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ABSTRACT 

In automotive industry, and generally in the mass  
production world, maintenance is a very critical issue 
requiring special attention since every single stop causes a 
huge loss in term of item produced due to very small cycle 
time. 

Basing on this observations, in the last years, a lot of efforts 
has been put in failure prevention and condition based 
maintenance; as an example in Fiat Chrysler Automobiles 
(FCA) the WCM (World Class Manufacturing) became part 
of its culture and the area dedicated to Professional 
Maintenance makes possible many step forwards.   
The ways WCM reaches the zero breakdown are Time 
Based Maintenance (TBM) and Condition Based 
Maintenance (CBM) but further improvements can be 
reached  with focus on cost reduction and by optimizing the 
component usage without arriving to a fault. 

In this paper, after  an overview of maintenance techniques 
adopted in FCA plants worldwide, a model-based approach 
is suggested for a COMAU hemming tool named RHEvo 
(Roller Hemming Evolution). After the development of a 
simplified model, we try to estimate the actual status of 
internal components making use of Neural Network.  

Focusing on the internal springs, the aging affects the elastic 
coefficient because of fatigue phenomena. As will be 
shown, under certain assumptions the cracks presence 
affects the nominal elastic coefficient; therefore, starting 
from the estimation coming from the Neural Network, it is 
possible to model an equivalent crack length.  Finally, 
basing on stochastic crack growth model proposed by Yang 
and Manning an estimation of internal spring’s Remaining 
Useful Life Estimation (RULE) is calculated. 

The proposed approach and the obtained results could be 
used for a variety of devices that make use of springs; 
indeed helical tension and compression springs have 
numerous uses, notably automobile suspension systems, 
gun-recoil mechanisms, and closing valves on engines. 

1. MAINTENANCE IN FCA 

World Class Manufacturing (WCM) is a structured, rigorous 
and integrated production methodology adopted at FCA 
plants worldwide, which involves the entire organization, 
from safety to environment, maintenance, logistics and 
quality. WCM is focused on continuous improvements and 
the source of decision making is cost deployment which 
uses systematic analyses to address costs to losses.  

The WCM is structured in pillars that cover all the 
manufacturing area and focus on different aspect of 
production work cycle. A “7-step” approach is then applied 
to determine Root Cause and prevent reoccurrence, moving 
the organization from a reactive to preventative and 
ultimately proactive approach (FCA 2016). 

 

Professional maintenance is responsible for preventive 
maintenance, equipment classification and for economical 
justifications of maintenance systems  (FCA, 2010); it tries 
to maximize the equipment availability at an economical 
cost, to eliminate unplanned maintenance and to reduce the 
number of production stops to zero.  As for the other pillars, 
we have seven step to be run in order to reach the maximum 
WCM level in  professional maintenance (Image 1). 

In FCA, when a new Plant is started, usually the first three 
steps are automatically reached after ramp-up phase; instead 
when an old plant wants approach to WCM, it starts from 
first step.  

The step three means that all the maintenance procedure 
provided by the machine suppliers are inserted in a standard 
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maintenance plan. Many of these plan are very conservative 
and brings to over-maintenance and extremely high cost. On 
the other end this step brings already to machine zero 
breakdown, is very important that all the further steps will 
result in cost saving but the zero stop condition must be 
respected. 
 

 
Figure 1- PM steps 

 

Inside the step three, the most common approach to activity 
plan is the TBM (Time Based Maintenance) that does not 
optimize the usage of component because is based on 
nominal production and does not take in account the real 
working hour of that component . 

The simpler cost reduction is made counting the working 
cycles of component in order to have a real estimation of 
remaining useful time basing on MTBF. This is the step five 
of Professional Maintenance named HBM (Hit Based 
Maintenance). 

Going further with the optimization we arrive to step six 
where a key parameter of the component life is monitored 
and make possible to estimate the machine efficiency in 
real-time. This kind of  maintenance is named CBM, 
Condition Base Maintenance.  

The last step in component usage optimization and 
maintenance cost reduction is the predictive  approach that 
brings to a  complete maintenance activity schedule tailored 
on each component health status. 

 

2. COMAU RHEVO 

COMAU (COnsorzio MAcchine Utensili) is part of FCA 
Group and has its headquarter in Grugliasco-Turin. Comau 
specialization is the industrial automation with an 
international network of 35 operative centers, 15 
manufacturing plants and 5 innovation centers worldwide.  

One of COMAU products is RHEvo, a robotic tool for 
hemming process; in this work a model based approach for 
its predictive maintenance is proposed. 

Hemming is a process that bent edge of a metal sheet giving 
a neat and compact joint even if less strong than a welded 
joint (Jonkers, B.,2006). 

One of the most diffuse processes is robot  roller  hemming  
where a  robot  guides  a roller parallel along the flange. 

 

RHEvo Roller Hemming Head is the COMAU solution for 
robot hemming process and consist in a double spring  
mechanical structure that permits to use a single tool for 
Push and Pull applications. Thanks to the internal springs a 
full force control is possible over the path with a total force 
range of ± 2200 [N] . 

The RHEvo includes two load cells for remote force 
monitoring in order to make easier the setup phase, and 
monitor the force, one of the technological parameters of the 
hemming process.  

 

 
Figure 2- Comau RHEvo 

Run a FMECA before the modelling phase is very important 
in order to define the simulation level we want to reach and 
components we want to include in it. 
 
Starting from the maintenance manual and the experience of 
process technology experts we can extract information about 
failure mode, effects and obtain Risk Priority Number 
(RPN) calculation as an alternate method to criticality 
analysis. The RPN is a result of a multiplication of 
detectability (D) x severity (S) x occurrence (O).  
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The scales used for each parameter are:1-6 for Detectability 
where 1 means fault is Certain and 6 fault undetected, 1-5 
for Severity where 1 means no relevant effect on reliability 
or safety and 5 catastrophic effects, 1-5 for occurrence 
where 1 means extremely unlikely and 5 frequent.  
Once collected the failure modes and the effects they lead, 
an evaluation of just reported factors has been made; in the 
table below you can see the failure modes of RHEvo already 
sorted by Risk Priority Number. 
 

Table 1. RHEvo FMECA 
Failure mode 

 
Effect 

 
S O T RPN 

Spring characteristic 
change 

Different Robot 
torque requirement 

4 4 3 48 

Bushes wear Friction increasing 3 3 4 36 

Pad wear Friction increasing 3 3 4 36 

Bearings wear Vibrations increase 3 2 3 18 

Finger roll wear Less hemming 
pressure 

4 4 1 16 

Roller wear Vibrations increase 4 4 1 16 

Preload change Different Robot 
torque requirement 

3 2 2 12 

Roller  dirty Quality process loss 2 5 1 10 

Robot Alteration Quality process loss 3 1 3 9 

 

3. RHEVO PHYSICAL MODEL 

Analyzing the FMECA it is evident that the main problems 
can arise in relation with springs characteristic changes and 
internal components wear (pad and brushes); therefore we 
assumed to focus on this two phenomena including in the 
model  the two spring-dump components and the friction 
caused by pad and brushes. As a first extreme simplification 
the Roller Pack mass is concentrate in a point  between two 
spring-dumper systems connected with fix frame. 

Friction due to internal pads and bushes has been modeled 
as a unique coulomb & viscous friction. 
 

As a first step we started from nominal values for friction 
and spring parameters; combining all the forces acting on 
the concentrated mass we reach the model expressed by 
Eq.1 : 

 

𝑀𝑀�̈�𝑥 = ∑𝐹𝐹 = −𝐹𝐹𝑢𝑢𝑢𝑢 − 𝐹𝐹𝑢𝑢𝑢𝑢 − 𝐹𝐹𝑙𝑙𝑢𝑢 − 𝐹𝐹𝑙𝑙𝑢𝑢 + 𝐹𝐹𝑔𝑔 + 𝐹𝐹 − 𝐹𝐹𝑓𝑓       (1) 

 

Where F is the force exerted by the robot, 𝐹𝐹𝑢𝑢𝑢𝑢 
,𝐹𝐹𝑢𝑢𝑢𝑢 , 𝐹𝐹𝑙𝑙𝑢𝑢 , 𝐹𝐹𝑙𝑙𝑢𝑢 are the elastic and dumping forces from the 
upper and lower springs, 𝐹𝐹𝑔𝑔 is the gravitational force and 𝐹𝐹𝑓𝑓 
is the friction force. 

 
Figure 3- RHEvo model 

 

The outputs of the model in Equation (1) are the forces 
acting on the springs which can be measured directly from 
the load cells. 
 
The input of the model is the force from Robot  F; assuming 
the tool acting on a single direction, all the force applied by 
the robot’s TCP (Tool Center Point) z-axis is reported 
directly on the Hemming tool. 
The robot’s forces can be estimated from the motor’s 
currents that are directly related to the torques then to the   
Cartesian forces. 
The adopted robot model is based on the classical Euler-
Lagrange approach that brings to the following formula 
(Siciliano, Sciavicco, 2009): 
 
            𝑀𝑀(𝜃𝜃)�̈�𝜃+C�𝜃𝜃, �̇�𝜃��̇�𝜃 + 𝑁𝑁�𝜃𝜃, �̇�𝜃� = 𝜏𝜏                  (2) 

 
where τ is the vector of actuator torques , 𝑁𝑁�𝜃𝜃, �̇�𝜃� includes 
gravity terms and other forces which act at the joints and 
matrices M and C summarize the inertial properties and the 
Coriolis matrix of the manipulator. This is a second-order 
vector differential equation for the motion of the 
manipulator as a function of the applied joint torques. 
If we know all the characteristic matrix of the robot (usually 
we do in phase of robot construction) we can start from 
measured currents and calculate the torque for each joint. 
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Once done that we can use the kineto-static duality between 
generalized (Cartesian) forces and Cartesian velocities that 
makes use of geometric Jacobian: 
 
                               𝜏𝜏 = 𝐽𝐽𝑇𝑇𝐹𝐹                                           (3) 

4. AGING EFFECTS 

In this paragraph we will focus on how to model the effects 
of wear on the modeled components inside the RHEvo. 

Time-dependent increase of frictional strength, or frictional 
aging, is a widely observed phenomenon both at macro and 
nanoscales. Even if many studies demonstrate and describe 
the logarithmic trend of frictional aging (Zhiping Yang, 
2008), in this study it was decided to focus just on the effect 
of aging on RHEvo internal springs. 

4.1. Wear effects on Spring 

The common usage of the Hemming tool puts under cyclical 
stress the internal spring. It is well known that at pulsated 
stress below the yield strength of the spring materials, the 
materials can break because of fatigue. 

A spring fatigue problem starts with the development of a 
micro fatigue crack which grows for every pulsation. When 
the stress in the remaining material reaches the ultimate 
tensile strength the spring will break (Sinan Korkmaz, 
2008).  

In (Yang & Minning, 1990) the authors propose a  
stochastic crack growth model for predicting the statistical 
crack growth damage accumulation in metallic structures; 
starting from this model, under certain assumption it is 
possible to predict the Remaining Useful Life Estimation 
(RULE) of the spring. 

  The micro fatigue crack propagates radially starting from 
an initial  surface defect and progressively reduce the useful 
section of the material twist; on the other hand the Hook law 
shows that the spring rate depends directly from the fourth 
power useful diameter (Hooke, 1678): 

 

                                 k = G∙d4

8∙Na∙D3
                               (4) 

                                G = E
2(1+v)                                 (5) 

 

where: d is the wire diameter, D outer the outer diameter,    
D is the mean diameter (D outer - d), E the Young's 
Modulus of Material, G is the Shear Modulus of Material,   
k is the spring rate (spring constant), Na is the number of 
active coils and v is the Poison's ratio of material. 

Let’s introduce the concept of spring’s equivalent useful 
diameter on the mean circular area without cracks along the 
spring’s length. 

Basing on this observations, we can say that with aging and 
occurrence of fatigue crack the spring’s equivalent useful 
diameter reduces, therefore the spring rate will reduce. 
 

5. HEALTH STATUS ASSESSMENT ALGORITHM 

Once the model has been defined and implemented in 
Simulink an approach to detect faults and estimate the 
health status has been proposed.  

The approach is based on simulation with a defined input 
force pattern: once  reached a baseline running the 
simulation with nominal parameters  this has been changed 
randomly in a realistic range. 

 The range of applicable frequencies is bounded from the 
real one deployable with robot therefore we assumed a 100 s 
long vector (sample time Ts=0.001) composed of steps with 
different amplitude (500,-1500, 2000, -2000 N) and sinusoid 
with amplitude 1800N and different frequencies (1, 2, 5, 7, 
10 Hz).  

 

After saved the output as a simulation baseline (spring’s 
output forces) three percentages that represent respectively 
the change of spring’s elastic constant (assumed to be up to 
30%) and friction’s gain (assumed to be up to 50%) has 
been introduced. A large training dataset (100 Experiments) 
has been obtained running the Simulink model setting  
randomly the parameters deviation  percentages. 
 
By observing the outputs simulated the following features 
has been defined: 

• Freq. peaks differencescalculated the spring force’s 
signals FFT and  detected the magnitude at the 
stimulation frequencies, the differences with baseline 
are estimated (Figure 5); then, the differences between 
estimated values for upper and lower spring  are 
assumed as feature. It is made by five values because 
input force contains five different frequencies; 

• Phase Considering the input step subparts and 
detected the overshoot in the output, the times between 
the input step and output steps are calculated and the 
average is made (one value for spring); 

• Overshoot Starting from the step input, the 
overshoot’s  difference between baseline and output is 
calculated (four values for spring). 

 

http://www.lesjoforsab.com/standard-springs/spring-materials.asp
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Figure 5- FFT Output signal difference with baseline 

 
Starting from the features vector (with total dimension is 
fifteen) the decisional algorithm must be able to estimate the 
parameter’s change percentages. Neural Network has been 
chosen as fitting tool; the two-layer feed-forward network 
with sigmoid hidden neurons and linear output neurons  has 
been trained with Levenberg-Marquardt backpropagation 
algorithm, starting from the simulated set of one hundred 
examples.  
In detail the training, Validation and Test sets has been 
respectively composed by seventy, fifteen and fifteen 
experiments where the NN’s output is the one composed by 
the three percentage representing the model parameter 
change. The input of NN is the features vector. 
 

In order to assess the dimension of NN that perform better, 
many trainings has performed varying the dimension of 
hidden layer. As performance kpi the following has been 
adopted:  

• Mean Squared Error (MSE), the average squared 
difference between outputs and targets Lower values 
are better. Zero means no error; 

• Regression R Values measure the correlation between 
outputs and targets. An R value of 1 means a close 
relationship, 0 a random relationship. 

 

The Table 2 includes the training results, and shows that a 
hidden layer with thirty neurons is the most performing. 

 

Table 2. NN training results. 
 

N Neurons Set MSE R 

10 
Training 4,57E-04 0,99 

Validation 1,81E-03 0,95 
Test 7,73E-04 0,98 

20 
Training 7,05E-04 0,998 

Validation 1,30E-04 0,999 
Test 1,24E-04 0,999 

30 
Training 7,02E-04 0,998 

Validation 7,45E-06 0,999 
Test 4,08E-05 0,999 

35 
Training 5,35E-04 0,985 

Validation 1,63E-03 0,997 
Test 1,79E-05 0,996 

40 
Training 4,32E-04 9,982 

Validation 6,53E-04 0,973 
Test 1,57E-03 0,984 

 

6. SPRING RULE ALGORITHM 

Once obtained, as NN’s output an estimation of deviation 
from the nominal parameters of springs and friction, in this 
paragraph we will focus on the remaining useful life 
estimation for the springs.  

The nominal diameter of adopted spring can be obtained 
from datasheet data and brings to an equivalent diameter of  
5.6 mm. 

Starting from the estimated deviation ratio and using Eq 4: 

 𝑲𝑲𝒂𝒂𝒂𝒂𝒂𝒂
𝑲𝑲

= 𝑲𝑲% =
�𝑮𝑮∙𝒅𝒅𝒂𝒂𝒂𝒂𝒂𝒂

𝟒𝟒

𝟖𝟖∙𝑵𝑵𝒂𝒂∙𝑫𝑫𝟑𝟑
�

� 𝑮𝑮∙𝒅𝒅𝟒𝟒

𝟖𝟖∙𝑵𝑵𝒂𝒂∙𝑫𝑫𝟑𝟑
�

= 𝒅𝒅𝒂𝒂𝒂𝒂𝒂𝒂
𝟒𝟒

𝒅𝒅𝟒𝟒
→  𝒅𝒅𝒂𝒂𝒂𝒂𝒂𝒂 = 𝒅𝒅�𝑲𝑲%

𝟒𝟒      (7) 

The equivalent diameter is assumed as the mean along the 
entire spring length of the section diameter. Let’s assume 
that the defect affects just the 10% of the entire length (L), 
this means that in that section the useful diameter is the 
difference between the nominal one and the crack length: 

 

𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎 =
0.9 ∙ 𝐿𝐿 ∙ 𝑑𝑑 + 0.1 ∙ 𝐿𝐿(𝑑𝑑 − 𝑑𝑑𝑎𝑎𝑐𝑐𝑎𝑎𝑢𝑢)

𝐿𝐿
= 𝑑𝑑�𝐾𝐾%

4

→       𝑑𝑑𝑎𝑎𝑐𝑐𝑎𝑎𝑢𝑢 =
𝑑𝑑�1 − �𝐾𝐾%

4 �
0.1

                                                   (8) 

 

Defining as 𝐶𝐶𝑃𝑃𝑃𝑃 the crack propagation ratio, we can use the 
quadratic relation between the number of cycles and crack 
length proposed by (Yang & Minning, 1990) as follows: 

 

                                 𝑑𝑑𝑎𝑎𝑐𝑐𝑎𝑎𝑢𝑢 = (𝐶𝐶𝑃𝑃𝑃𝑃 ∙ 𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎)2                           (9) 

 

The crack propagation rate depends from different values 
but in initial propagation phase a likely value could be 
𝐶𝐶𝑃𝑃𝑃𝑃 = 10−6 � 𝑚𝑚𝑚𝑚

𝐶𝐶𝐶𝐶𝑎𝑎𝑙𝑙𝐶𝐶
�  (C.D. Beachem,1976). Assuming as a 

limit value for crack length the half of the nominal spring’s 
diameter, it can be represented as: 
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     𝑑𝑑𝑎𝑎𝑐𝑐𝑎𝑎𝑢𝑢_𝐿𝐿𝐿𝐿𝑚𝑚 = 0.5 ∙ 𝑑𝑑 = �𝐶𝐶𝑃𝑃𝑃𝑃 ∙ 𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎𝐿𝐿𝐿𝐿𝐿𝐿�
2                      (10) 

Therefore we can estimate the Remaining Useful Life 
Estimation (RULE) as:  

    𝑁𝑁𝑐𝑐𝐶𝐶𝑟𝑟𝐿𝐿𝑟𝑟 = 𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎_𝐿𝐿𝐿𝐿𝑚𝑚 − 𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎 = 1
𝐶𝐶𝑃𝑃𝑃𝑃

�𝑟𝑟
2

2 −

1
𝐶𝐶𝑃𝑃𝑃𝑃

�𝑑𝑑𝑎𝑎𝑐𝑐𝑎𝑎𝑢𝑢
2 = = 1

𝐶𝐶𝑃𝑃𝑃𝑃
�𝑟𝑟
2
− 10𝑑𝑑�1 − �𝐾𝐾%

4 �2
                      (11)   

 

Finally the Remaining Useful Life Estimation (RULE) has 
been plotted (Figure 6) on the function proposed by Yang 
and Manning that put in relation number of cycles and crack 
length.  

 
Figure 6-Matlab routine RULE representation 

7. EVALUATION  

In order to validate the result of the remaining useful life 
estimation, dedicated endurance tests are required.  

More in detail, due to the fact that this formalization focus 
on the springs it is possible to create a simplified setup that 
goes beyond the Comau RHEvo.  

A dedicated setup can be composed by a spring, a load cell 
and an adjustable oscillator in order to modulate the acting 
force. Reproducing the simulated test and leading the spring 
to the appearance of cracks, it is possible to validate the 
obtained relation between spring wear and elastic 
coefficient. 

 

 

 

8. CONCLUSIONS 

In this paper a model based approach for COMAU RHEvo 
predictive maintenance has been developed.  

RHEvo is a  tool for   hemming, mainly composed by 
mechanics part like springs, rollers, pads, bearings and pads 
and has as unique measurement two load cells on the 
springs.  

After a simplified model  development a routine for fault 
classification and health status assessment based on Neural 
Network has been developed.  

Once obtained the deviation from a baseline, the Remaining 
Useful Life Estimation has been obtained for the two 
springs basing on metals  crack propagation theory. 

An implementation of the suggested algorithm in a real case 
will need a model’s parameter identification with dedicated 
experiments. After that, efforts can be done in order to avoid 
usage of dedicated cycle and using as baseline the normal 
production. Finally models for friction aging present in the 
literature could be studied and adopted.  

Once validated, the results obtained for RHEvo’s internal 
springs, can be reused for predictive maintenance on a 
variety of devices that make use of springs. 

NOMENCLATURE 

𝐾𝐾 spring constant 
𝑑𝑑 Spring diameter 
𝐺𝐺 Shear Modulus of Material 
𝐷𝐷 mean spring’s diameter 
𝑁𝑁𝑎𝑎 number of active coils 
𝐸𝐸 Young's Modulus 
𝑉𝑉 Poison's ratio 
𝐾𝐾𝑎𝑎𝑎𝑎𝑎𝑎 Actual spring constant 
𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎  Actual useful spring diameter 
𝐿𝐿 Spring Length 
𝑑𝑑𝑎𝑎𝑐𝑐𝑎𝑎𝑢𝑢  Crack length  
𝐶𝐶𝑃𝑃𝑃𝑃 crack propagation ratio 
𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎  number of cycles 
𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎𝐿𝐿𝐿𝐿𝐿𝐿 Limit number of cycles 
𝑑𝑑𝑎𝑎𝑐𝑐𝑎𝑎𝑢𝑢_𝐿𝐿𝐿𝐿𝑚𝑚  Limit crack length 

ACRONYMS 

FCA  Fiat Chrysler Automobiles 
WCM World Class Manufacturing 
TBM Time Based Maintenance 
CBM Condition Based Maintenance 
RHEvo Roller Hemming Evolution 
RULE Remaining Useful Life Estimation 
HBM Hit Based Maintenance 
PM Professional Maintenance 
RPN Risk Priority Number 
FMECA Failure Mode, Effects and Criticality Analysis 

https://it.wikipedia.org/wiki/Fiat_Chrysler_Automobiles
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TCP  Tool Center Point 
FFT Fast Fourier transform 
NN Neural Network 
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