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ABSTRACT

One of the main challenges for predictive maintenance in real
applications is the quality of the data, especially the labels.
In this paper, we propose a methodology to filter out the mis-
leading labels that harm the performance of Machine Learn-
ing models. Ideally, predictive maintenance would be based
on the information of when a fault has occurred in a machine
and what specific type of fault it was. Then, we could train
machine learning models to identify the symptoms of such
fault before it leads to a breakdown. However, in many indus-
trial applications, this information is not available. Instead,
we approximate it using a log of component replacements,
usually coming from the sales or maintenance departments.
The repair history provides reliable labels for fault predic-
tion models only if the replaced component was indeed faulty,
with symptoms captured by collected data, and it was going
to lead to a breakdown.

However, very often, at least for complex equipment, this as-
sumption does not hold. Models trained using unreliable la-
bels will then, necessarily, fail. We demonstrate that filter-
ing misleading labels leads to improved results. Our central
claim is that the same fault, happening several times, should
have similar symptoms in the data; thus, we can train a model
to predict them. On the contrary, replacements of the same
component that do not exhibit similar symptoms will be con-
fusing and harm the ML models. Therefore, we aim to filter
the maintenance operations, keeping only those that can be
used to predict each other. Suppose we can train a success-
ful model using the data before a component replacement to
predict another component replacement. In that case, those
maintenance operations must be motivated by the same, or a
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very similar, type of fault.

We test this approach on a real scenario using data from a fleet
of sterilizers deployed in hospitals. The data includes sen-
sor readings from the machines describing their operations
and the service logs indicating the replacement of compo-
nents when the manufacturing company performs the service.
Since sterilizers are complex machines consisting of many
components and systems interacting with each other, there is
the possibility of faults happening simultaneously.

1. INTRODUCTION

In this paper, we are going to deal with the common industrial
problem of learning predictive maintenance models using la-
bels from repair logs. This work has been inspired by the
collaboration with our industrial partner Getinge AB, a com-
pany producing sterilizers to be used at hospitals for medical
equipment. The machine sterilizes its load by using phases
of low pressure to eliminate air and humidity combined with
phases of high temperature that kill micro-organisms. A ster-
ilizer is critical for the hospital’s operation: without properly
sterilized material, most daily activities can not be executed.
Getinge also provides service and maintenance. Unexpected
failures often lead to long downtimes: a technician needs to
be sent to the machine, the problem diagnosed, the right parts
ordered and installed, and the machine needs to be tested.

The ideal scenario to train a predictive model is to monitor a
machine while undergoing a fault, record the data describing
its operation in the meantime, and find patterns that describe
the effect or symptoms of this fault. Later, these patterns can
be used to identify similar faults in the future so that mainte-
nance actions can be performed before the issue leads to an
unexpected breakdown. This avoids consequential or collat-
eral costs associated with a breakdown without the increase
in maintenance costs associated with preventive maintenance
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Figure 1. An idealized overview of the setup and the data needed to train a predictive maintenance model for estimating
Remaining Useful Life.

schemes.

This ideal scenario is possible to realize during the design of
the machine but relatively difficult during real-world opera-
tion. Analyzing different faults under controlled conditions
can be done in a lab setting while designing and deciding
what data to record to monitor the evolution of the fault prop-
erly. However, in our application scenario and many similar
ones, this ideal scenario is not feasible. First, tests under con-
trolled conditions do not necessarily reflect the real operation
of the machines in the field. External conditions such as wa-
ter temperature, humidity, load, and usage considerably affect
the functioning of the machine. Reconstructing all of them in
the lab is a daunting task, not viable economically. Even more
importantly, our industrial partners need to develop predictive
maintenance models on already built and deployed machines.
Like many other machines, sterilizers are expected to work
for many years, often decades; and it is precisely those older
machines that have the room for the greatest gains from a
new, ML-based, successful predictive maintenance solution.

In other words, we would like to learn predictive mainte-
nance models using data from the machines that are already
deployed in the field. These machines have been collecting
sensor data for several years, mainly for purposes of control
and security. We can use this data to find patterns to predict
future failures – however, one has to keep in mind that the
data is far from ideal since it has generally not been collected
for the purpose of monitoring the health of the machines.

Another aspect to consider is that we do not have direct, re-
liable information about the faults that happened in the ma-
chines. However, we need at least some approximation of a
history of past faults to be able to label the sensor data and
build predictive models. In reality, the best information that
we can typically get is the maintenance logs or repair histo-
ries, i.e., a register about when maintenance was done and

which components were installed in each machine. This way
of labeling the data is very unreliable for various reasons that
we will present in detail in the next section; if used naively, it
necessarily leads to inaccurate models.

In this paper, we present a methodology to filter these repair
logs, selecting only the labels that can be used to provide re-
liable predictions. The key concept is based on the following
observation. If the same predictable fault happens in several
machines, similar patterns will be found in the sensor data.
These faults will develop into failures; then maintenance will
be carried out, and components will be replaced; we will ob-
tain information about those component replacements (only,
not of the faults directly) through the maintenance logs. Our
underlying assumption is that the inverse should also hold.
Suppose we can identify patterns in the data before a compo-
nent replacement that are useful to predict other component
replacements. In that case, those component replacements
must be related to a similar type of fault. This approach, on
its own, would be very prone to overfitting; therefore, we add
a second step to our method, where we refine our models by
adding the false alarms created in the first step.

The rest of the paper is structured as follows: in Section 2, we
motivate our research, specifically focusing on why the ser-
vice logs are often unreliable; in Section 3, we present the dif-
ferent steps of our approach; in Section 4, we summarize our
experiments and discuss the results; in Section 5, we compare
our work against state of the art and provide the literature re-
view; and in Section 6, we present our conclusions and future
work.

2. PROBLEM FORMULATION

This section will describe some of the problems typically en-
countered while labelling predictive maintenance data using
information coming from service logs.
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Before we focus on the labels, though, it is important to note
that the data recorded in the machines is generally not de-
signed to describe the health of the machine and its compo-
nents accurately. Therefore, it is expected that many faults
will show no symptoms in the data or will show confusing
symptoms. Our task is to find as many patterns as possible
in this data that could be linked to faults that later lead to
failures.

In Figure 1, we have an example of the idealized training
case to create models that predict faults. The machine is in a
healthy state until a fault happens. We are recording a signal
(one or multi-variate) that perfectly describes the machine’s
state of health. Once the fault is introduced, this health begins
to deteriorate, and the progression is reflected in the selected
health indicator. At some time, it reaches the failure point,
and the machine stops working. After the failure, a repair
is needed, which means that the machine will be out of op-
eration until it is repaired. Then, the machine goes back to
operation at full health.

Planning and executing a maintenance operation requires time.
We define this time as the ”intervention horizon”: the last
moment before a failure when it is possible to intervene on
the machine and avoid it. The goal horizon adds a safety
margin to schedule the maintenance operation (with perfect
models, the goal horizon and the intervention horizon would
be the same). We are recording data to obtain a health in-
dicator; we can label this data and train a classifier with it
based on the goal horizon. The data before the goal hori-
zon would be ”SAFE,” and the data after the goal horizon
would be ”ALARM.” In the future, when the model predicts
an ”ALARM,” we can schedule a maintenance operation in
the most convenient way and avert the failure.

However, in real-life applications, when we must rely on us-
ing maintenance records, this ideal case does not happen. The
only information we have is when a component was replaced,
in a given machine. This presents a number of ambiguities:

• There are uncertainties in the dates. Even assuming that
the dates are entered correctly (which is not always the
case due to human error or accounting policies), we know
when a component was replaced in the machine. How-
ever, we do not know how long it took from the failure to
the component replacement.

• In fact, we do not know if the replaced component had
failed or not. The replacement of a component can be due
to a failure, but it can also be due to a preventive main-
tenance operation or a subjective decision by the techni-
cian.

• If there was a fault happening in the machine, we do not
know if the replacement of the component solved it. In
other words, we can not be sure that the diagnosis by the
technician doing maintenance was correct.

• If many components were replaced, we do not know which
one was responsible for the fault or if different faults
were happening simultaneously. Usually, multiple symp-
tom patterns can be identified in the data – and matching
them to replaced components is error-prone.

• We do not have the certainty that all the maintenance op-
erations are recorded in the service logs. Some of the
maintenance operations can be carried out by the staff
operating the machines. In addition, hospitals can buy
service from different companies.

• In the case where the failure actually happened and the
responsible component was replaced, we do not have in-
formation about when the fault started.

These uncertainties will lead to wrong labeling of the sensor
data recorded. The effect of such wrong labeling is particu-
larly harmful because we are not just labeling one data point
but a full sequence of data, from the moment the fault starts,
until the failure happens.

To sum up, using the maintenance records, the only certain-
ties we can obtain are the intervention and goal horizons. We
can use the goal horizon to label the recorded data by the ma-
chine as ”ALARM” until the component is replaced. We can
label an arbitrary amount of the data before the goal horizon
as ”SAFE.”

3. LITERATURE REVIEW

Predictive maintenance is a hot topic in the research and in-
dustrial communities. According to (Thomas & Weiss, 2020),
maintenance strategies based on corrective resulted in more
than 3 times more downtime and 16 times more defects than
more advanced maintenance strategies.

A quick overview of recent surveys (Carvalho et al., 2019),
(Lei et al., 2020), shows how most data-driven methods for
predictive maintenance use supervised methods, i.e., reliable
information about the historical faults are needed to train mod-
els for predictive maintenance.

There are different approaches to obtaining accurate labels.
One solution is to use simulated data, where the operation of
a machine or system is simulated, and faults are introduced
at known times. Examples of these datasets are the ”Turbo-
fan Engine Degradation Simulation Data Set” (Saxena & .K,
2008) or the ”Tennessee Eastman Process” (Ricker, 1996).

Another option is to run tests done in a laboratory (Yang,
Stronach, MacConnell, & Penman, 2002). In the field of fault
prediction for bearing machinery, this approach is very popu-
lar: a setup is built, data is recorded, and faults are introduced.
Again, the moment when the fault was introduced is clearly
determined, and the evolution of the fault is carefully moni-
tored.

The problem of using repair logs as a reliable source of infor-
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mation has also been researched. In (Seale et al., 2019), the
authors present an approach to complete the information of
the repair logs using Natural Language Processing approaches
to determine which component was the recipient of a partic-
ular maintenance operation.

In (Prytz, Nowaczyk, Rögnvaldsson, & Byttner, 2015), the
authors describe some of the uncertainties coming from using
the information from the repair logs as a source of labels for
the data recorded in trucks. Although not focusing directly
on this problem, they study how uncertainties in the dates
can have a significant role in setting parameters such as the
prediction horizon.

Finally, in (Sipos, Fradkin, Moerchen, & Wang, 2014), the
authors use log data from medical equipment to predict fu-
ture failures. They discuss the problems of relying on the
information coming from the repair logs and build their ap-
proach to solve this problem. The main difference between
their problem definition and ours is that they can assume that
the absence of repair logs for a given time means that the ma-
chine is healthy, while we can not make this assumption in
our practical case.

From the technical point of view of machine learning, our
scenario is related to the task of learning in the presence of
noisy labels. According to the taxonomies presented in (Frénay
& Verleysen, 2013), we can categorize our approach as ”model
predictions-based filtering” since we use the performance of
a classifier as a tool to filter the label noise. As an example,
in (Nguyen et al., 2019), the authors use the output of a neu-
ral network during the training to detect the noisy labels and
filter out the corresponding instances. The main difference
between our approach and the state-of-te-art stems from the
nature of the noise in our data: the uncertainty resides in the
repair logs, which are used not just to label a single instance,
but a complete sequence of instances.

4. METHOD

4.1. Data

For this study, we work with the data coming from 67 ma-
chines situated in several different countries. The data com-
ing from the machines contain sensor data measuring magni-
tudes such as pressure or temperature inside the chamber of
the sterilizer during its processes. Although all the sterilizers
are part of the same product line, there exist different models
with, for example, different sizes of the sterilization chamber
or different versions of particular components.

We will use two years of recorded data produced by the ma-
chines. Not all the machines have produced data for the whole
period, and most of them have been deployed on the field
much longer than these two years. For each process of the
machine (usually called cycle), the raw data contains sensor
reading for the pressure and the temperature in different parts

Figure 2. Number of maintenance operations per machine.

of the chamber. Working with the experts, we have extracted
86 features that characterize each cycle. Typically, a machine
runs 5-10 cycles per day. Per regulation, one of these cy-
cles has to be run on an empty load to validate with certain
biomarkers that the machine is still achieving sufficient ster-
ilization.

For those two years of data, a total of 275 maintenance events
with component replacements have happened. In Figure 2,
we can see the distribution of the number of maintenance
events with component replacement per machine. Some ma-
chines have very few component replacements logged in the
service logs, while others have a larger number.

4.1.1. Data Preprocessing

Every machine has a slightly different configuration and can
be used in different settings. For example, different machines
can have different sizes of the chamber, which obviously af-
fects how the extracted features from the data look like. But
even for the same machine, conditions can change over its
lifetime, for example, by upgrading one of the components or
due to changes in the usage patterns.

After discussion with the experts, two factors need to be con-
sidered. First, the data is subject to small random variations
based on factors like the room’s water temperature and hu-
midity, among others. Second, to normalize the data across
machines, we should focus on the rate of change of the fea-
tures, not on their absolute values.

With this in mind, we first calculate a moving average of all
signals to reduce the effect of small random variations in the
data. For every cycle, the value for each feature is the average
over the previous 100 cycles. Then, we take the difference
between the value of the moving average of the current cycle
and the cycle 100 cycles before. Thus, the final value for
the features of a given cycle is calculated by considering the
previous 200 cycles.
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4.2. Filtering of Component Replacements

Based on the discussion in Section 2, we label the data 75
cycles before a component replacement as ”ALARM” and
the data between 150 and 75 cycles before the component
replacement as ”SAFE.” This corresponds approximately to
15 and 30 days before the component replacement. This is
in line with the time it would take to schedule and perform
maintenance on the machine.

Our assumption is that if we can train a classifier on the data
before a component replacement, and use that classifier to ac-
curately predict another component replacement, then those
two component replacements are most likely related to the
same fault.

Algorithm 1 Fitness function.

1: N set of events
2: Di = [(x1, y1)...(xm, ym)] dataset for event i
3: R vector of results
4: for i = 1 to length(N) do
5: Dtrain =

⋃
j ̸=iDj

6: m = trainclassifier(D)
7: pred = predictprobability(Di)
8: Ri = measureAUC(pred,yi)
9: end for

10: F : fitness value
11: for r = 1 to length(N) do
12: if Ri > threshold then
13: F = F + 1
14: else
15: F = F − 1/3
16: end if
17: end for

With a numberN of component replacement events available,
our goal is to select the largest subgroup of events that can be
used to train classifiers that can predict each other. Each event
i is associated with a training setDi = [(x1, y1)...(xm, ym)],
where xi is the feature vector, and y is the associated label
(”SAFE” or ”ALARM”). The number of possible subgroups
increases dramatically as we consider more and more com-
ponent replacement events. To perform this search, we use
a genetic algorithm. In Algorithm 1, we present the fitness
function used. The goal is to select as many events as possi-
ble such that they can all be used to predict each other, while
discarding as many events as possible that can not be pre-
dicted.

To implement the genetic algorithm, we use the ga function
from the GA package in R. The population at each generation
is 50, the probability of cross-over is 0.8, the probability of
mutation is 0.1, and the elitism is set at 0.1. We choose to
stop the search after 10 iterations without improvements in
the best solution.

4.3. Experimental Setup and Evaluation.

We split the two years of data into four periods of half a
year each. For each period, we train our models with all the
recorded data and component replacement events until that
period. Then, we evaluate in the following period(s).

The evaluation is based on the ability to predict a future com-
ponent replacement. Since there is a certain degree of ran-
domness in the real data, we wait for three predictions of
”ALARM” before actually issuing an alarm and dispatching
the technician. If a component replacement happens in the
following 75 cycles, it is marked as a correct prediction. It
will be considered an early alarm if a component replacement
happens between 75 and 100 cycles. If a component replace-
ment is performed without a previous alarm, it is a missed
failure. Finally, if no component replacement is performed in
the next 100 cycles, it is a false alarm. In a realistic scenario,
when an alarm is issued, the technician is sent to check the
status of the machine. If the technician finds that the machine
is in a healthy state, we could consider the alarm to be false
and the machine to be healthy for the near future. However,
the models would likely keep issuing alarms, that could be
ignored based on the expertise of the technician. For this rea-
son, in our evaluation, we observe a cooldown period of 25
cycles after a false alarm.

4.4. Refinement of Component Selection

In the recorded sensor data, we can often observe many trends
that turn out to be unrelated to the presence or absence of
faults. For example, these trends typically relate to the exter-
nal weather conditions, the temperature of the water, or the
usage of the machines. The component replacement event se-
lection from Subsection 4.2 can be very prone to picking up
these spurious trends; since the number of examples is very
low, it will therefore commonly lead to overfitting.

In order to avoid overfitting, we propose to add these false
alarms as “soft labels” into the training process. The process
is described in Figure 3. If we train a model with the data for
some time, we will evaluate and identify the false alarms in
the following testing period. For each of these false alarms,
we will extract a data sample with the previous 150 cycles and
add them to the selection process of Subsection 4.2. These
data samples can be added to the training datasets, labeled as
”SAFE.” In practice, this means training models that try to
predict as many faults as possible while keeping the number
of false alarms low.

On the other hand, looking at Figure 2, it is natural to think
that the difference in the number of maintenance operations
between machines is not necessarily due to some machines
being inherently better than the others. In other words, there
is probably missing information in the maintenance history
of some machines. This means that an unknown number of
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Figure 3. Workflow of the proposed methodology.

false alarms should be expected; that, in fact, they are not
false alarms, and a fault might be happening. If we were to
introduce the data samples for these alarms in the training
process, we would be introducing confusing labeling again.
Therefore, we need to select those false alarms’ data samples.

We again use a genetic algorithm to select the component re-
placement events that are useful to predict each other. In ad-
dition, we add the false alarms events that are not predicted
as ”ALARM.”

Algorithm 2 Fitness function for the refinement step.

1: N set of component replacement events and false alarm
events.

2: Di = [(x1, y1)...(xm, ym)] dataset for event i
3: R vector of results
4: for i = 1 to length(N) do
5: Dtrain =

⋃
j ̸=iDj

6: m = trainclassifier(D)
7: pred = predictprobability(Di)
8: Ri = measureAUC(pred,yi)
9: end for

10: F fitness value
11: for r = 1 to length(N) do
12: if i corresponds to a component event then
13: if Ri > threshold1 then
14: F = F + 1
15: else
16: F = F − 1/3
17: end if
18: else
19: if Ri < threshold2 then
20: F = F + 1/10
21: end if
22: end if
23: end for

Now the fitness function in Algorithm 2 accounts for the num-
ber of component replacements that are correctly predicted.
There is also a bonus for the number of false alarm events
that are not predicted as ”ALARM.”

5. EXPERIMENTS AND RESULTS

Our goal in the following experiments is to compare the per-
formance of the classifier trained on the selected component
replacement events as described in Subsection 4.2 (from now
on, First Step Model) and the performance of the classifier
trained using the selected component replacement events and
the false alarms created by the first model, as described in
Subsection 4.4 (from now on, Second Step Model).

To do so, we train a First Step Model for a given period n.
We use the period n + 1, to evaluate the presence of false
alarms. We then use those false alarms to train a Second Step
Model on the component replacement events of period n, and
the false alarms created during period n+1. We will compare
both models on period n + 2 and the following. In practice,
we have two years of data and four periods, so this means two
comparisons.

5.1. Training During Period 1

In total, there are 34 component replacements in period 1.
To select the fault component replacement events, we choose
a threshold for the area under the ROC curve of 0.9, a very
restrictive value.

Table 1. Results of predicting failures during periods 3 & 4,
based on classifiers trained on period 1 (First Step) or peri-
ods 1+2 (Second Step). Comparison based on the Correctly
Predicted Replaced Components (CPC), Early Alarms (EA),
Missed Component Replacement (MCR) and False Alarms
(FA).

CPRC EA MCR FA
First Step 24 0 70 76
Second Step 30 0 64 67

In selecting the component replacement events useful to pre-
dict each other, the genetic algorithm chooses 17 component
replacement events, among which only 7 are predicted with
more than 0.9 of area under the ROC curve. This means that
only about 20% of the component replacement events are se-
lected.
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For the Second Step Classifier, we use the 34 component re-
placements during period 1, and the 76 false alarms from pe-
riod 2. After the genetic algorithm performs the selection, 18
component replacement events were selected, among which
only 5 had a predicted area under the ROC curve bigger than
0.9. In addition, 25 false alarms were selected.

The results of both approaches evaluated on periods 3 and 4
can be seen in Table 1. Not only is the Second Step reducing
the number of false alarms by more than 10% (keep in mind
that an unknown number of false alarms is to be expected);
but we have also increased the number of correctly predicted
component replacements by 25%.

There are many missed component replacements. As an indi-
cation, though, we should keep in mind that we used 20-25%
of the component replacement events for training. This value
roughly coincides with the ratio of correctly predicted com-
ponent replacement to missed component replacements.

5.2. Training During Periods 1 and 2.

In total, there are 98 component replacements during periods
1 and 2. To select the fault component replacement events,
we use again the threshold for the area under the ROC curve
of 0.9.

Table 2. Results of predicting failures during period 4,
based on classifiers trained on periods 1+2 (First Step) or
periods 1+2+3 (Second Step). Comparison based on the
Correctly Predicted Replaced Components (CPRC), Early
Alarms (EA), Missed Component Replacement (MCR) and
False Alarms (FA).

CPRC EA MCR FA
First Step 7 0 40 53
Second Step 12 0 35 47

After selecting the component replacement events that are
useful to predict each other, the genetic algorithm selects 53
component replacement events, among which only 26 are pre-
dicted with more than 0.9 of area under the ROC curve. This
means that only about 25% of the component replacement
events are selected.

For the Second Step Classifier, we use the 98 component re-
placements during periods 1 & 2 and the 53 false alarms from
period 3. After the selection performed by the genetic al-
gorithms, 51 component replacement events were selected,
among which only 21 had a predicted area under the ROC
curve bigger than 0.9. In addition, 11 false alarms were se-
lected.

The results of both approaches evaluated on period 4 can be
seen in Table 2. Like in the previous experiment, the two-step
approach has significantly increased the number of correctly
predicted component replacements and the final number of
false alarms has been decreased.

The ratio of correctly predicted component replacements and
missed component replacements is just 15%, compared to the
25% of component replacement events selected in the training
phase. For the second step classifier, this ratio is about 20%
in the selection phase and 25% in the evaluation phase.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a methodology to deal with
the problem of misleading repair logs that can be harmful
when creating machine learning-based predictive models. Us-
ing this misleading information to train models for predictive
maintenance often leads to poor performance in practical set-
tings when the quality of available data is not very high.

There are multiple reasons for this misleading information
existing in reality. We can summarize them as follows: we
cannot be sure that the replacement of a component in a ma-
chine is caused by the presence of a fault in said component;
even if it is, we cannot be sure that reliable symptoms in the
data exist to track the health deterioration; finally, we cannot
be sure that no other maintenance operations have been per-
formed in the machine, without being recorded in the service
logs.

To deal with this problem, we first present a methodology to
select those component replacements that are useful to cre-
ate good performance models. This somehow naive selection
process has been demonstrated experimentally to necessarily
lead to overfitting and a large number of false alarms when
those models are used to predict future failures.

We further add a second step, proposing our new methodol-
ogy, where false alarms created in the first step are used to
refine our models. We expected to reduce the number of false
alarms after the refinement phase, which we have achieved
by a margin of more than 10%, as verified experimentally on
real-world industrial data.

However, more interestingly, we have also improved the num-
ber of correctly predicted component replacements by a healthy
margin of 25% or more. Adding the false alarms to the train-
ing phase not only reduces the number of predicted false alarms
in the future but also improves the selection of component re-
placement events to create more accurate models.

Implicitly, we have assumed that there is just one fault mode
in our machines. By simply selecting the component replace-
ment events that are useful to predict each other, we expect
our selection process to just focus on one type of fault. In
reality, we know that a machine as complex as a sterilizer
will have many different types of faults. A clear continuation
of this work is to extend the methodology to accommodate
different types of faults either by adapting the selection algo-
rithm to naturally accommodate them or by performing the
selection iteratively.
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