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ABSTRACT 

Air Preheater (APH) is a regenerative heat exchanger 

employed in thermal power plants to save fuel by improving 

their thermal efficiency. Monitoring the health of APH vis-a-

vis its fouling is critical because fouling often results in 

forced outages of the power plant, incurring huge revenue 

losses. APH fouling is a complex thermo-chemical 

phenomenon governed by flue gas composition, operating 

temperatures, fuel type and ambient conditions. Absence of 

sensors within the APH make it difficult to estimate the level 

of fouling and its progression even for an experienced 

operator. Attempts to estimate APH fouling in real-time via 

modeling are scarce. Here we present a physics-informed 

neural network (PINN) that tracks the health of an APH by 

real-time estimation of fouling conditions within the APH as 

a function of real-time sensor measurements. To account for 

multi-fluid operation in a multi-sector design of APH, the 

domain is decomposed into several sub-domains. PINN is 

applied to each sub-domain and the overall solution is 

ensured by applying continuity conditions at the sub-domain 

interfaces. The model predicts the interior temperatures and 

fouling zones within the APH using external sensor 

measurements such as air temperature and gas composition. 

The model predictions are consistent with physics and yet 

computationally efficient in run-time. The model does not 

need sensor data but can be improved further by 

accommodating available sensor data. The real-time 

predictions by the model improve operator’s visibility in 

fouling. The predictions can be used further for estimating the 

remaining useful cycle life of the APH, thereby avoiding 

forced outages. The model can easily be integrated with the 

digital twin of an APH for its predictive maintenance. 

1. INTRODUCTION  

Air preheaters (APH) are used in thermal power plants for 

improving thermal efficiency by recovering the excess heat 

from boiler exhaust gases. APH fouling is a serious and 

recurring problem that often causes unplanned outages of the 

plant incurring huge revenue losses. Complex thermo-

chemical phenomena in fouling and lack of sensors within 

APH, make it difficult to monitor the fouling in real-time 

requiring predictive models.  

APH typically comprises two or three successive layers of 

matrix that enable effective heat transfer by increasing the 

surface area per unit volume. This rotating metallic matrix 

extracts heat from the hot flue gas and passes it on to the 

ambient air flowing in a countercurrent manner with respect 

to the gas. Depending upon the number of air streams, APH 

can have a 2-sector or a 3-sector arrangement. Fouling is 

caused by gradual deposition of a chemical compound called 

ammonium bisulfate (ABS), formation of which is 

predominantly influenced by the internal temperature profile 

within APH and the gas composition (ammonia NH3, sulfur 

trioxide SO3 and ash). Several ABS formation and deposition 

studies (Muzio, Bogseth, Himes, Chien, & Dunn-Rankin, 

2017; Menasha, Dunn-Rankin, Muzio, & Stallings, 2011; 

Zhou, Zhang, Deng, & Ma, 2016) have revealed that the gas 

temperature profile within APH influences not only the 

magnitude of fouling but also the location of fouling and in 

turn governs its overall progression. Although no models 

have been developed for estimating chemical formation and 

deposition directly, several models capturing thermal 

phenomena have been developed based on first principles 

including Computational Fluid Dynamics (CFD) (Li, 1983; 

Skiepko, 1988; Drobnic, Oman & Tuma 2006, Wang, Bu, Li, 

Tang, & Che, 2019; Heidari-Kaydan, Hajidavalloo, & 

Mehrzad, 2021). However, most of the models are 

computationally expensive with significantly high inference 

time and hence not amenable for real-time applications. 
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Empirical models proposed for estimating propensity of 

fouling (Burke & Johnson 1982; Wang et al. 2019; Chen, Xu, 

Yang, Wang, & Wang 2020) also require the internal 

temperature profile of APH for accurate estimations. Data-

driven models based on machine or deep learning have been 

explored for fouling estimation (Sundar, Rajagopal, Zhao, 

Kuntumalla, Meng, Chang, Shao, Ferreira, Miljkovic, Sinha, 

& Salapaka, 2020; and Gupta, Jadhav, Patil, Deodhar, & 

Runkana, 2021). However, these models are heavily 

dependent on the quality and availability of data. In absence 

of sensor measurements inside the APH and overall difficulty 

in obtaining sufficient industrial data, purely data-driven 

models are not effective. In addition, often the inferences 

from purely data-driven models may defy physical principles. 

Physics informed neural networks (PINNs) (Raissi, 

Perdikaris, & Karniadakis 2019) are gaining popularity as a 

viable alternative to address limitations and harness the 

power of both physics-based and data-driven models. PINNs 

are a type of universal function approximators that are trained 

by imposing governing partial differential equations as 

constraints. These constraints are applied by introducing 

governing equation residuals and boundary or initial 

conditions in the loss function. This approach enables the 

neural network to incorporate domain knowledge in the 

learning process and learns virtually without any data in a 

semi-supervised manner. PINNs make the model more 

flexible by eliminating a fixed mesh typically required in a 

physics-based numerical solver, while remaining physically 

consistent. 

Lagaris, Likas and Fotiadis (1998) were the first to introduce 

neural networks to solve boundary value problems for partial 

differential equations (PDEs). Raissi, et al. (2019) introduced 

the concept of incorporating governing PDEs in the loss 

function of a deep neural network to solve both forward and 

inverse problems. Since then, PINN has been used for solving 

various scientific problems in several domains (Cuomo, Di 

Cola, Giampaolo, Rozza, Raissi, & Piccialli, 2022) including 

fluid flow (Cai, Mao, Wang, Yin & Karniadakis,  2022) and 

heat transfer (Cai, Wang, Wang, Perdikaris & Karniadakis, 

2021).  

A few limitations of the PINNs have been recently 

highlighted by Cuomo et al. (2022) in their review. Even 

though the inference time for PINN models is considerably 

low, high training time and significant convergence 

difficulties in complex scenarios limit their implementation 

in real life applications (Jagtap & Karniadakis, 2020). Shukla, 

Jagtap and Karniadakis (2021) suggested the distributed 

framework for training PINN models to reduce the training 

time. Domain decomposition is one such strategy of 

distributed framework usually adapted to reduce the 

complexity of training PINNs (Heinlein, Klawonn, Lanser, & 

Weber, 2021). cPINN (Jagtap, Kharazmi, & Karniadakis, 

2020) and xPINN (Jagtap & Karniadakis, 2020) networks 

employ the domain decomposition strategy to get accurate 

solutions of complex nonlinear conservation laws. Recently, 

Moseley, Markham, and Nissen-Meyer (2021) proposed the 

domain decomposition approach to solve large multiscale 

problems. Another limitation of current PINN techniques is 

that they fail to generalize over dynamically changing 

boundary conditions (Cuomo et al. 2022) for governing 

differential equations, a scenario often found in industrial 

applications. 

PINNs trained over single set of boundary conditions cannot 

be used in application where parameter values change 

dynamically (Wang, Planas, Chandramowlishwaran and 

Bostanabad, 2021). Wang et al. (2021) proposed a ‘train once 

use forever’ algorithm comprising of a combination of GFNet 

and Mosaic Flow Predictor that enables one time training of 

a neural network that can generalize over arbitrary boundary 

conditions as well as arbitrary domain shapes. Meta learning 

(Penwarden, Zhe, Narayan, & Kirby, 2021) and 

hypernetwork (Belbute-Peres, Yi-fan, & Fei, 2021) 

approaches have also been suggested for adapting PINNs to 

dynamic boundary conditions. Chakraborty (2021) suggested 

the use of transfer learning for training of multi fidelity 

PINNs. Desai, Mattheakis, Joy, Protopapas, and Roberts, 

(2021) has presented use of transfer learning with pre-trained 

neural network for one-shot inference for linear system of 

both ordinary and partial differential equations.  

In the present work, we apply some of these concepts to 

develop a PINN model for real-time health monitoring of an 

industrial APH. The base PINN model is developed by 

decomposing the APH into three sub-domains and stitching 

the individual sub-domain PINNs by applying continuity 

conditions at the respective interfaces. The model solves a set 

of two-dimensional governing equations for capturing the 

heat transfer phenomenon and predicts the internal 

temperature profile of APH for air, gas and metal based on 

the external boundary conditions such as inlet air and gas 

temperatures. Boundary conditions used to solve governing 

equations herein refers to inlet gas and air temperatures, 

which are typically known through sensor measurements. 

Fouling propensity is a function of temperatures and 

chemical concentrations in APH. Online monitoring of 

fouling propensity can be enabled through PINN models 

trained for different boundary conditions. However, in online 

applications temperatures of gas and air, flow rates and 

composition of flue gas vary significantly. This results in 

numerous combinations of conditions and for each such 

condition offline simulation or training of PINN is not 

practical. To address this challenge, a transfer learning 

framework is used which enables computationally 

inexpensive and near real-time re-training and inference from 

the network for a change in boundary conditions, making the 

model suitable for real-time industrial application. The model 

inference is shown to be as accurate as and significantly faster 

than corresponding physics-based numerical solution. In 

current study finite combination of temperatures (9 cases) are 

considered to demonstrate the use of transfer learning to 

speed up the training time. However, in practice numerous 

Proceedings of the 7th European Conference of the Prognostics and Health Management Society 2022 - ISBN – 978-1-936263-36-3

Page 220



EUROPEAN CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2022 

3 

combinations of temperatures or other parameters are 

possible. Transfer learning framework proposed will be 

useful for online estimation of temperature profile and 

fouling propensity monitoring in industrial application. 

Online estimation of temperature profile further can also be 

used for digital twin applications wherein real time 

predictions are used for process optimization, maintenance 

decisions, safety related decisions along with monitoring. 

2. METHODOLOGY  

2.1. Governing Equations for APH heat transfer  

Figure 1 shows the schematic of APH of height H, outer 

diameter 𝑑𝑜 , inner diameter 𝑑𝑖  and sector angles of 

𝛽𝑔, 𝛽𝑎1, 𝛽𝑎2 for flue gas, primary air, and secondary air flow. 

Flue gas enters APH from the top whereas primary air and 

secondary air enter from bottom. The metallic matrix rotates 

at ω revolutions per minute (rpm). 

High temperature flue gas enters from top and heats the 

matrix, which in turn rotates and transfers this heat to the cold 

ambient air entering from bottom. While convection 

dominates the heat transfer between fluids and metal, 

conduction contributes significantly to the heat transfer 

within metal. In the current work, we consider a two-

dimensional formulation (tangential and axial direction) for 

solving thermal governing equations inside the APH. Heat 

transfer in the radial direction is assumed to be constant and 

hence not accounted for in the governing equations (Skiepko 

1988).  

 

Figure 1 APH Schematic 

 

The computational domain considered is shown in Figure 2. 

Due to the presence of different fluid (gas & air) channels in 

the tangential direction, fluid temperature profile would be 

discontinuous. PINN models are known to encounter 

difficulties in generalizing for such solution discontinuities 

(Jagtap et al. 2020). Therefore, entire domain (Ω) is divided 

into three subdomains presented as gas side subdomain (Ω𝑔), 

primary air side sub domain (Ω𝑎1), and secondary air side sub 

domain ( Ω𝑎2 ), as shown in Figure 2. Each sub domain 

coordinates are normalized from 0 to 1 for both axial and 

tangential directions. It can be noted that, for gas side 

subdomain positive axial direction is from top to bottom 

which is same as gas flow direction. Similarly, for primary 

air side and secondary air side subdomain, positive axial 

direction is from bottom to top which is same as flow 

direction for primary and secondary air. Positive tangential 

direction is considered from left to right for all subdomains, 

which is same as rotational direction of matrix. For 

simplicity, all metal matrix layers are assumed to be made of 

a single homogeneous material, however the approach 

mentioned can be extended to a multi material matrix APH 

as well.   

Eqs. (1-6) represent the non-dimensionalised governing 

equations for heat transfer between the fluids and the metal 

(Skiepko 1988). Here, subscript 𝑚 , 𝑔 , 𝑎1 , 𝑎2  are used to 

represent matrix, gas, primary air and secondary air 

respectively. Subscript 𝑚𝑔 ,𝑚𝑎1 ,𝑚𝑎2  are used to represent 

matrix in gas, primary air and secondary air domain 

respectively. Number of transfer units ( 𝑁𝑇𝑈 ) and Peclet 

number (𝑃𝑒), are used to non dimensionalize the governing 

equations (Skiepko 1988). 

 

Figure 2 Computational domain for Air Preheater 

 

𝜕𝑇𝑚𝑔

𝜕𝜃
= 𝑁𝑇𝑈𝑚𝑔

(𝑇𝑔 − 𝑇𝑚𝑔
) + 𝑃𝑒𝑚𝑔

−1
𝜕2𝑇𝑚𝑔

𝜕𝑧2
 (1) 

 

𝜕𝑇𝑔

𝜕𝑧
= 𝑁𝑇𝑈𝑔 (𝑇𝑚𝑔

− 𝑇𝑔) (2) 

 

𝜕𝑇𝑚𝑎1

𝜕𝜃
= 𝑁𝑇𝑈𝑚𝑎1

(𝑇𝑎1 − 𝑇𝑚𝑎1
) + 𝑃𝑒𝑚𝑎1

−1
𝜕2𝑇𝑚𝑎1

𝜕𝑧2
 (3) 
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𝜕𝑇𝑎1

𝜕𝑧
= 𝑁𝑇𝑈𝑎1(𝑇𝑚𝑎1

− 𝑇𝑎1) (4) 

 

𝜕𝑇𝑚𝑎2

𝜕𝜃
= 𝑁𝑇𝑈𝑚𝑎2

(𝑇𝑎2 − 𝑇𝑚𝑎2
) + 𝑃𝑒𝑚𝑎2

−1
𝜕2𝑇𝑚𝑎2

𝜕𝑧2
 (5) 

 

𝜕𝑇𝑎2

𝜕𝑧
= 𝑁𝑇𝑈𝑎2(𝑇𝑚𝑎2

− 𝑇𝑎2) (6) 

Temperature measurements of gas and air at the respective 

inlets are used as boundary conditions to solve the governing 

equations. Eqs. (7-9) represent the boundary conditions. 

𝑇𝑔(𝜃, 𝑧 = 0) = 𝑇𝑔𝑖𝑛
 (7) 

 

𝑇𝑎1(𝜃, 𝑧 = 0) = 𝑇𝑎1𝑖𝑛
 (8) 

 

𝑇𝑎2(𝜃, 𝑧 = 0) = 𝑇𝑎2𝑖𝑛
 (9) 

Along with boundary conditions, continuity constraints due 

to rotation of matrix from gas side to primary air side, 

primary air side to secondary air side and secondary air side 

to gas side again are applied as shown in eqs. (10-12) 

𝑇𝑚𝑔
(𝜃 = 0, 𝑧) = 𝑇𝑚𝑎2

(𝜃 = 1,1 − 𝑧) (10) 

 

𝑇𝑚𝑔
(𝜃 = 1, 𝑧) = 𝑇𝑚𝑎1

(𝜃 = 0,1 − 𝑧) (11) 

 

𝑇𝑚𝑎1
(𝜃 = 1, 𝑧) =  𝑇𝑚𝑎2

(𝜃 = 0, 𝑧) (12) 

As axial heat conduction in metal is zero at the end of metallic 

layer additional matrix temperature gradient constraints are 

imposed as shown eqs. (13-15) 

𝜕𝑇𝑚𝑔
[𝜃,  (𝑧 = 0 𝑎𝑛𝑑 1)]

𝜕𝑧
= 0 (13) 

 

𝜕𝑇𝑚𝑎1
[𝜃,  (𝑧 = 0 𝑎𝑛𝑑 1)]

𝜕𝑧
= 0 (14) 

 

𝜕𝑇𝑚𝑎2
[𝜃,  (𝑧 = 0 𝑎𝑛𝑑 1)]

𝜕𝑧
= 0 (15) 

 

2.2. Physics Informed Neural Network 

2.2.1. Neural Network Architecture 

Base PINN model for APH consists of a deep neural network 

(DNN) for each of the subdomains 𝑝  in APH (i.e., Ω𝑔,

Ω𝑎1, Ω𝑎2). The spatial co-ordinates (𝜃, 𝑧) are the inputs to 

each network and the outputs are fluid temperature (𝑇𝑓) (air 

or gas) and matrix temperature (𝑇𝑚 ) for each sub-domain 

respectively. Let 𝒩𝐿 ∶  ℝ𝑫𝒊  →  ℝ𝐷𝒐  be a deep neural 

network of 𝐿 layers and 𝑁𝑘  neurons in 𝑘𝑡ℎ  layer ( 𝑁0 = 𝐷𝑖  

and 𝑁𝐿 = 𝐷𝑜). The weight matrix and bias vector in the  𝑘𝑡ℎ 

layer ( 1 ≤ 𝑘 ≤ 𝐿 ) are denoted by 𝐖𝒌  ∈  ℝ𝑁𝑘 ×𝑁𝑘−1  and 

𝐛𝒌 ∈ ℝ𝑁𝑘  respectively. Input vector is denoted as 𝐱 ∈ ℝ𝑫𝒊 , 

output vector at 𝑘𝑡ℎ layer is denoted as 𝒩𝑘(𝐱) and 𝒩0(𝐱) =
 𝐱. Activation function is denoted as Φ. DNN is defined by 

eq. (16): 

𝒩𝑘(𝐱) =  Φ(𝐖𝑘𝒩𝑘−1(𝐱) + 𝐛𝑘),        1 ≤ 𝑘 ≤ 𝐿 (16) 

Let, Θ = {𝐖𝑘 , 𝐛𝑘} be a collection of all weights and biases. 

Then output of neural network is given by eq. (17). 

𝑢Θ(𝐱) =  𝒩𝐿(𝐱; Θ) (17) 

Figure 3 shows the schematic of PINN architecture, wherein 

three deep neural networks are used for each sub-domain 

respectively. For each sub domain, the output of individual 

deep neural network is given as 

𝑢𝑖Θ
(𝐱) =  𝒩𝑖

𝐿(𝐱; Θ ), ∀ 𝑖 = 1,2,3  (18) 

The final solution will be given as 

𝑢Θ(𝐱) =  ⋃ 𝑢𝑖Θ
(𝐱)

3

𝑖=1

 (19) 

 

2.2.2. Sub domain Loss Function 

Total loss for PINN comprises of mean squared error (𝑀𝑆𝐸) 

due to residuals of governing equations calculated using 

collocation points (𝑀𝑆𝐸ℱ𝑝
), loss due to boundary condition 

calculated using boundary points (𝑀𝑆𝐸𝑏𝑐𝑝
), MSE loss due to 

interface condition calculated at interface points (𝑀𝑆𝐸𝑖𝑐𝑝
) 

and MSE loss due to matrix temperature gradient calculated 

at top and bottom points of each sub domain (𝑀𝑆𝐸𝑔𝑟𝑎𝑑𝑝
) . 

Mean squared error for different components of sub domain 

𝑝 is calculated using eqs. (20-23): 

𝑀𝑆𝐸ℱ𝑝
=

1

𝑁ℱ𝑝

∑ |ℱ (𝜃ℱ 𝑝
𝑖 , 𝑧ℱ𝑝

𝑖 )|
2

𝑁ℱ𝑝

𝑖=1

 (20) 
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𝑀𝑆𝐸𝑖𝑐𝑝

=
1

𝑁𝑖𝑐𝑝

∑ |𝑇𝑚𝑝
(𝜃𝑖𝑐𝑝

𝑖 , 𝑧𝑖𝑐𝑝
𝑖 ) −  𝑇𝑚𝑝+ (𝜃𝑖𝑐𝑝

𝑖 , 𝑧𝑖𝑐 𝑝
𝑖 )|

2

𝑁𝑖𝑐𝑝

𝑖=1

 
(21) 

 

𝑀𝑆𝐸𝑏𝑐𝑝
=

1

𝑁𝑏𝑐𝑝

∑ |𝑇𝑓𝑝

𝑖 − 𝑇𝑓𝑝
(𝜃𝑏𝑐𝑝

𝑖 , 𝑧𝑏𝑐𝑝
𝑖 )|

2

𝑁𝑏𝑐𝑝

𝑖=1

 (22) 

 

𝑀𝑆𝐸𝑔𝑟𝑎𝑑𝑝
=

1

𝑁𝑔𝑟𝑎𝑑𝑝

∑ |
𝜕𝑇𝑚𝑝

(𝜃𝑔𝑟𝑎𝑑𝑝

𝑖 , 𝑧𝑔𝑟𝑎𝑑𝑝

𝑖 )

𝜕𝑧
|

2𝑁𝑔𝑟𝑎𝑑𝑝

𝑖=1

 (23) 

Where, ℱ  is the residual of governing PDEs, subscript 𝑝+ 

indicates the neighboring subdomain to subdomain 𝑝 , 

𝑁ℱ𝑝
, 𝑁𝑖𝑐𝑝

, 𝑁𝑏𝑐𝑝
, 𝑁𝑔𝑟𝑎𝑑𝑝

 represents number of collocation 

points, number of interface condition points, number of 

boundary condition points and number of matrix temperature 

gradient condition points in 𝑝𝑡ℎ subdomain respectively. 

(𝜃ℱ𝑝
𝑖 , 𝑧ℱ 𝑝

𝑖 ) , (𝜃𝑏𝑐𝑝
𝑖 , 𝑧𝑏𝑐𝑝

𝑖 ) and (𝜃𝑔𝑟𝑎𝑑𝑝

𝑖 , 𝑧𝑔𝑟𝑎𝑑𝑝

𝑖 ) represents the 

co-ordinates of the residual points, boundary condition points 

and gradient condition points for 𝑝𝑡ℎ  sub domain. 

(𝜃𝑖𝑐𝑝
𝑖 , 𝑧𝑖𝑐𝑝

𝑖 ) represents the common interface points of two 

neighboring subdomains 𝑝 and 𝑝+. Loss for pth subdomain is 

given in eq. (24). 

 

ℒ(Θ)𝑝 =  𝑀𝑆𝐸ℱ𝑝
+ 𝑀𝑆𝐸𝑖𝑐𝑝

+ 𝑀𝑆𝐸𝑏𝑐𝑝
+ 𝑀𝑆𝐸𝑔𝑟𝑎𝑑𝑝

 (24) 

Total loss for PINN is given by eq. (25), where subscript 

𝑔, 𝑎1, 𝑎2  represents subdomain for gas, primary air, and 

secondary air. 

ℒ(Θ) =  ℒ(Θ)𝑔 + ℒ(Θ)𝑎1 + ℒ(Θ)𝑎2 (25) 

DNN for each subdomain consist of one input layer (two 

neurons), two hidden layers (with 16 neurons in each layer) 

and one output layer (two neurons). Activation function used 

for hidden layers and output layer is tanh. Gradients for 

evaluating the residual equation are calculated using auto 

differentiation feature (Baydin, Pearlmutter, Radul, & 

Siskind, 2018). Adam optimizer in used to train PINN model 

mean squared error is used as loss metric. Additionally, 

reducing learning rate callback and early stopping callback 

features from tensorflow were used for better control while 

training. If the loss does not reduce compared to the best loss 

value for 50 epochs, learning rate is reduced by factor of 0.1 

with reducing learning rate callback. Also, early stopping 

callback was used to stop the training if the training loss does 

not improve for 100 epochs. Machine used for numerical 

simulation and PINN model training has specifications as 

follows: AMD Ryzen 5 2500U processor with Radeon Vega 

Mobile Gfx 2.00 GHz , RAM of 24 GB and 64-bit operating 

system.

 

Figure 3 PINN Architecture

Proceedings of the 7th European Conference of the Prognostics and Health Management Society 2022 - ISBN – 978-1-936263-36-3

Page 223



   

 

 6 

2.3. Transfer Learning Based Dynamic Prediction using 

PINN 

The base PINN described above can predict the internal 

temperatures accurately only for the set of boundary 

conditions it is trained with. However, industrial scenario 

requires a model that can predict the temperatures 

dynamically for varying boundary conditions in near real-

time. To enable quick re-training and inference for a different 

boundary condition, a transfer learning inspired approach is 

utilized. The weights of the base PINN model trained for 

benchmark boundary condition are used for initialization and 

instead of training all those weights, weights and bias for the 

input layer and first hidden layer are frozen for each DNN of 

each subdomain. This follows from the assumption that layer 

1 of each DNN captures the benchmark physical phenomena 

sufficiently and the second layer manipulates the inference 

for the altered boundary condition. The accuracy and 

computational time based on this method is later compared 

with the traditional physics-based numerical solver and the 

PINN model with all layers trainable. 

2.4. Health Monitoring using inference from PINN 

model 

The internal temperature profile of APH plays a crucial role 

in determining the progression of fouling as it influences the 

chemical reactions and more importantly the location of ABS 

deposition zone within the APH. However, in absence of any 

sensors inside APH the operators remain blind to the fouling 

phenomena unfolding inside the matrix. Estimation of 

fouling propensity and identification of ABS deposition zone 

can assist the operator to make informed decisions about 

managing the fouling vis-a-vis the operating and 

maintenance costs it incurs. 

Chen et al. (2020) have suggested a number that indicates the 

propensity of fouling within APH based on the temperatures 

and the gas composition (ammonia NH3 and sulfur oxide 

SO3). PINN developed above can be utilized not only for 

estimation of fouling propensity but also for identifying 

fouling deposition zone within APH. Localization of this 

fouling zone is critical because it moves with the internal 

temperature conditions and has a large influence on the 

overall health of APH. Typically, when this fouling zone is 

close to the gas exit, the deposits within it are removable by 

a cleaning equipment called soot blower. However, when this 

fouling zone moves away from gas exit due to a shift in 

temperatures, it increases the risk of APH clogging and 

ultimate forced outage of the plant. ABS deposition 

temperature depends on the concentration of NH3 and SO3 in 

the APH. It can be calculated using the empirical relation 

presented in eq. (26) (Huang, Sun, Chen, Li, Gu, Hu, & 

Cheng 2015). 

𝑇𝐴𝐵𝑆 = 0.4059[ln(𝜑𝑁𝐻3
𝜑𝑆𝑂3

)]
2

+

11.45 ln(𝜑𝑁𝐻3
𝜑𝑆𝑂3

) + 192.29  
(26) 

Here, 𝑇𝐴𝐵𝑆  represents initial condensation temperature of 

ABS in °C; 𝜑𝑁𝐻3
 and 𝜑𝑆𝑂3

 represents the concentration of 

NH3 and SO3 in ppm. 

Fouling propensity indicator (R-Number) for ABS deposition 

tendency is given by eq. (27) (Chen et al. 2020). Here, 𝜑𝑁𝐻3,0
 

and 𝜑𝑆𝑂3,0
 represents the reference concentrations of NH3 

and SO3 in the flue gas at the inlet of the air preheater, 

respectively taken as 3 ppm and 5 ppm; 𝑇𝐴𝐵𝑆  in K, 

𝑇𝑐𝑜𝑙𝑑,𝑏𝑜𝑡𝑡𝑜𝑚,𝑎𝑣𝑔 and 𝑇𝑐𝑜𝑙𝑑,𝑡𝑜𝑝,𝑎𝑣𝑔 are the average temperature 

at the cold end of the APH in K, similarly 𝑇ℎ𝑜𝑡,𝑏𝑜𝑡𝑡𝑜𝑚,𝑚𝑖𝑛 and 

𝑇ℎ𝑜𝑡,𝑡𝑜𝑝,𝑚𝑖𝑛 are the average temperature at the hot end of the 

APH in K. 

𝑅 − 𝑛𝑢𝑚𝑏𝑒𝑟 =
𝜑𝑁𝐻3𝜑𝑆𝑂3

𝜑𝑁𝐻3,0𝜑𝑆𝑂3,0

𝑇𝐴𝐵𝑆−𝑇𝑐𝑜𝑙𝑑,𝑏𝑜𝑡𝑡𝑜𝑚,𝑎𝑣𝑔

𝑇𝑐𝑜𝑙𝑑,𝑡𝑜𝑝,𝑎𝑣𝑔−𝑇𝑐𝑜𝑙𝑑,𝑏𝑜𝑡𝑡𝑜𝑚,𝑎𝑣𝑔
exp (

𝑇𝐴𝐵𝑆−𝑇ℎ𝑜𝑡,𝑏𝑜𝑡𝑡𝑜𝑚,𝑚𝑖𝑛

𝑇ℎ𝑜𝑡,𝑡𝑜𝑝,𝑚𝑖𝑛−𝑇ℎ𝑜𝑡,𝑏𝑜𝑡𝑡𝑜𝑚,𝑚𝑖𝑛
)  (27) 

Figure 4 represents the summary of steps required to perform 

online health monitoring of the APH. A prerequisite base 

PINN model can be trained offline for single set of boundary 

conditions and given design parameters (geometry, material 

properties) of APH. This model is then further used in online 

health monitoring by freezing the weights between input and 

first layer of the networks. In online conditions, boundary 

conditions change continuously and hence the internal 

temperature profile in APH change as well. To infer the 

internal temperature profile, transfer learning framework is 

used along with base PINN model to train the new PINN 

model corresponding to new boundary conditions. PINN 

model networks are used to predict the internal temperature 

profile in APH. Internal temperature profile is then used to 

estimate unremovable deposit region and fouling propensity. 

Insight of deposit region and fouling propensity can be used 

by operator to do suitable operation changes. 

 

Figure 4 Flow chart for health monitoring using PINN 
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3. RESULTS AND DISCUSSION  

3.1. Base PINN and Numerical Solution comparison  

Numerical solution of the governing equations for the APH 

is obtained using finite difference method described by Li 

(1983). The numerical solution was validated with 

experimental data earlier (Gupta et al. 2021). Design and 

material related parameter values of APH used for the 

simulation are mentioned in Appendix A.1. This numerical 

simulation is used as a benchmark for comparing predictions 

from PINN models. The base PINN model is trained for the 

same APH with inlet gas temperature as 359°C and inlet air 

temperature as 25°C. It is trained using the architecture 

mentioned in section 2.2. It uses 15000 collocation, 15000 

boundary and 15000 sub-domain interface points for training. 

As shown in Figure 5 the base PINN is trained for 788 epochs 

to get an acceptable loss value. Training was stopped as per 

early stopping criteria (no improvement in total loss for last 

100 epochs). Model weights were restored to best weights 

obtained corresponding to best loss value. Post training of the 

model, values of temperature for flue gas side, primary air 

side, secondary air side and the matrix are inferred. 

Comparison of temperature profiles obtained through 

numerical finite difference method and PINN model is 

presented in Figure 6. The top row shows the fluid 

temperature profiles; the middle row shows the metal matrix 

temperature profiles. For continuity, the three sub-domains 

gas, primary air and secondary air are connected at the 

interfaces in Figure 6. The region between θ = 0-180° 

represents gas domain, θ=180°-250° represents primary air 

and θ= 250°-360° represents secondary air. As seen in the 

figure, there is an excellent match between the two solutions. 

The base PINN solution has a mean absolute error of 8.1e-3 

and a maximum absolute error of 0.03 when compared 

against the numerical solution for normalized value. It is 

equivalent to mean absolute error of 2.7°C and maximum 

absolute error of 10°C considering non-normalized solution. 

The domain decomposition technique also enabled capturing 

the thermal phenomena near the interfaces without any loss 

of accuracy. Although PINN requires a considerable time for 

training, its inference time is significantly lower than the 

numerical solution as shown in Table 1. The inference time 

of a trained PINN model will not deviate significantly even if 

the required granularity (mesh size) of the solution is altered. 

The same cannot be said about the numerical solution. 

Therefore, PINNs can be effectively used for soft sensing 

temperatures within APH in a near real-time scenario. The 

next challenge of making PINN work for varying boundary 

conditions is addressed in the next section. 

Table 1 Training and Inference Time comparison for 

Numerical Method and PINN solution for Base Case 

 Numerical 

Method  

PINN 

Training Time (sec) N/A 4212 

Inference Time (sec) 1076 1.8 

 

 

Figure 5 Training Loss for Base Case (Inlet Gas 

Temperature 359°C, Inlet Air Temperature 25°C) 

3.2. Training and inference for dynamic boundary 

condition 

As discussed in section 2.3, the base PINN network with flue 

gas inlet temperature as 359°C and air inlet temperature as 

25°C is used for training new PINNs for different boundary 

conditions via the transfer learning-based approach. The 

benefits of the approach are evaluated by testing it with a set 

of 9 different boundary conditions often encountered in 

industrial APH operation. The accuracy and the training - 

inference time for the transfer learning approach is compared 

with the corresponding numerical simulation as well as a 

PINN trained from scratch for the given boundary condition, 

as shown in Table 2. As seen, there is no loss of accuracy 

with the transfer learning approach when compared to PINN 

from scratch and the numerical simulation, validating its 

application. As the requirement is that of monitoring APH 

health in near real-time, the combined training and inference 

time of PINNs is compared against the inference time of a 

numerical solution (as it does not need any retraining). The 

premise here is that the PINN model will be trained online 

and used immediately for temperature predictions.  

The training and inference time for a PINN trained from 

scratch typically exceeded the inference time required for a 

numerical simulation. However, a transfer-learned PINN 

adapted for a new boundary condition using the previously 

built base PINN brought down the training and inference time 

substantially compared to the numerical simulation. On an 

average the combined training and inference time for a 

transfer-learned PINN was 78% less than the corresponding 

inference time for the numerical simulation.  

Industrial digital twins are increasingly using edge analytics 

for reducing the traffic and costs for cloud computations 

(Sánchez, Jörgensen, Törngren, Inam, Berezovskyi, Feng, 

Fersman, Ramli, & Tan 2021). Often the task of re-training 

of machine/deep learning models is allocated to cloud due to 
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intensive computational requirements and dependence on 

past historical data (which is stored on cloud). PINNs can 

help reduce the dependence on large quantities of data and a 

quick retraining framework such as this one can enable it to 

run on the edge instead of on cloud. This online retraining 

and near real-time predictions from the retrained model can 

provide an effective way of monitoring equipment health in 

industrial and manufacturing settings. 

3.3. Health monitoring of APH using PINNs 

Near real-time temperature predictions from PINN model can 

be effectively used for monitoring the risk posed by fouling. 

As an example, the internal temperatures predicted by PINN 

for the base case are used for calculating the fouling 

propensity and identifying the fouling zone as described in 

section 2.4. The fouling propensity is calculated assuming 

ammonia (NH3) and sulfur oxide (SO3) concentrations as 3 

ppm and 10 ppm respectively. For this scenario, 𝑇𝐴𝐵𝑆 

calculated using eq. (26) is 236.45°C and R-number 

calculated using eq. (27) is 0.79. Figure 7 shows the 

maximum, minimum and average gas temperature profile in 

the axial direction against the depth of APH (z = 0 indicates 

gas entry). The overall fouling zone for the given conditions 

is also indicated based on the calculated 𝑇𝐴𝐵𝑆. As seen in the 

figure a portion of this fouling zone falls beyond the reach of 

the cleaning soot blowing equipment and hence creating a 

permanent deposit inside the APH. Under normal 

circumstances the operator is completely blind to this insight. 

However, with this estimation operator may take some 

corrective actions to decelerate the fouling. 

 

Figure 7 Gas Temperature distribution and Unremovable 

Deposit region in APH 

 

 

 

 

 

Figure 6 Comparison of PINN and Numerical Solution 
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Table 2 Comparison of inference time for Transfer Learning based Training of PINN and numerical simulation 

Case 

Inlet Gas 

Temperature 

BC 

Inlet Air  

Temperature 

BC 

Numerical 

Simulation 

PINN trained with random 

initialization (without using the 

Base PINN) 

Transfer Learning  

using the Base PINN 

Inference  

time  

(sec) 

Train  

time 

(sec)  

Inference  

time  

(sec) 

MAE  

(wrt to 

correspond

-ing 

numerical 

simulation) 

Train  

time  

(sec) 

Inference  

time  

(sec) 

MAE  

(wrt to 

correspond

-ing 

numerical 

simulation) 

1 329 19 1028 3716 3.6 0.012 211 3.5 0.0105 

2 354 48 922 2782 3.7 0.005 255 3.8 0.0052 

3 331 38 1122 3314 3.9 0.030 187 3.6 0.0098 

4 330 31 915 3174 4.0 0.008 190 3.4 0.0105 

5 390 36 1066 2895 3.5 0.007 194 3.5 0.0033 

6 320 37 1076 2847 3.3 0.016 268 3.5 0.0112 

7 399 23 1179 3370 3.7 0.011 194 3.6 0.0056 

8 388 13 1188 2878 3.7 0.020 195 3.9 0.0021 

9 363 43 1038 2726 3.7 0.016 181 3.7 0.0043 

Figure 8 shows an example of effect of ammonia and ambient 

inlet air temperature on the fouling risk for APH. It is seen 

that high ammonia and low ambient temperature condition 

poses the greatest risk because of the formation of deep 

unremovable deposits within APH. The PINN model 

therefore can be used as an effective monitoring tool for APH 

predictive maintenance. 

 

Figure 8 Fouling Propensity Monitoring 

 

Although the PINN framework demonstrated here is 

certainly very useful, it can be improved and enhanced 

further to make it more effective. Firstly, the model can be 

modified to incorporate equations governing the chemical 

reactions and the deposition kinetics as well. Although the 

model demonstrated in this work caters to dynamic inlet 

temperature conditions, it can be expanded to accommodate 

dynamic flow rates, material properties as well as APH 

geometries. This can pave the way for building a generic and 

adaptable PINN model for monitoring and predictive 

maintenance of APH. On the deep learning front, we plan to 

explore different methods for building an all-condition PINN 

model capable of handling dynamic changes without having 

to do extensive retraining.  

4. CONCLUSION 

A Physics-informed Neural Network (PINN) is designed for 

capturing thermal phenomena in an air preheater (APH) used 

in thermal power plants. The APH is divided into three sub-

domains and a separate deep neural network (DNN) is 

constructed for each of them. The base PINN model is trained 

by stitching the three DNNs together through a common loss 

function comprising of governing partial differential 

equations and continuity constraints at the sub-domain 

interfaces.  Further, a transfer learning framework is used to 

enable quick training and inference from the PINN model for 

dynamically changing boundary conditions. The PINN 

model is shown to be faster than corresponding physics-based 

numerical solver, without appreciable loss of accuracy, 

making the model suitable for online and real-time 

applications. The predictions from the model are further used 

for estimating propensity of fouling in APH in near real-time, 

thereby assisting the operator in avoiding forced outages by 

taking informed decisions. The proposed PINN framework 

can be easily integrated into a digital twin of APH for a 

predictive maintenance application. 
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APPENDIX 

A.1 APH Design and Operational data for base case PINN 

Parameter Values 

Matrix 

 Inner radius (m) 1.63 

 Outer radius (m) 8.21 

 Height of matrix (m) 2.05 

Sector Angles 

 𝛽𝑔 180° 

 𝛽𝑎1 70° 

 𝛽𝑎2  110° 

Material Properties 

 Thermal conductivity (W/mK) 52.92 

 Heat capacity (J/kgK) 456 

Gas 

 Inlet temperature (°C) 359 

 Flow rate (kg/s) 770 

Primary Air 

 Inlet temperature (°C) 25 

 Flow rate (kg/s) 452.53 

Secondary Air 

 Inlet temperature (°C) 25 

 Flow rate (kg/s) 268.13 
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