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ABSTRACT 

Modern rotorcrafts rely on Health and Usage Monitoring 

Systems (HUMS) to enhance their availability, reliability, 

and safety. In those systems, data related to the health of key 

mechanical components is acquired, in addition to typical 

flight condition history data such as speed and torque. 

Commercial HUM systems usually rely on vibration 

measurements to assess the condition of shafts, gears, and 

bearings; using techniques such as spectral analysis, 

harmonic analysis, vibration trend and others. Recent 

research has shown that acoustic emissions (AE) can be 

advantageous in the detection of mechanical faults, in 

particular detecting very early small defects on bearings and 

gears, providing extra time for maintenance planning. 

However, the addition of extra sensors adds complexity and 

weight to the HUMS system, which is undesirable. This 

research is an experimental study to assess the monitoring 

capabilities of a broadband sensor, able to cover both low 

frequency vibration components as well as ultrasonic events, 

hence combining the benefits of both in a single compact 

sensing unit. The experimental results obtained from an 

instrumented rig using healthy components as well as seeded 

faults show the ability of the sensor to detect high frequency 

events, and compares the performance of the sensor in the 

low frequency range with a commercial accelerometer. 

1. INTRODUCTION 

Health and Usage Monitoring Systems (HUMS) are used to 

monitor rotorcraft power transmission systems, typically 

using predefined vibration features to assess their condition 

(Decker, 2002; Zakrajsek et al., 1993, 1995). HUMS was 

originally developed in North Sea operations, especially after 

the accident of a Boeing-Vertol 234 in 1986 caused by a main 

gearbox failure.  

HUMS have two main functions, health monitoring and 

usage monitoring. The first aims to of diagnose mechanical 

damage in the very early stages of degradation, before it leads 

to catastrophic damage. Usage monitoring focuses on the 

assessment of operation hours, current components condition 

and load history to estimate remaining life of mechanical 

components (Decker & Lewicki, 2003; Samuel & Pines, 

2005). Commercial HUMS make use of different vibration 

analysis methods to detect faults in bearings, gears and shafts. 

Condition Indicators (CI’s) are key vibration features 

extracted from the acquired vibration signals, which can be 

related to specific mechanical faults (Dempsey et al., 2008). 

In HUMS a range of different CI’s are extracted from 

vibration data to characterize component health.  

Vibration analysis has been traditionally grouped in three 

main categories; time domain, frequency domain and time-

frequency domain. Time domain analysis pre-processes the 

raw signals (if necessary) and extracts features such as rms, 

skewness, and kurtosis (Martin, 1989; Sait & Sharaf-Eldeen, 

2011). The Fast Fourier transform (FFT) is commonly used 

to obtain the frequency spectra of the signals, revealing their 

fundamental components. Fault detection in the frequency 

domain is based on identification of certain frequencies 

associated with bearing or gear faults. The amplitude of the 

components associated to those frequencies is then used as a 

CI. Time-frequency domain methods are able to track 

changes in the signal composition over time, including 

techniques such as short- time Fourier transform (STFT) 

(Mehala & Dahiya, 2008), Wigner-Ville (Sait & Sharaf-

Eldeen, 2011), and wavelet analysis (Wang & McFadden, 

2010).  

Acoustic emissions (AE) in the field of machine monitoring 

are defined as transient elastic waves produced by the 

interface of two components or more in relative motion (Mba 

& Rao, 2006). Typical AE sources include impacts, crack 

growth, friction, turbulence, material loss, cavitation, leakage 

etc. Its main benefit against vibration analysis and oil analysis 

is the capability to detect faults earlier due to the high 

sensitivity offered by AE (Tan et al., 2007). On the other 
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hand, the main drawback of AE is the difficulty in processing, 

interpreting and manipulating the acquired data (Al-Ghamd 

& Mba, 2006; Couturier & Mba, 2008). In addition, AE 

waves suffer a rapid attenuation of the signal, and require the 

AE sensor to be close to the source. 

Vibration-based gearbox monitoring is well established, 

however the application of AE to this field is still in its early 

stages (Y. Qu et al., 2013; Tan et al., 2007) and it is difficult 

to see it implemented in commercial tools. In the area of 

HUMS some research has been carried out in recent years to 

prove the capabilities of AE to monitor helicopter 

transmission components, focusing on epicyclic gearboxes 

(Duan et al., 2015; Elasha et al., 2017; A. Qu et al., 2013). 

These investigations concluded that AE offered much earlier 

indication of damage than vibration analysis, and the 

proposed processing techniques were suitable for gearbox 

fault diagnosis. 

 Helicopter transmission systems are quite complex and 

compact, with difficult access and a requirement for 

lightweight. Hence it is necessary to simplify the monitoring 

system as much as possible, minimizing the number of 

sensors and wiring to reduce weight and requirements for 

sensor installation. The research in this paper assesses the 

capabilities of a broadband acoustic emission sensor, with a 

frequency range of 0.1 Hz to 1MHz, as a unique AE and 

vibration sensing unit for helicopter gearbox monitoring. 

Although the theoretical frequency range covered by the 

sensor supports its suitability as a vibration sensor as well as 

an AE sensor, in practice it is extremely difficult to build a 

sensor with a flat frequency response in such a wide range, 

which could hinder fault detection based on traditional 

vibration analysis. Consequently, the objective of this 

research is to compare the monitoring capabilities of this 

sensor with a commercial accelerometer, based on analysis of 

signals obtained on a laboratory scale rig where faults were 

artificially introduced. After signal amplification and 

digitation, the signal is high and low pass filtered to divide 

the AE and vibration content in it, which are analyzed 

separately. The main benefit of such approach is the 

simplification of the sensing unit, minimizing weight and 

required space, while maintaining the benefits of vibration 

and AE monitoring simultaneously.   

2. METHODOLOGY 

2.1. Sensing 

The iMPactXS high-performance acoustic emission and 

dynamic load sensor manufactured by iNDTact GmbH was 

selected due to its frequency range (0.1 Hz to 1MHz) and 

sensitivity (> 1200 pC/N). As shown in Figure 1, this sensor 

covers the typical frequency ranges of both, vibration and AE 

sensors. The sensors were connected to an iNDTact champ 

charge amplifier, and the signals were digitized at 2 MHz 

using a Pico Technology PicoScope 4224 IEPE digital 

oscilloscope. 

Accelerometers are characterized by a flat frequency 

response in their usable frequency range, typically up to 10 

or 20 kHz. That characteristic allows a direct conversion of 

the sensor output signal in mV to acceleration in ms–2, as the 

sensitivity is constant in that limited frequency region. In 

order to assess the vibration monitoring capabilities of the 

broadband sensor, a commercial accelerometer will also be 

used simultaneously during the tests. A triaxial accelerometer 

(Brüel & Kjaer 4535-B) with a frequency range of 0.3 to 

10000 Hz in the X and Y axes, and  0.3 to 12800 Hz in Z was 

selected. The voltage sensitivity is 1 mV/ms–2. Vibration 

signals were sampled at 51.2 kHz using a National 

Instruments 9234C data acquisition card. 

In order to ensure that the transmission path for both sensors 

is equivalent a special sensor cluster was designed. Both 

sensors were installed in a compact machined aluminum 

block as shown in Figure 2. The AE sensor was glued using 

Dow Corning 3140 as a wave couplant, whereas the AE 

sensor was bolted to the metal block with an M3 stud. The 

cluster was attached to the rig using Loctite EA 9492. 

 
Figure 2: Sensor cluster detail 

2.2. Signal processing strategy 

The signal processing strategy used for both sensors is 

represented in the diagram in Figure 3. Once digitized the 

vibration signals are processed directly for feature extraction. 

The AE signals however, after preamplification and 

digitation are divided in two categories using digital low and 

high pass filters with a cut-off frequency of 20 and 70 kHz 

respectively. Such approach allows for individual analysis of 

“low frequency” vibration-like events (such as oscillations 

 
Figure 1: Typical frequency band of different sensors 

(iNDTact GmbH, 2022) 
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related to misalignment, unbalance, gear mesh, bearing faults 

or resonances) independently from “high frequency” events 

such as impacts, friction or crack growth. The low frequency 

part of the signal is then down sampled to 40 kHz, which is 

enough to accurately represent the vibration signature and 

reduces computational cost. The features extracted from 

vibration signals in the time domain are RMS, crest factor 

and Kurtosis. The frequency spectrum is obtained using the 

FFT, and the peak amplitudes at the input shaft frequency 

(1X), the second harmonic (2X), the gear mesh frequency 

(GM) and its harmonic (2xGM) are extracted. This collection 

of CI’s is equal for both, the vibration sensor and the low 

frequency part of the broadband sensor. The selected CI’s are 

basic, well understood and widely used in gear monitoring, 

making them appropriate for this comparison exercise. The 

high frequency part is analysed by setting a threshold above 

the background noise level (thresholding), and counting the 

number of occasions the signal exceeded that threshold. 

2.3. Experimental setup 

The rig used to assess the performance of the sensors is a 

single stage gearbox rig (Figure 4), powered by an 11kW 

induction motor with 2 pairs of poles, and a nominal speed of 

1490 rpm. The output shaft is connected to a dynamometer 

that absorbs and measures the load applied. The gear pair has 

straight teeth, a module of 5, and 24 and 25 teeth in the input 

and output shafts respectively. A lubrication port on the 

gearbox casing cover provided lubrication from an external 

pump. Although this benchtop arrangement is quite different 

from a helicopter gearbox in terms of shape, size, power, and 

stiffness, the gear meshing dynamics are the same as in any 

gear pair. The transmission path for the fault generated forces 

trough the gears, shafts, and bearings to the static components 

are also comparable. Figure 5 (left) shows a detail of the gear 

pair. Figure 5 (right) shows the location of the sensor cluster, 

installed on a flat surface in the vicinity of the input shaft 

bearing housing. 

In addition to the AE sensor and the triaxial accelerometer, 

the rig is equipped with a shaft speed sensor and a torque 

sensor. Temperature of the sensor cluster was also measured 

using a thermocouple. 

2.4. Testing procedure 

Data from both sensors, as well as speed, torque and 

temperature measurements were acquired during testing. The 

dynamometer was set to four different torque setpoints (10, 

20, 30, and 40 Nm) to assess the sensor response at different 

loads. Vibration data was acquired in recordings of 1s, while 

the broadband sensor data recordings lasted 0.2s in order to 

keep a reasonable volume of data due to high sampling rate.  

Initially the rig was operated with healthy gears to set a 

baseline for all the CI’s studied. Spalling was artificially 

introduced in the contact surface of one of tooth in the diver 

side gear to study the evolution of the CI’s. This failure mode 

was selected as planetary gear sets are more vulnerable to 

pitting defects due to intricate lubrication conditions. With 

the increase of the running cycles, the micro pitting will 

Figure 3: Data analysis workflow 

 
Figure 4: Gearbox rig 

 

  
Figure 5: Gear pair (left) and sensor cluster location (right) 
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induce more deleterious faults, such as spalling and chipping 

(Huangfu et al., 2022) Three different defect sizes were 

tested, drilling holes on the gear tooth surface of 0.8 (small), 

1 (medium) and 1.5 (large) mm of diameter and around 0.2 

mm in depth (Figure 6).  

 

Figure 6: Detail of artificially introduced spalling 

3. RESULTS AND DISCUSSION 

3.1. Signals Overview 

3.1.1. High frequency/AE 

In first place the high-pass filtered broadband sensor signal 

was observed to assess the capabilities of the broadband 

sensor to detect small defects. Figure 7 shows a sample of the 

signals acquired for the healthy case (top) and the small fault 

(bottom) under 30 Nm of load. The healthy signal is 

composed basically by background noise, and there are no 

obvious bursts or peaks in the signal that indicate detection 

of AE related events. The faulty case however shows a series 

of bursts that clearly stand out of the carpet level. In addition, 

the distance between those bursts is around 40 ms, which is 

the time it takes for a full input shaft rotation to occur. That 

is the rate at which the induced fault enters the gear mesh. 

3.1.2. Low frequency/Vibration 

For the comparison between the accelerometer and the low-

frequency part of the broadband sensor, only the Z direction 

of the accelerometer (perpendicular to the mounting surface) 

was considered for simplicity, as it is the same direction the 

broadband sensor is measuring. Figure 8 shows an example 

of the frequency content from the signal acquired from both 

sensors in the healthy case and 30 Nm of load. It can be seen 

that despite the lack of faults the spectrum is dominated by 

the GM frequency and its harmonics, as usual in gearboxes. 

The spectrum also shows that these main peaks are 

surrounded by sidebands, spaced around 24 Hz (the input 

shaft frequency) from each other. That may be an indication 

that the alignment between the shafts is not perfect, and the 

gear mesh is being modulated in amplitude once per 

revolution. 

When comparing the spectrum of both sensors, it can be seen 

that the frequency content of the broadband sensors is similar 

to the accelerometer, but the relative amplitude of the peaks 

differs. It is important to note that the units have been kept in 

V for both sensors and each one has its own scale, as the 

potential lack of linearity in the response of the broadband 

sensor does not allow a direct conversion to acceleration 

units. The results at the top graph in Figure 8 show that the 

broadband sensor is able to capture the most relevant 

components, GM and harmonics, but fails to accurately 

 

 
Figure 7: AE signal sample, healthy (top) and small fault 

(bottom) at 30 Nm 

 

 

 

 

Figure 8: Frequency spectrum of accelerometer and 

broadband sensor signals up to 10 kHz (top), low 

frequency detail (centre) and Welch cross power spectral 

density estimate (bottom) 
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capture the amplitude of signal components beyond 3000 Hz. 

This observation is also corroborated by the Welch cross 

power spectral density estimate presented in Figure 8 

(bottom). This analysis shows the highest coherence between 

the signals is found below 3 kHz and is particularly high for 

the GM frequency and its first harmonics. For higher 

frequencies the coherence is much lower. In principle that is 

not a huge problem, as the most typical vibration signatures 

in rotating machinery (shaft speed, GM, bearing defect 

frequencies, etc. and harmonics of all of them) typically 

happen in that region. However other important vibration 

phenomena, particularly resonances, typically happen 

between 3 and 10 kHz, which could be a problem for this 

sensor. On the other hand, the AE capabilities should be able 

to capture impact-like events even earlier than an 

accelerometer could detect a change in the amplitude of a 

resonant frequency.  

The lack of linearity in the frequency response compared with 

the accelerometer is quite evident when looking closely at the 

amplitudes of the main components (Figure 8 centre). Even 

if the 1X peak amplitude and most of its harmonics are larger 

than the same peaks in the accelerometer signal spectrum 

with the selected axes ranges, the correlation is not 

maintained for higher frequency components (mainly GM, 

harmonics and sidebands). It can be concluded that the 

broadband sensor is not as good at responding linearly to a 

range of different frequencies as the accelerometer. This 

would be a problem for approaches where it is required to 

obtain an accurate measurement of acceleration at different 

frequencies. Commonly that is not the case in monitoring 

applications, where the typical procedure is to compare newly 

acquired measurements with a stablished baseline. From that 

perspective, repeatability and precision in the representation 

of amplitude for different frequency components are way 

more important than accuracy. As it will be seen later, 

repeatability in measured peak amplitudes was not an issue 

for this sensor. Despite the lack of fidelity in amplitude 

compared with the accelerometer, the broadband sensor was 

able to accurately identify the main frequency components in 

the signal, which is key to identify the sources of vibration 

and possible links to mechanical faults. Consequently, the 

signals acquired from the sensor are in principle adequate and 

acceptable for monitoring purposes. The next subsection will 

investigate fault detection performance. 

3.2. Fault detection 

Table 1 shows the number of samples obtained for each 

combination of torque and healthy/faulty case. The results 

will be presented displaying the average value of the CI 

obtained for each combination, and the standard deviation of 

each sample will be represented in the form or an error bar 

around the mean value. 

3.2.1. High frequency/AE 

Presence of peaks in the AE signals for the healthy case 

should not happen, as only events related to faults produce 

AE activity. For the faulty cases peak count will depend on 

rotational speed, defect frequency and whether the amplitude 

of the AE generate dis large enough to cross the threshold. 

Preliminary analysis of the AE signals obtained under healthy 

conditions, revealed that the maximum absolute value 

observed was on average 0.27 V (seen example in Figure 7 

top). Consequently the threshold value above that carpet level 

was set to 0.3 V, which provided the  peak counting results 

shown in Figure 9. As it can be seen, the number of threshold 

crossings found in the healthy case is small for all loads, and 

can be attributed to outliers slightly above the threshold level, 

which was chosen relatively low to enhance sensitivity. The 

effect of the fault was evident even in the small fault case, 

particularly for high loads. This result highlights the main 

benefit of AE and its capability to identify faults in the early 

stages of degradation. The medium and large fault cases also 

show larger number of threshold crossings than the healthy 

case, and the standard deviation in the samples is greater 

particularly in the large case. 

3.2.2. Low frequency/Vibration 

Figure 10 shows the results obtained from the time domain 

vibration CI’s extracted from the accelerometer and the 

broadband sensor. RMS shows little sensitivity to the fault in 

the small and medium cases, and it was only in the large case 

that an increment in this indicator was obvious. The case of 

the CF is not very informative, as the changes in the mean 

values observed are in the same order of magnitude as the 

standard deviations. No significant differences with the 

healthy case are observed. Important to note that the CF is 

Table 1: Number of samples obtained in each case 

Case Healthy Small Medium Large 

Torque (Nm) 10 20 30 40 10 20 30 40 10 20 30 40 10 20 30 40 

Sample number 189 165 184 177 72 59 82 65 92 73 95 73 123 127 119 117 

 

 Healthy Small Medium Large  

 
Torque (Nm) 

Figure 9: Average value and standard deviation for peak 

count from AE signal 
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typically twice as large for the accelerometer than for the 

broadband sensor, evidencing a larger signal to noise ratio. 

Kurtosis does not show any evident failure indications for the 

small case, but the values in the medium case are significantly 

larger than the healthy case, although they decay again for the 

large fault case. K values are smaller for the broadband 

sensor, pointing at a lack of “peakiness” in the signals 

compared with the accelerometer. It is important to note that 

despite the differences in magnitude between both sensors for 

all three indicators, their response to changes in load and 

presence of faults is similar. 

 

The results obtained from frequency domain CI’s are 

presented in Figure 11. The amplitude of the shaft speed peak 

(1X) shows no significant change with the small fault 

compared with the healthy case. However in both the medium 

and large cases there is an increment in the CI in both sensors, 

which is also appreciable as the load increases. The second 

harmonic of the shaft speed does not present significant 

changes in the presence of faults for any of the sensors, and 

any variations are in the same order of magnitude as the 

standard deviation for the healthy case. The GM peak 

amplitude shows a small increment for the medium and large 

faults, but not noticeable increments for the small fault. This 

CI is clearly correlated with load as well. Its second harmonic 

shows a very similar behaviour to the 2X case with even 

greater variability in the accelerometer measurements in the 

faulty cases. The broadband sensor shows some increment 

with respect to the healthy case in the medium and large fault 

cases, but again variability in this CI is too large to consider 

the differences significant. 

 

Table 2 summarises the results presented in a tabular format, 

displaying the percentage change with respect to the healthy 

case of every CI considered in both sensors. It is quite clear 

that AE based peak counting was the only indicator providing 

a clear increment for the small fault case, as seen before the 

2X peak amplitude measurements in the accelerometer had 

large variability and hence low significance. The 1X and GM 

peak amplitudes, together with Kurtosis were able to react to 

the medium and large cases. RMS was only sensitive to the 

large fault. Those results are quite consistent for both sensors. 

4. CONCLUSION 

The research presented in this paper focuses on an 

experimental validation of a broadband sensor for rotorcraft 

transmission monitoring, which combines AE and vibration 

monitoring capabilities in a single sensor. The validation was 

performed through comparison of the selected sensor with a 

conventional accelerometer, which were both tested on a 

dedicated gear rig operated at different loads where gear 

spalling at 3 different degradation stages was introduced 

artificially. The proposed data processing technique separates 

the broadband sensor signal in its low and high frequency 

regions, allowing the use of traditional vibration and AE 

analysis techniques to be applied for feature extraction. 

 

 Healthy Small Medium Large  

 

 

 
Torque (Nm) 

Figure 10: Average value and standard deviation for time 

domain CI’s 

 

 Healthy Small Medium Large  

 

 

 

 
Torque (Nm) 

Figure 11: Average value and standard deviation for 

frequency domain CI’s 
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The results obtained showed that the high frequency analysis 

of the signal was able detect the smallest fault introduced, 

proving its capability to provide early fault detection as 

expected from an AE sensor. The analysis of the spectrum for 

the low frequency part of signal showed that the broadband 

sensor can identify the same signal components measured by 

the accelerometer, which are related to the operating 

conditions, the machine’s components geometry and their 

condition. However, the relative amplitudes of those 

components was different to the observations in the 

accelerometer, pointing at a lack of linearity in the frequency 

response of the sensor in the frequency range where vibration 

components are typically manifested. Even though, the main 

components were still easily identifiable, and the amplitude 

measured was repeatable throughout the tests, proving its 

ability to consistently provide a reliable comparison with a 

baseline value. The amplitude of all components over 3 kHz 

was clearly diminished, which can be a problem for 

approaches that require the study of frequencies in this range, 

such as resonances. 

 

The CI’s extracted from both sensors showed a very similar 

response to changes in load and presence of faults, proving 

that the sensor is suitable for vibration monitoring based on 

analysis of basic vibration features. None of the vibration 

features studied provided a clear increment for the smallest 

fault studied that was statistically significant. For time 

domain analysis, RMS was only sensitive to the large fault, 

while Kurtosis showed some indication of change for the 

medium case. In frequency domain analysis, both the 1X and 

the GM CI’s increased for the medium and particularly for 

the large case, proving effective in detecting the fault. 

Variability was too large in the analysis of CF, 2X and 2xGM. 

Future work will need to investigate if the similarities 

between the CI’s from both sensors can be extended to more 

complex vibration analysis techniques, such as bispectral 

analysis or cyclo-stationary analysis. 

 

The most important conclusion from the analysis of this range 

of CI’s was that the behaviour of both sensors was very 

similar (despite the differences in scale), proving that the 

capabilities of the broadband sensor for vibration-based 

monitoring are comparable to the accelerometer. Hence a 

monitoring system based solely on this sensor could combine 

the benefits of both, AE and vibration monitoring with a 

single sensing unit and combined data processing. 
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