2005). The cumulative wear was esti-
mated by an Archard model and lifetime prediction was done
by a double exponential smoothing. The Archard model in
(Watson et al., 2005) requires knowledge of the wear coeffi-
cient, which needs to be identified by experiments.
Based on the lifetime prognosis, a reliability-based control
can be realized. The aim of a reliability-based control is
to control system lifetime, leading to a guaranteed required
lifetime. In literature, reliability-based control was investi-
gated for different systems. An approach for an electrical ma-
chine was presented in (Hu, Foitzik, Chi-Thuan, & Guhmann,
2009). The accumulated wear was estimated model-based
and was subsequently used for health index calculation. In
consequence, the decision for the intervention of reliability-
based control was done by evaluation of health index and its
derivative. In (Hu et al., 2009) and in (Gokdere, Bogdanov,
Chiu, Keller, & Vian, 2006) a fuzzy system was proposed to
determine intervention of the reliability-based control. The
reliability-based control can guarantee the required lifetime
by changing the controller reference, as presented in (Hu et
al., 2009), or by changing the controller parameters, as illus-
trated in (Gokdere et al., 2006). As an alternative adjusting
of cost function weights of an optimal controller, like model
predictive controller (MPC), was investigated in many appli-
cations. For example in (Salazar, Nejjari, & Sarrate, 2014)
an MPC with integrated wear model was used for reliability-
based control of a twin rotor system. In (Sanchez, Escobet,
Puig, & Odgaard, 2017) a reliability-based control was real-
ized using a MPC for a wind turbine system with linearisation
of calculated load.
Finally, the literature review reveals two open research issues:
a model-based approach for lifetime prediction with identi-
fied model parameters and reliability-based control for clut-
ches. Both topics will be addressed in this contribution.
The remainder of this paper is structured as follows. Section
2 presents the applied methods of wear modelling, lifetime
prediction and reliability-based control strategy followed by
the results in section 3. In section 4 the presented results are
discussed. This contribution concludes with a summary and
an outlook on future work.

2. METHODS

For realisation of the proposed reliability-based control four
subsystems are required: the wear model (section 2.1), the
health assessment (section 2.2), the lifetime prediction (sec-
tion 2.3) and the reliability-based control strategy (section
2.4). The total structure is shown in figure 1. At first, the
wear model is used for wear estimation from known process
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Figure 1. Block scheme for reliability-based control

variables. Afterwards, the characteristic wear-dependent val-
ues are fused into the health index by the health assessment.
The health index trend allows predicting the remaining useful
lifetime. In the end, the control strategy calculates required
intervention in the clutch control from health index and re-
maining useful lifetime. Thus, the required system lifetime
can be guaranteed by the clutch control.

2.1. Wear Modeling

The dry clutch is a tribological system, where wear is caused
by abrasion of friction lining. In contrast to other mechan-
ical systems, the clutch can endure wear as well as thermal
stress to a certain limit. The friction lining surface is de-
graded by abrasion. As a result, a new underlying surface
with similar friction characteristics is uncovered. Thus, wear
do not change system performance significantly, as long as
friction lining height limit is not reached or friction lining
surface is not damaged by thermal overload. Wear of dry
clutches can be described macroscopically by Archard’s Law
(Archard, 1953).

Vw = kwFNs (1)

According to Eq. (1) the volume loss Vw is calculated from
wear coefficient kw, applied normal force FN and sliding dis-
tance s. The proof of this thesis as well as the identification
of the wear coefficient kw were done by previous experiments
(Strommenger, Gühmann, & Knoblich, 2017). The required
wear model can be build by applying the Law of Archard to
dry clutches, which will be described in the following.
A universal approach for wear modelling consists of two steps.
Firstly, tribological loads shall be determined and calculated.
For a dry clutch these are friction energy E and surface tem-
perature ϑ of friction linings. E is calculated from clutch
torque Tc and differential speed ∆ω, which is defined as dif-
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ference between engine speed ωe and clutch speed ωc. Fric-
tion energy is generated only during slipping. The slipping
time is defined as tslip.

E =

∫ tslip

0

Tc∆ωdt (2)

The other tribological load ϑ is not measurable by common
vehicle sensors. In general, ϑ can be estimated by a thermal
model as presented in (Strommenger, Gühmann, Knoblich, &
Beilharz, 2017). Hence, ϑ is assumed as known.
As second step, the relationship between load and wear need
to be identified. In order to identify this relationship, various
test bench experiments were performed to gain a deep insight
to dry clutch wear behaviour (Strommenger, Gühmann, &
Knoblich, 2017). These investigations allowed the derivation
and validation of a wear model stimulated by friction energy
and clutch temperature. All tests were planned according to
design of experiments (DoE) methods (Strommenger, Güh-
mann, & Knoblich, 2017). Eventually, the wear behaviour is
described by wear coefficient kw depending on friction en-
ergy E and temperature ϑ of friction lining surface. As a re-
sult, dry clutch material loss is calculated per cycle, whereby
each engagement is assumed as a cycle i, according to Eq. (3)
by applying Archard’s Law from Eq. (1). Material loss is
defined as reduction of friction lining height ∆sw divided
by bearing area AR (Strommenger, Gühmann, & Knoblich,
2017).

∆sw(i) = kw
E(i)

AR
(3)

Consequently, the accumulated material loss describes the to-
tal wear of a dry clutch by friction lining height sw.

sw(i) = sw,max −
j=i∑
j=1

∆sw(j) (4)

Whereby, the height of a new friction lining is defined as
sw,max and of a worn friction lining as sw,min.
The friction lining height sw describes aging of dry clutches.
However, sw cannot explain additional damage caused by
overload. Thermal overload causes a rapid reduction of fric-
tion coefficient µ, called Fading. This effect is reversible, if
overload is applied for a short time. In this case the friction
surface will regenerate by abrasion of the damaged surface
layers. By continuous application of overload, the damage
will be irreversible and the friction coefficient µ will not re-
generate. Hence, the friction coefficient will be used in addi-
tion to describe overload related damages. Furthermore, the
friction coefficient µ is assumed as estimable from measured
clutch position and estimated clutch torque. For µ > µ0 the
friction lining is considered as healthy, for µmin < µ < µ0

it is considered as partially damaged and for µ < µmin it is
considered as irreversible damaged.

2.2. Health Assessment

Lifetime prediction always requires a health assessment of
the system. For that reason a health index HI needs to be
defined, which allowing an easy assessment of health or per-
formance for dry clutches. All characteristic wear-dependent
values are fused into the health index, as in (A. P. Ompusunggu
et al., 2012). Therefore, friction lining height sw and friction
coefficient µ are combined to HI . For the presented wear
model from Eq. (3) and Eq. (4), the first part ofHI can be de-
scribed by assuming thresholds for new (HI = 1) and worn
(HI = 0)

HIsw = 1 for sw(i) = sw,max
HIsw = 0 for sw(i) = sw,min

(5)

and by assuming a linear relation between HIsw and sw to
model expected wear behaviour.

HIsw(i) =
sw(i)− sw,min
sw,max − sw,min

(6)

The second part of HI can be described as a nonlinear re-
lation between HIµ and µ by a sigmoid function to model
expected wear behaviour.

HIµ(i) = 1
1+ea(µ(i)−b)

a = −2ln(99)
µ0−µmin

b = µmin+µ0

2

(7)

In Eq. 7 the sigmoid function was defined, thatHIµ will fulfil
the following conditions.

HIµ = 0.99 for µ(i) = µ0

HIµ = 0.01 for µ(i) = µmin
(8)

Finally, HI can be fused by multiplication as an mathemati-
cal and.

HI(i) = HIsw(i) ·HIµ(i) (9)

2.3. Lifetime Prediction

The presented wear model allows a continuous material loss
estimation, which grants the opportunity of lifetime prognosis
by predicting the trend of HI . The presented lifetime predic-

 

 

 

 Lifetime
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Figure 2. Principle of lifetime prediction

tion is illustrated as a block scheme in following Figure 2.
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Trend prediction can be done by different methods. For choos-
ing an appropriate method it is necessary to determine whether
the wear trend is linear or nonlinear. According to Eq. (3) and
Eq. (4), the wear model is assumed as linear. Hence, a linear
method for lifetime prediction of dry clutches is chosen.
A simple approach for linear prediction is the weighted mov-
ing average (WMA). The WMA can predict steady trends
well but is not able to predict monotonically increasing trends.
Thus, the WMA is applied to the change of health index
∆HI , which has a steady trend, instead ofHI having a mono-
tonically decreasing trend.

∆HIWMA(i) =

i=n∑
i=n−N

α(1− α)(i−1)∆HI(i) (10)

The WMA averages ∆HI(i) from all observed values inside
rolling window i = n − N to current cycle i = n. Newer
values have greater influence on calculated average due to
exponential weights by α(1 − α)(i−1). Eventually, predic-
tion is done by assuming ∆HIWMA(i = n, ..., n + m) =
∆HIWMA(i = n) for all future values i = n + m in-
side a prediction horizon m. For practical implementation
the WMA will be used in its recursive form.

∆HIWMA(i) = α∆HI(i)+(1−α)∆HIWMA(i−1) (11)

In practical applications, the prognosis uncertainty needs to
be considered. According to (A. P. Ompusunggu et al., 2012)
the standard derivation σ of the WMA can be calculated by
the following equation.

σ =

√√√√ i=n∑
i=n−N

α(1− α)(i−1)(∆HI(i)−∆HIWMA(i))2

(12)
Hence, the 95 % confidence interval ∆HIWMA,b of the WMA
can be calculated as follows.

∆HIWMA,b = 1.96
σ√
N − 1

(13)

Additionally to the 95 % confidence interval, the estimation
uncertainty of the presented wear model has an influence on
the lifetime prediction accuracy. In (Strommenger, Gühmann,
& Knoblich, 2017) the uncertainty of the wear model sw,b
was determined to be about 10 %.
By using the WMA to predict wear from current cycle n until
HI reaches 0 inside the prediction horizon m, the remaining
useful lifetime (RUL) iRUL can be determined as follows.

iRUL(i) =
HI(i)

∆HIWMA(i)
(14)

By considering the confidence interval of the WMA from
Eq. (13) and uncertainty HI(sw,b) derived from the wear
model, the uncertainty of prognostics iRUL,b can be estimated
by two assumptions. Firstly, the uncertainty of prognostics is

derived by division of two uncertainties and can be calculated
according to (Berendsen, 2011) by Eq 15. Secondly, the co-
variance is neglected.

iRUL,b ≈ iRUL

√(
HI(sw,b)

HI

)2

+

(
∆HIWMA,b

∆HIWMA

)2

(15)

2.4. Reliability-based Control Strategy

As a result of the lifetime prediction, the RUL describes ex-
pected time to system failure. This grants the possibility to
realize predictive maintenance. By predictive maintenance
the repair of vehicle components can be planned before dam-
age will occur. However, the lifetime prediction does not al-
low any evaluation, whether current RUL is acceptable. For
example, the system could be actuated with overload, which
decreases the system lifetime drastically. In this case, over-
load should be prevented by clutch control algorithms. This
concept is named reliability-based control, which shall guar-
antee a required lifetime by preventing critical overloads.
Reliability-based control requires a control strategy, which
decides whether intervention by load reduction is necessary
or not. This control strategy is illustrated as a block scheme
in Fig. 3 and will be explained in this section.

Reliability-based
Controller

intervention

  
Control 

Strategy

control 
variable 

process 
variables

 
Health State
Evaluation

Figure 3. Principle of reliability-based control

Furthermore, the reliability-based control shall be integrated
into the system control. In case of a clutch, the reliability-
based control is part of clutch engagement control. Whereby,
the application for vehicle launch is crucial because most of
the wear will be generated during engagement. Concepts for
reliability-based controller will be concretized at the end of
this contribution as a research outlook.
The control strategy is based on three inputs: health rateHR,
Health TrendHT and Health TendencyHR′. The health rate
HR evaluates current health index HI in relation to current
cycle i and required lifetime ireq. (Hu et al., 2009)

HR(i) =
HI(i)

1− i
ireq

(16)

Thus, HR > 1 describes an acceptable health state for cur-
rent lifetime, which means that required lifetime will proba-
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bly be achieved. Otherwise, forHR < 1 the required lifetime
will probably not be achieved. Furthermore, the tendency for
HR can be described by its derivativeHR′ as difference quo-
tient.

HR′(i) =
∆HR(i)

∆ i
(17)

HR′ describes whether the system is currently operated with
light load for HR′ > 0 or with high load for HR′ < 0.
Whereby, for HR′ = 0 the system is operated with appropri-
ate load to achieve the required lifetime ireq. However, HR
and HR′ did not consider prediction. To consider predicted
iRUL, the health trend HT is defined as ratio of expected
lifetime iEoL to required lifetime ireq .

HT (i) =
iRUL(i) + i

ireq
=
iEoL(i)

ireq
(18)

HT gives information, if the health rate HR will probably
improve for HT > 1 or worsen for HT < 1 in current op-
eration scenario. In other words: the system will achieve for
HT > 1 the required lifetime in current operation scenario
without intervention. In contrast, this will be not achievable
for HT < 1.
By using these values for the evaluation of lifetime prediction,
the required intervention by clutch control can be defined col-
loquially as in Table 1. A fuzzy-system with 9 rules is used

Table 1. Required intervention of reliability-based control for
evaluated lifetime prediction

HR HT HR′ intervention
> 1 > 1 > 0 none
> 1 > 1 < 0 none
> 1 < 1 > 0 none
> 1 < 1 < 0 low
< 1 > 1 > 0 none
< 1 > 1 < 0 low
< 1 < 1 > 0 medium
< 1 < 1 < 0 high
� 1 ∗ � 0 high

to realize the reliability-based control strategy. All inputs are
fuzzified by trapezoidal-shaped membership functions. HT
is divided in 2 cases. HR and HR′ are divided in 3 cases.
The output γ is defuzzified with 4 triangular-shaped mem-
bership functions. The principal block scheme of this fuzzy
system is shown in Fig. 4. All functions of this fuzzy system
are shown in Table 2. For better understanding, fuzzification
by a trapezoidal-shaped membership function is shown prin-
cipally for HR as an example in Fig. 5. HR is divided into
three cases: healthy, unhealthy and ill. The case ill is defined
additionally to handle overload more aggressive. All cases
are overlapping each other to ensure output continuity. The
intervention aggressivity can be adjusted by the gradient be-
tween two cases. Additionally, a tolerance for no reaction is
defined by assuming unhealthy state for HR < 1 + ε instead
of HR < 1. Hence, the intervention will not be set for noisy

Figure 4. Fuzzy-System for calculating intervention of
reliability-based control

Table 2. Fuzzy functions for control strategy

Function Method
And Multiplication
Or Probabilistic (Algebraic Sum)
Implication Minimum
Aggregation Probabilistic (Algebraic Sum)
Rules Mamdani
Defuzzification Centroid of area

HR values around 1, if noise is smaller than ε.
A similar strategy is used for HT and HR′. Mathemati-
cally the input membership functions are expressed by Eq. 19.
Whereby, trapmf() is a Matlab notation for trapezoidal-sha-
ped membership function and trimf() for triangular-shaped
membership function.

γ (none) = trimf(−1, 0, 1)
γ (less) = trimf(−0.75, 0.25, 1.25)
γ (mean) = trimf(−0.5, 0.5, 1.5)
γ (high) = trimf(0, 1, 2)

(19)

The input membership functions are expressed by Eq. 20.

HR (healthy) = trapmf(0.8, 1.2, 3, 3)
HR (unhealthy) = trapmf(0.4, 0.6, 0.8, 0.95)
HR (ill) = trapmf(−1,−1, 0.6, 0.8)
HT (go-healthy) = trapmf(0.9, 1, 3, 3)
HT (go-ill) = trapmf(−1,−1, 0.9, 0.95)
HR′ (low-load) = trapmf(−4, 0, 300, 300)/100
HR′ (high-load) = trapmf(−8,−5,−3,−0.1)/100
HR′ (over-load) = trapmf(−100,−100,−8,−4)/100

(20)
Finally, the presented fuzzy system is able to calculate an
intervention value γ for the reliability-based control based
on three evaluation values, which are derived from HI and
iRUL. The intervention value can vary between γ = 0 (no
intervention) to γ = 1 (full intervention), whereby γ = 0 is
interpreted as comfort-optimized engagement and γ = 1 as
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Figure 5. Principally membership function of fuzzy-system
for control strategy

wear-optimized engagement.

3. RESULTS

The presented methods were simulated on real-time prototype
hardware by randomized stimuli. Friction energy is varied
from 5 kJ to 45 kJ and temperature from 40 ◦C to 140 ◦C. The
resulting wear is illustrated in Fig. 6 by reduction of friction
lining height and reaches its limit at 120,000 cycles.
The required lifetime in the example is chosen as 125,000 cy-
cles, which is not achieved. In this example, overload is pre-
vented, therefore the friction coefficient µ is neglected. Ac-
cording Eq. 11 and Eq. 14 HI and iRUL are estimated and
illustrated in Fig. 7. iRUL is estimated after 30,000 cycles.
Because of rolling window length N = 30, 000 cycles, the
WMA estimates a valid iRUL after i ≥ N . Thus, the iRUL
is set equal to the target trend for i < N . The exponential
weighting value α is chosen as 0.002. Additionally, the target
trends for HI and iRUL are shown in Fig. 7. If HI and iRUL
meet their target trends, the evaluation represented by HR,
HT and HR′ will stay at their targets too.
The resulting lifetime evaluation by HR, HT and HR′ is
shown in Fig. 8. At least the intervention γ in Fig. 8 was
calculated by the presented fuzzy-system for the reliability-
based control strategy. As the system is operated without
reliability-based control, the intervention does not have any
influence on lifetime. This open loop scenario shows, that the
control strategy works correctly. For example, the interven-
tion γ increases, ifHR decreases. Intervention γ is amplified,
if HT , HR and HR′ are far away from their target trends.

4. DISCUSSION

The presented method for lifetime prediction is based on two
assumptions. Firstly, the health index is calculated from two
characteristic wear-dependent values. The presented health
assessment is expendable for systems with more characteris-
tic wear-dependent values if the physical background is known.
In other cases, all characteristic wear-dependent values need
to be fused into the health index by different methods. One
opportunity was proposed in (A. P. Ompusunggu et al., 2012),
where a logistic regression model was introduced for health
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index calculation. This solution is quite useful for data-driven
approaches with higher number of features.
Secondly, the presented approach for lifetime prediction of
dry clutches is based on the assumption of a linear wear trend.
Therefore, WMA is used for a linear prediction of the re-
maining useful lifetime. Hence, this approach works only
for linear wear behaviour. The linearity of the wear model
was ensured by experiments in (Strommenger, Gühmann, &
Knoblich, 2017). Thus, this prediction method is not applica-
ble, if wear behaves nonlinearly. In this case nonlinear pre-
diction methods should be used. One example of a nonlinear
prediction method is a Kalman filter with an exponential wear
model as presented in (A. Ompusunggu, Papy, & Vandenplas,
2015). This method can be used for nonlinear as well as for
linear prediction, which offers a more general usage.
Due to the fact, that the presented lifetime prediction shall be
integrated on a real-time-hardware, the WMA is preferred,
because of its short execution time. Usage in real-time hard-
ware is one major requirement for the presented approach.
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All methods are integrated on a dSPACE Microautobox II
with Matlab 2016b and tested on a transmission test bench,
described in (Nowoisky, Knoblich, & Gühmann, 2012). This
setup guarantees a later usage of all methods in a transmission
control unit of a real vehicle. As execution time 10 ms are
chosen, but all event discrete methods will be executed once
per engagement cycle and will be idle until next engagement
cycle occurs.
The uncertainty of presented lifetime prediction is considered
in Eq. 15, but is not shown for clarity in the results section.
Compared to wear model uncertainty, the uncertainty of the
WMA, which is below 1 %, can be neglected. Hence, the
wear model uncertainty of 10 % cause an prediction uncer-
tainty of 10 % according to Eq. 15. Due to a constant relative
uncertainty, the absolute uncertainty is increasing over time.
In contrast, the absolute prediction error epred is decreasing
over time, because of decreasing time distance between pre-
diction cycle n and iEoL.

epred(i) = iRUL(i) + i− iEoL (21)

This means, the difference between iRUL + i and iEoL will
decrease over time, which makes prediction results more trust-
worthy if prediction cycle n and iEoL are close to each other.
Additionally, the WMA will deliver no trustful results, if cur-
rent cycle i is smaller than window length N . During this
initial learning phase the uncertainty of lifetime prediction
will decrease according to Eq. 12 and 13 until it reaches the
mentioned WMA uncertainty below 1 %.
Besides the considered model uncertainties, additional input
uncertainties and operating environment uncertainties need to

be considered. Input uncertainties are dependent on the initial
state of damage, manufacturing variability and measurement
noise. The initial state of damage will be assumed as zero
for a new clutch. No uncertainty need to be assumed in this
case. In contrast, the reinitialization of current wear is cru-
cial for wear estimation due to the fact, that new wear is es-
timated from cumulated old wear according to Eq. 4. Hence,
for usage in vehicles, old wear values shall be saved continu-
ously to grantee a valid reinitialization in every case. By this
measure, uncertainty due to the initial state of damage can be
neglected. Uncertainties caused by manufacturing variability
and measurement noise were not determined in this contribu-
tion. These uncertainties need to be determined for a specific
dry clutch system in the later application. The influence of
resulting input uncertainty on the uncertainty of lifetime pre-
diction need to be determined for example by a Monte Carlo
simulation.
In contrast to input uncertainties the operating environment
uncertainties have an higher impact on lifetime prediction re-
sults. Operating environment uncertainties are dependent to
unforeseen future loads and variability of history data. Ac-
cording to Eq. 12 and 13 increasing variability causes higher
lifetime prediction uncertainty. The influence of variability
can be handled by choosing appropriate values for window
length N and exponential weight α of the WMA. Assum-
ing, that these can be chosen from field data with a variability
similar to the real application. If this is not valid, additional
measures for determination of the WMA parameters accord-
ing to the current data variability need to be considered. The
influence of unforeseen future load was not considered for the
presented lifetime prediction. Hence, unforeseen future loads
and variability of history data are open issues, which should
be investigated in further research.
The presented reliability-based control strategy is based on
a fuzzy logic, which grants two benefits. Firstly, it allows an
easy interpretation of evaluated lifetime prediction and result-
ing intervention. Secondly, it avoids unsteadiness of interven-
tion γ, which could cause stability problems of the reliability-
based control. In comparison to existing approaches like (Hu
et al., 2009) or (Gokdere et al., 2006) the presented reliability-
based control strategy shows additional benefits. Both ap-
proaches were based on models, whereby (Hu et al., 2009)
used a wear model to estimate health index and (Gokdere et
al., 2006) used a model for considering desired working con-
ditions. Though, none of them used lifetime prediction results
for reliability-based control strategy. By using prediction,
unnecessary intervention can be reduced. Instead of a con-
trol strategy based on an additional model, a MPC-controller
with integrated wear prediction model was investigated by
(Salazar et al., 2014). This approach considers prediction but
needs much computational effort. Thus the presented fuzzy-
based control strategy has two advantages in comparison to
existing approaches: it considers prediction and can be used
on real-time-hardware.
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5. OUTLOOK

The presented reliability control strategy can be used to vary
the aim of the engagement controller between wear-optimized
or comfort-optimized if intervention value γ is integrated into
clutch control. Common clutch controllers are based on cali-
brated trajectories (Wehbi, Bestle, & Beilharz, 2016). There-
fore the intervention can easily be integrated as an additional
input of a lookup-table. Hence, the controller aim can be set
for each engagement by choosing trajectories from a lookup-
table as it is illustrated in Fig. 9 depending on intervention
γ and operation scenario. The operation scenario depends on
engine torque Te and load torque TL. The control variable
Tc,ref will be set as a reference for underlying actuator con-
trol. An alternative approach is the integration of intervention

intervention

control 
variable 

operation
scenario

Figure 9. Reliability-based controller concept by trajectories

value γ inside a cost function of an optimal controller. In gen-
eral, MPC is suggested for an optimal clutch control (Dolcini,
Béchart, & Canudas de Wit, 2010), which can consider inter-
vention as a weight for two partial cost functions for comfort
Jc and wear Jw.

minJ = γJw + (1− γ)Jc (22)

Both approaches will be investigated in further research.

6. CONCLUSION

In summary, the presented approach can be used to predict
health index and remaining useful lifetime based on estimated
wear for dry clutches. A WMA was used to perform lifetime
prediction based on health index trend. The presented life-
time prediction is limited to linear wear trends. The uncer-
tainty analysis of the proposed method reveals that lifetime
prediction uncertainty is mainly influenced by wear model
uncertainty. Besides the limitation to linear trends, the life-
time prediction is not trustful at initial learning phase. Ad-
ditional uncertainties arising from manufacturing variability,
measurement noise as well as variability of history data and
future load were not determined in this contribution. Hence,
the uncertainty analysis shall be extended to these open issues
in further research to achieve a reliable lifetime prediction for
real application.
Furthermore, the resulting health index and remaining use-

ful lifetime were evaluated by a fuzzy-logic. By this eval-
uation, the required intervention for reliability-based control
was derived. Usage of fuzzy-logic allows an easy interpreta-
tion of lifetime prediction results and avoids unsteadiness of
the resulting intervention for the reliability-based control. As
a result, the reliability-based control will be able to control
system lifetime by varying between comfort-optimized and
wear-optimized clutch engagements. Finally, all presented
methods were implemented and tested on real-time prototype
hardware to guarantee the later usage in real vehicles. In the
end, the basis for a reliability-based control was built by the
presented lifetime prediction and control strategy. The con-
cretisation of the reliability-based control idea will be an issue
of further research.
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